SOI基光波导器件的模拟与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤通信的基础是光电子技术,其大量的光-电-光转换在一方面利用了成熟而廉价的集成电路技术,另一方面却也受到电子瓶颈的影响而限制了其通信容量的最大化。与微电子技术的发展一样,光电子技术或光子技术的发展目标仍然是集成,这类集成现在一般通称为光集成。光集成有两个方向,功能集成和个数集成,集成方式有光光集成和光电集成,而集成方法有单片集成和混合集成。硅材料无疑在集成光学里扮演了一个重要的角色,首先它的透明窗口恰好就在光通信频段;其次,其强大、廉价而成熟的微细加工工艺是光集成必不可少的;第三,硅的等离子体色散效应使其具有了实现调制器、光开关的可能性;第四,绝缘体上的硅(SOI)材料制备技术的成熟拓宽了硅材料在集成光学中的应用范围,使光子器件集成、光子晶体器件集成成为可能。
     本论文工作主要集中在SOI基光器件和光电器件的设计和工艺方面。有限元方法是波导光学模式求解的重要方法之一,罚项方法能消除传统全矢量节点有限元解中始终存在的伪模,作者在该方法基础之上,对罚因子进行了改进,提出了新的罚项,并对该方法的理论背景进行了阐述。采用该方法提高了模式的求解效率,得到了更好的本征模场和本征值,但是伪模仍然存在。棱边有限元方法是目前解决伪模问题的最好方法,由于SOI波导很高的折射率差,必须采用全矢量方法才能准确的设计单模波导。本文在Matlab上实现了全矢量棱边有限元方法,边界层用完全匹配层做为吸收层,对SOI脊形波导的模式进行求解,并与有效折射率方法所得的结果进行了比较分析。同时采用该方法计算了SOI基硅线的模式特征与氧化物埋层厚度的关系,得到了低泄漏损耗必需的氧化物埋层厚度为1μm的结论。
     采用标量节点有限元方法分析了平面TE模和TM模下的SOI光子晶体Y分支和三分支结构,计算了光在其中的传播模式,并获得了其在100 THz—300THz范围内的透射功率谱;计算了SOI微环谐振腔结构的响应谱,以及反射辅助型的微环谐振腔的响应函数,采用符号计算工具分析了其各端口的最优响应条件。
     设计并实现了SOI基可调光衰减器。应用棱边元方法设计了其脊形波导的导波结构,电极特性的设计分别采用了载流子运动的扩散模型和漂移-扩散模型。并用有限元方法实现了这两种模型的数值求解,优化并获得了载流子在波导截面的分布。通过数值模拟优化电极距离、掺杂浓度等参数,设计并流片实现了衰减器芯片。用Protel设计了镍金材质的PCB测试板,并完成了经过CMP抛光后的衰减器芯片与PCB板的搭线封装。完成了VOA中p-i-n结的I—V特性测试,以及VOA的电流—衰减特性和功率—衰减特性测试。VOA的衰减特性比较明显,首次流片和无冷却的情况下,动态衰减范围达到了14dB。将p-i-n结的I—V特
Optical fiber communication is based on opto-electronic technology. On the one hand, the realization of its dense opto-electro-opto conversion benefits from the cheap and mature integrated circuit technology, and the other, the electronic bottleneck limits the communication capability to far less than the fiber can load. Just like the development of microelectronic technology, the goal of the opto-electronic or photonic technology is integration. This kind of integration is called as optical integration. There are two directions of the optical integration: one is function integration, and the other is amount integration. The two ways of integration are opto-opto and opto-electronic integration. The two integration methods are single-chip and hybrid integration. Silicon is an important kind of material. At first, the transparent frequency window of silicon is same with the optical fiber. Secondly, the optical integration needs the powerful, low-cost and mature micro-manufacturing technology for silicon. Thirdly, plasma effect in silicon makes it possible to realize optical modulator or switch. Fourthly, the maturation of silicon-on-insulator (SOI) wafer forming technology broaden the application area of silicon in optical integration, such as for photonic devices (silicon wire, microring resonator), photonic crystal devices etc.
    This paper focused on the design and fabrication of optical and opto-electronic devices on SOI wafer. The finite element method is an important numerical method to solve the modes of optical waveguie. When the conventional nodal element is used to solve the full vector Helmoholtz equation, the spurious modes appear. The penalty term is added to the respecting functional and the spurious modes are suppressed out of the interesting area. But defining an appropriate penalty factor is difficult and based on experiences. This paper gave another kind of penalty term, which could improve the mode fields and eigenvalues. The solution efficiency was also enhanced. The physical background of this penalty term was analyzed. The nodal element destines the spurious modes in full Helmholtz equation. This problem is solved inside and out when the vector element is applied in the finite element method. The Matlab program to realize this numerical method was written. The perfect matched layers (PMLs) were also introduced in the numerical model of SOI rib waveguide. The eigenvalues in this numerical method were compared with the ones from the effective index method. The loss relation of leaking to substrate with the buried oxide (BOX) thickness for silicon wire was calculated, and its leaking field was also analyzed.
    The Y-branch and 3-branch of SOI photonic crystal were calculated by the two-dimension scalar finite element method in in-plane TE and TM polarization. The power transmission spectra were obtained. This method was also applied to calculate the response spectra of microring resonator. The symbol toolbox of Matlab helped to analyze the response spectra of reflection-assisted microring resonator. Its best response conditions of different ports were achieved.
引文
[1] M. Koshiba, Optical Waveguide Analysis, New York: McGraw-Hill. 1990.
    [2] M. Koshiba, Optical Waveguide Theory by the Finite Element Method, Tokyo: KTK. 1992.
    [3] 蔡伯荣,集成光学,成都:电子科技大学出版社,1990.49;
    [4] R. A. Sorer, B. R. Bennett, "Electrooptical Effects in Silicon", IEEE J. Quantum Electronics, 1987, 23(1): 123~129;
    [5] Intel group, "More Breakthroughs with Silicon Lasers", Photonics Spectra, April, 2005:22~23;
    [6] 原著:J.D.杰克逊,翻译:朱培豫,经典电动力学(上、下册),北京:高等教育出版社,1983年;
    [7] 原著:金建铭,翻译:王建国,电磁场有限元方法,西安:西安电子科技大学出版社,2001年。
    [8] 葛德彪,闫玉波,电磁场时域有限差分方法,西安:西安电子科技大学出版社,2002年。
    [9] Shlager K L, Schneider J B, A selective survey of the finite-difference time-domain literature. IEEE Antennas Propagat. Magazine, Aug. 1995, 37(4):39-57;
    [10] H. C. Martin, G. F. Carey, Introduction to Finite Element Analysis: Theory and Application. New York: McGraw-Hill, 1973;
    [11] J. M. Jin, Jl. L. Volakis, V. V. Liepa, A compareative study of the OSRC approach in electromagnetic scattering, IEEE Trans. Antennas Propagat., 1989, 37:118-124;
    [12] Din Sun, John Manges, Xingchao Yuan, Zoltan Cendes, "Spurious Modes in Finite Element Methods," IEEE Trans. Antennas Propagat., vol. 37, No. 5, Oct. 1995, 37(5): 12-24;
    [13] F. A. Fernandez, Y. Lu, "Variationial finite element analysis of dielectric waveguides with no spurious solutions," Electron. Lett., 1990, 26:2125-2126;
    [14] J. F. Lee, R. Lee, A. C. Cangellaris, "Time-domain finite element methods," IEEE Trans. Antennas Propagat., 1997, 45: 430-442;
    [15] A. C. Cangellaris, C. C. Lin, K. K. Mei, "Point-matched time-domain finite-element methods for electromagnetic radiation and scattering," IEEE Trans. Antennas Propagat., 1987,35:1160-1173;
    [16] J. T. Elson, H. Sangani, C. H. Chan, "An explicit time-domain method using three-dimensional whitney elements," Microwave Opt. Technol. Lett., 1994, 7: 607-610,;
    [17] K. Bierwirth, N. Schulz, F. amdt, "Finite difference method analysis of rectangular dielectric waveguide structures," IEEE Tran. Microwave Theory Tech., 1986, 34: 1104-1113;
    [18] N. Schulz, K. Bierwirth, E Amdt, "Finite difference method without spurious solutions for the hybrid mode analysis of diffused channel waveguides," IEEE Tran. Microwave Theory Tech., 199038: 722-729;
    [19] M. S. Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," Proc. Inst. Elect. Eng., 1993, 135: 56-63;
    [20] Yee K S, "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media", IEEE Trans. Antennas Propagat., 1966, 14(3): 302-307, May;
    [21] Shlager K L, Schneider J B, "A selective survey of the finite-difference time-domain literature", IEEE Trans. Antennas Propagat., 1995, 37(4): 39-57;
    [22] Kunz K S, Lee K M, "A 3-D finite difference solution of the external response of an aircraft to a complex transient EM evcironment: 1- The method and its implementation", IEEE Trans. Electromagn. Compat., 1978, 2(2): 328-333;
    [23] Gedney S D, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices", IEEE Trans. Antennas Propagat., 1996, 44(12): 1630-1639;
    [24] M. D. Feit, J. A. Fleck, "Light propagation in graded-index optical fibers," Appl. Opt., 1978, 17: 3990-3998;
    [25] D. Yevick, "A guide to electric field propagation techniques for guided-wave optics," Opt. Quantum Electron., 1994, 26: S 185-S 197,;
    [26] D. Yevick, B. Hermansson, "Efficient beam propagation techniques," J. Quantum Electron., 1990, 26: 109-112,;
    [27] C. Vassalo, F. collino, "Highly efficient absorbing boundary condition for the beam propagation method," J. Lightwave Technol., 1996, 14: 1570-1577,;
    [28] Tzyy-Jiann Wang, Chih-Feng Huang, Way-Seen Wang, Pei-Kuen Wei, "A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3", J. Lightwave Technol., 2004, 22(7): 1764-1771;
    [29] F. Laurell, J. Webj6rn, G. Arvidsson, and J. Holmberg, "Wet etching of proton-exchanged lithium niobate - A novel processing technique," J. Lightwave Technol., 1992, 10: 1606-1609;
    [30] R. S. Cheng, T. J. Wang, and W. S. Wang, "Wet-etched ridge waveguides in Y-cut lithium niobate," J. Lightwave Technol., 1997, 15:1880-1887;
    [31] S. J. Chung, C. L. Tsai, Y. B. Lin, J. F. Liu, andW. S.Wang, "Improved electrooptic modulator with ridge structure in X-cut LiNbO ," J. Lightwave Technol., 1999, 17: 843-847;
    [32] F. Fiedler, A. Schlachetzki, "Optical Parameters of InP-Based Waveguides,", Solid-state Electronics, 1987, 30(1): 73-83,;
    [33] Ya-Hsien Chang, H. C. Huo, Fang-I. Lai, Yi-An Chang, C. Y. Lu, U H. Laih, S. C. Wang, "Fabrication and characteristics of high-speed oxide-confined VCSELs Using InGaAsP-InGaP strain-compensated MQWs", J. Lightwave Technol., 2004, 22(12): 2828-2833;
    [34] Piprek, J.; Farrell, R.; DenBaars, S.; Nakamura, S.; "Effects of Built-In Polarization on InGaN--GaN Vertical-Cavity Surface-Emitting Lasers", IEEE Photonics TechnologyLeech P. W., Ridgway M., Faith M., "Channel waveguides formed in fused silica and silica-on-silicon by Si, P and Ge ion implantation", IEE Proceedings-M. Kawachi, "Silica waveguides on silicon and their application to integrated-optic components," Opt. Quantum Electron., 1990, 22:391-416,;
    [37] Shin Kamei, Akimasa Kaneko, Motohaya Ishii, Tomohiro Shibata, T.Saida, A.Himeno, M.Okuno, A.Sugita, K.Okamoto, "Silica-based 2x2 multimode interference coupler with arbitary power splitting ratio", Electronics Letters, 35(1999)2031;
    [39] Tetsuo Miya, "Silica-Based Planar Lightwave Circuits Passive and Thermally Active Devices", IEEE Journal of Selected Topics in Quantum Electronics, 6(2000)38;
    [40] Makoto Takahashi, Tatemi Ido, Takamitsu Nagara, "A Polymer PLC Platform with a fiber-alignment V-groove for a low-cost 10-GbE WWDM", IEEE Photonics Technology Letters, 16(2004)266;
    [41] Jae-Wook Kang, Jang-Joo Kim, Eunkyoung Kim, "All-optical Mach-Zehnder modulator using a photochromic dye-doped polymer", Applied Physics Letters, 40(2002) 1710;
    [42] J. Jiang, C.L. Callender, J.P. Noad, R.B. Walker, S.J. Mihailov, J. Ding, M. Day, "All-polymer photonic devices using excimer laser micromachining", IEEE Photonics Technology Letters, 16(2004)509;
    [43] Chung-yen Chao, L. Jay Guo, "Polymer microring resonators fabricated by nanoimprint technique", J. Vac. Sci. Technol. B 20(6), Nov/Dec 2002;
    [44] G.K.Celler, Sorin Cristoloveanu, "Frontiers of silicon-on-insulator", Journal of Applied Physics, 93(2003)4955;
    [45] Sorin Cristoloveanu, "Silicon on insulator technologies devices: from present to future", Solid-State Electronics, 45(2001)1403;
    [46] J. P. Collinge, SOI Technology: Materials to VLSI, Kluwer Acadmi Pub. 1991;
    [47] L. Peters, "SOI takes over where silicon leaves off", Semiconduct. Int., vol. 16, pp. 48-51, 1993;
    [48] Katavama, T., Nakashima, S.; Miyamura, Y.,Kataoka, M., Danbata, M., Imai, M., Izumi, K., Ohwada, N., "Improvement of surface morphology of SIMOX wafers by high-temperature oxidation", 1994 IEEE International SOI Conference, pp. 75-76, 1994;
    [49] Rickman A.G., Reed G.T., Weiss B.L., Namavar F., "Low-loss planar optical waveguides fabricated in SIMOX material", IEEE Photonics Technology Letters, 4(1992)633;
    [50] U. Fischer, T. Zinke, J.-R. Kropp, F.Amdt, K.Petermann, "0. ldB/cm waveguide losses in single-mode SOI rib waveguides", IEEE Photonics Technology Letters, 8(1996)633;
    [51] T.W.Ang, G.T.Reed, A.Vonsovici, A.G.R.Evans, P. R.Routley, M.R.Joesy, "0.15dB/cm loss in Unibond SOI waveguides", Electronics Letters, 35(1999)977.
    [52] B.Jalali, S.Yegnanarayanan, T.Yoon, T.Yoshimoto, I.Rendina, F.Coppinger, "Adivances in silicon-on-insulator optoelectronics", IEEE Journal of Selected Topics in Quantum Electronics, 4(1998)938;
    [53] Sebania Libertino, Salvatore Coffa, Mario Saggio, "Design and fabricated of integrated Si-based optoelectronic devices", Materials Science in Semiconductor Processing, 3(2000)375;
    [54] Richard A.Soref, "Silicon-based optoelectronics", Proceedings of the IEEEE, 81(1993)1687;
    [55] B.Jalali, S.Yegnanarayanan, T.Yoon, T.Yoshimoto, I.Rendina, F.Coppinger, "Adivances in silicon-on-insulator optoelectronics", IEEE Journal of Selected Topics in Quantum Electronics, 4(1998)938;
    [56] A.Layadi, A.Vonsovici, R.Orobtchouk, D.Pascal, A.Koster, "Low-loss optical waveguide on standard SOI/SIMOX substrate", Optics Communications, 146(1998)31;
    [57] Wei Hong, "Recent developments in silicon optoelectronic devices", Microelectronics Reliability, 42(2002)317;
    [58] P. D.Trinh, S.Yegnanarayanan, B.Jalali, "5×9 Integrated Optical Star Coupler in Silicon-on-Insulator Technology", IEEE Photonics Techology Letters, 8(1996)794;
    [59] Ansheng Liu, Richard Jones, Ling Liao, Dean Samara-Rubio, Doron Rubin, Oded Cohen, Remus Nicolaescu, Marie Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor", 427(2004)615;
    [60] Ansheng Liu; Samara-Rubio, D.; Ling Liao; Paniccia, M.;"Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator", IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2): 362-367;
    [61] Yanping Li; Jinzhong Yu; Shaowu Chen; "Rearrangeable nonblocking SOI waveguide thermooptic 4×4 switch matrix with low insertion loss and fast response", IEEE Photonics Technology Letters, 2005, 17(8): 1641-1643;
    [62] L. Pavesi, L. D. Negro, G. Mazzoleni, G. Franzo, and S. Priolo, "Optical gain in silicon nanocrystals," Nature, 2000, 408: 440-444;
    [63] Raghunathan, V.; Claps, R.; Dimitropoulos, D.; Jalali, B.; "Parametric Raman wavelength conversion in scaled silicon waveguides", Journal of Lightwave Technology, 2005, 23(6): 2094- 2102;
    [64] R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman scattering in silicon waveguides," Opt.Express, 2003, 11: 1731-1739;
    [65] A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gainin a low loss silicon-on-insulator waveguide by stimulated Raman scattering,"Opt. Express,, 200412: 4261-4268;
    [66] Tai Tsuchizawa, Koji Yamada, Hiroshi Fukuda, Toshifumi Watanabe, Jun-ichi Takahashi, Mitsutoshi Takahashi, Tetsufumi Shoji, Emi Tamechika, Sei-ichi Itabashi, Hirofumi Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE . J. Sel. Quantum. Electron., 2005, 11(1): 232-240;
    [67] Marko Loncar, Dusan Nedeljkovic, Theodor Doll, Jelena Vuckovic, Axel Scherer, Thomas P.Pearsall, "Waveguiding in planar photonic crystals", Applied Physics Letters, 77(2000)1937;
    [68] Atsushi Sakai, "Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate", IEEE Journal of quantum Electronics, 38(2000)743;
    [69] Masatoshi Tokushima, Hideo Kosaka, Akihisa Tomita, Hirohito Yamada, "Lightwave propagation through a 120o sharply bent single-line-defect photonic crystal waveguide", Applied Physics Letters, 76(2000)952;
    [70] M.Patrini, M.Galli, F.MarabeUi, M.Agio, L.C.Andreani, D.Peyrade, Yong Chen, "Photonic bands in patterned silicon-on-insulator waveguides", IEEE Journal of Quantum Electronics, 38(2002)885;
    [71] J. Arentoft, T. Serndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge L. Frandsen, "Low-loss silicon-on-insulator photonic crystal waveguides", Electronics Letters, 38(2002)27;
    [72] M. Zelsmann, E. Picard, T. Charvolin, E. Hadji, M. Heitzmann, B. Dal'zotto, M. E. Nier, C. Seassal, P. Rojo-Romeo, X. Letartre, "Seventy-fold enhancement of light extraction from a defectless photonic crystal made on silicon-on-insulator", Applied Physics Letters, 83(2003)2542;
    [73]Rahman, B. M. A., F. A. Fernandez, J. B. Davies, "Review of finite element methods for microwave and optical waveguides," P. IEEE, 1991, 79: 1442-1448;
    [74]R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, "Numerical Techniques for Modeling Guided-wave Photonic Devices," IEEE J. Sel. Quantum. Electron., 2000, 6(1):150-162;
    [75]Ikeuchi, M. H. Sawami, H. Niki, "Analysis of open-type dielectric waveguides by the finite-element iterative method," IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 234-239, Mar. 1981;
    [76] Rahman, B. M. A., J. B. Davies, "Finite-element analysis of optical and microwave waveguide problems," IEEE Tran. Microwave Theory Tech., vol. MTT-32, pp. 20-28, Jan. 1984;
    [77] J. P. Webb, V. N. Kanellopoulos, "Aborbing boundary conditions for the finite element solution of the vector wave equation," Microwave Opt. Tech. Lett., vol. 2, pp. 370-372, Oct. 1989;
    [78] A. Bayliss, M. Gunzburger, E. Turkel, "Boundary conditions for the numerical solution of elliptic equations in exterior regioins," SIAM J. Appl. Math., vol. 42, pp. 430-451, 1982;
    [79]Berenger J P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., vol. 114, no.2, pp: 185-200, 1994;
    [80]M. Koshiba, K. Hayata, M. Suzuki, "Improved finite element formulation in terms of the magnetic fields vector for dielectric waveguides," IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 227-233, 1985;
    [81] J. F. Lee, D. K. Sun, Z. J. Cendes, "Full-wave analysis of deilectric waveguides using tangential vector finite elements," IEEE Trans. Microwave Theory Tech., vol. MTT-39,pp. 1262-1271, Aug. 1991;
    [82] H. Whitney, Geometric Integration Theory. Princeton, NJ: Princeton University Press, 1957;
    [83]Mur G, "Edge Elements, their advantages and their Disadvantages," IEEE Trans. Magnetics, Vol. 30, pp. 3552-3557, Sept. 1994;
    [84] Sun D., Manges J., Yuan X. C, Cendes Z., "Spurious Modes in Finite-Element Methods," IEEE Trans. Antennas and Propagation, Vol. 37, pp. 12-24, Oct. 1995;
    [85]Caorsi S., Fernandes P., Taffetto M., "Edge Element and the Inclusion Condition," IEEE Microwave and Guided Wave Letters, Vol. 5, pp. 222-223, July 1995;
    [86] Working Group I, COST-216, "Comparison of different modeling techniques for longitudinally invariant integrated optical waveguides," IEE Proc, J, 136, 273-280, 1989;
    [87] Stern M. S., "Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles", IEE Proc. J, 1988, 135: 333-338;
    [88]Robertson M. J., Ritchie S., and Dayan P., "Semiconductor waveguides: analysis of optical propagation in single rib structures and directional couplers", IEE Proc. J, 1985, 132:336-342;
    [89] Stern, M. S., "Rayleigh quotient solution of semi-vectorial field problems for optical waeguides with arbitrary index profiles," IEE Proc. J, 1991, 138: 185-190,;
    [90] K. Yamada, T. Shoji, T. Tsuchizawa, T. Watanabe, J. Takahashi, S. Itabashi, "Silicon-wire based ultrasmall filters with wide free spectral ranges," Opt. Lett., 2003,28:1663-1664;
    [91]Hirohito Yamada, Tao Chu, Satomi Ishida, Yasuhiko Arakawa, "Optical directional coupler based on Si-wire Waveguides," IEEE Photon. Technol. Lett., 2005, 17(3):585-587;
    [92] Pieter Dumon, Wim Bogaerts, Vincent Wiaux, Johan Wouters, Stephan Beckx, Joris Van Campenhout, Dirk Taillaert, Bert Luyssaert, Peter Bienstman, Dries Van Thourhout, Roel Baets, "Low-loss SOl photonic wires and ring resonators fabricated with deep UV Lithography," IEEE Photon. Technol. Lett., 2004, 16(5); 1328-1330;
    [93] W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, R. Baets, "Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography," IEEE J. Sel. Topics Quantum Electron., vol. 8, no. 4, pp. 928-934, Jul.-Aug. 2002;
    [94] Wim Bogaerts, Roel Baets, Pieter Dumon, Vincent Wiaux, Stephan Beckx, Dirk Taillaert, Bert Luyssaert, Joris Van Campenhout, Peter Bienstman, Dries Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," IEEE J. Light. Technol., vo. 23, no. 1, pp. 401-412, Jan. 2005;
    [95] Niemi, T.; Frandsen, L.H.; Hede, K.K.; Harpoth, A.; Borel, P.I.; Kristensen, M.; "Wavelength-Division Demultiplexing Using Photonic Crystal Waveguides", IEEE Photon. Technolo. Lett., 2006, 18(1): 226-228;
    [96] B. E. Little, S. T. Chu, H. A. Haus, " Second-order filtering and sensing with partially coupled traveling waves in a single resonator", Opt. Leett. 22, 20, 1570-1572(1998);
    [97] O. Schwelb, "Transmission, Group Delay, and Dispersion in Single-Ring Optical Resonators and Add/Drop Filters---A tutorial Overview", J. Lightwave Technol. 22, 5, 1380-1394(2004);
    [98] Giora Griffel, "Synthesis of Optical Filters Using Ring Resonator Arrays", IEEE Photon. Technol. Lett., vol. 12, No. 7, pp. 810-812, Jul. 2000;
    [99] O. Schwelb, I. Frigyes, "All-Optical Tunable Filters Built with Discontinuity-Assisted Ring Resonators", J. Lightwave Technol. 19, 3, 380-386(2001);
    [100] Vorckel et. al., "Asymmetrically Coupled Silicon-On-Insulator Microring Resonators for Compact Add-Drop Multiplexers," IEEE Photon. Technol. Lett., 2003, 15(7): 921-923;
    [101] M. Lenzi, S. Tebaldini, D. D. Mola, "Power control in the photonic domain based on integrated arrays of optical variable attenuators in silica-on-silicon technology," J. Sel. Topic. Quantum. Electron., vol. 5, no. 5, pp. 1289-1297, 1999;
    [102] X.M. Zhang, A. Q. Liu, C. Liu, D. Y. Tang. "MEMS variable optical attenuator using low driving voltage for DWDM systems," Electron. Lett., vol. 38, no. 8, pp. 382-383, 2002;
    [103] R.U. Ahmad, F. Pizzuto, G. S. Camarda, "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett., vol. 14,no. 1, pp. 65-67, Jan. 2002;
    [104] Bennet B. R., Soref R. A., Alamo J. A. D., "Carrier-induced change in refrractive index of Inp/GaAs, and InGaAsP," IEEE J. Quantum Electron., vol. 26, no. 1, pp. 113-122, Janu. 1990;
    [105] Soref R. A., Bennett B. R., "Electrooptical effects in silicon," IEEE J. Quantum Electron., 1987, vol. 23, no. 1, pp. 123-129;
    [106] Richard A.Soref, Joachim Schmidtchen, Klaus Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2", IEEE Journal of Quantum Electronics, 27(1991) 1971;
    [107] Oily Powell, "Single-Mode Condition for Silicon Rib Waveguides", IEEE Journal of Lightwave Technology, 20(2002) 1851-1855;
    [108] A.G.Rickman, G.T.Reed, Fereydoon Namavar, "Silicon-on-Insulator Optical Rib Waveguide Loss and Mode Characteristics", IEEE Journal of Lightwave Technology, Jan./1994, 12(10), pp1771-1776;
    [109] Treyz G. V., May P. G., Halbout J. M., Silicon optical modulators at 1.3 μm based on free-carrier absorption," IEEE Electron Device Lett., 1991, vol. 12, no. 6, pp. 276-278;
    [110] Chen P. J., Misiakos K, et al. "Analytical solution for two-dimensional current injection from shallow p-n junction," IEEE Trans. Electron Devices, 1985, vol. 32, no. 11, pp. 22-92-2296;
    [111] 原著:施敏,翻译:黄振岗,半导体器件物理,北京:电子工业出版社,1987.81;
    [112] 黄庆安,陈军宁,张会珍,键合Si/SiO2/Si结构的C—V特性,半导体学报,1994,15(5):354—360;
    [113] Yablonovitch E, Swanson R. W., Eades W. D., "Electron-hole recombination at the Si-SiO2 interface," Appl. Phys. Lett., 1986,48(3):245~247;
    [114] Snyder, A. W., J. D. Love, Optical waveguide thory, Chapman and Hall, London and New York, 1983;
    [115] Miller, S. E., "Coupled wave theory and waveguide applications," Bell Syst. Tech. J., 1954, 33: 661-719;
    [116] Pierce, J. R., "Coupling of modes of propagation," J. Appl. Phys., 1954, 25:179-183;
    [117] Mao Z. M., Huang W. P., "Analysis of optical rib waveguides and couplers with buried guiding layer," IEEE J. Quantum Electronics, 1992, 28(1): 176-183;
    [118] Huang W. P., Haus H. A., Yoon H. N., "Analysis of buried-channel waveguides and couplers: scalar solution and polarization correction," J. Lightwave Technology, 1990, 8(5):642-648;
    [119] Burns W. K., "Normal mode analysis of waveguide devices, part 1: theory," IEEE J. Lightwave Technology, 1988, 6(6):1051-1057;
    [120] H.A. Haus, N. A. Whitaker, "Elimination of cross talk in optical directional couplers," Applied Physics Letters, 1985, 46(1): 1-3;
    [121] Z. Weissman, A. Hardy, E. Marom, " On the applicability of the coupled mode thory to non-parallel waveguide systems," Optics Communications, 1989, 71(6): 341-344;
    [122] K.L. Chen, S. Wang, "Cross-talk problems in optical directional couplers," Applied Physics Letters, 1984, 44: 166-168;
    [123] Weiping Huang, Herman A. Haus., "Self-consistent vector coupled-mode thory for tapered optical waveguides," IEEE J. Lightwave Technology, 1990, 8(6): 922-926;
    [124] D. Rowland, "Nonperturbative calculation of bend loss for a pulse in a bent planar waveguide," IEE Proc.-Optoelectron., 1997, 144(2):91-96;
    [125] Marcatili, E. A. J., "Bends in optical dielectric waveguides," Bell Syst. Tech. J. 1969, 48:2103-2132;
    [126] Heiblum, M., Harris, J. H., "Analysis of curved opticalwaveguides by conformal transfromation," IEEE J. Quantum Electron., 1975, 11: 75-83;
    [127] K. Okamoto, H. Takahashi, S. Suzuki, A. Sugita, Y. Ohmori, "Design and fabrication of integrated-optic 8×8 star coupler", Electron. Lett., 1991, 27(9): 774-775;
    [128] C. Dragone, C. H. Henry, I. P. Kaminow, R. C. Kistler, "Efficient multicnannel integrated optics star coupler on silicon", IEEE Photon. Technolo. Lett., 1989, 1: 241-243;
    [129] K. Okamoto, H. Takahashi, M. Yasu, Y. Hibino, "Fabrication of wavelength-insensitive 8×8 star coupler", IEEE Photon. Technolo. Lett., 1992, 4(1): 61-63;
    [130] M. Koshiba, Y. Tsuji, " A wide-angle finite-element beam propagation method," IEEE Photon. Technol. Lett., 1996, 8: 1208-1210;
    [131] H.P. Nolting, R. Marz, "Results of benchmark tests for different numerical BPM algorithms," IEEE J. Lightwave Technol., 1995, 13:216-224;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700