膦酸、磺酸无机—有机杂化材料的合成、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究在中温水热溶剂热条件下有机膦酸、有机磺酸杂化材料的合成与结构表征,探讨杂化材料结构的多样性以及特殊功能材料的合成。在合成方面,主要研究溶剂和作为有机模板剂的胺类的改变对产物结构的影响;以柔性和半刚性的有机膦酸及刚性的有机磺酸作为结构基元代替传统的[PO4]3?、[SO_4]~(2-)结构基元,设计合成系列具有新颖结构的无机-有机杂化材料,探讨材料合成的差异性及结构方面的特点。主要报导了以下12个新颖的化合物: (NH_4)_2[Ni(L~1)(H_2O)] (1),(H_3O)_8[Ni_4O_2(HL~1)4(H_2O)_2] (2) [NH_3(CH_2)_3NH_3](NH_4)_4[Ni(L~2)(H_2O)]_2 (3),(H_3O)_3[Ni(L~2)(H_2O)_2]·4H_2O (4) (H_3O)[Co(H_2L~2)(H_2O)_2]·2H_2O (5),[Pb_2(HL_3)(NO_3)]·2H_2O (6),[Mn(H_2L~3)]·H_2O (7) [H_3N(CH_2)_3NH_3][Pb_2(SIP)_2]·6H_2O (8),[Cd(HSIP)(PIP)(H_2O)_2] (9) [CdCl_3(CH_3)_3NH] (10),[Ni(PIP)Cl_2] (11),[Cd(PIP)Cl_2] (12)配体简写:[(HO_2CCH_2)_2N(CH_2PO_3H_2), H_4L~1], [(C_4H_8N_2)(CH_2PO_3H_2)_2, H_4L_3], [(HO_2CCH_2)N(CH_2PO_3H_2)_2, H_5L~2], [5-NaO_3SC6H_3-1,3-(CO_2H)_2, NaH_2SIP]
     对所有化合物进行单晶X-射线衍射分析表明:化合物1属于一维链状结构,并通过氢键形成超分子网络;化合物2属于四核超分子网络结构;化合物3属于双核结构,并通过氢键形成三维超分子网络;化合物4,5属于单核超分子网络结构,化合物4通过氢键同时形成一维水链;化合物7,8属于二维结构,7通过氢键连接形成超分子网络结构;化合物9,10属于一维Z字链状结构;
     化合物6,11,12属于三维骨架结构,12在吸附方面有潜在的应用性。在大量实验基础上,较为系统的研究了反应条件如溶剂、有机胺、时间、温度、pH值、反应物配比等对产物结构的影响,初步归纳总结了合成规律。
Inorganic-organic materials are recently of great interest due to their potential applications in adsorption, separation and catalysis. Since Robl and Clearfield have developed synthetic route using organic polyfunctional group molecule, such as phosphonic acid, carboxylic acid and sulfonic acid, as linker to form complexes with inorganic compounds, phosphonic acids, carboxylic acids and sulfonic acids with multi-sites ligands are more and more paid close attention. These materials may be employed in the field of semiconductor, ion exchange, catalysis, molecular magnets, proton conduction, nonlinear optical materials, inserted chemistry and photochemistry, thereby promoting rapid development of the phosphonate and sulfonate's materials.
     Phosphonate chemistry rise in the mid-1970s. With 30 years gonging by, metal phosphonates containing from +2 to +6 valence have been reported. In recent years, based on the addition of organic template and using of a variety of organic functional groups to perform a chemical modification, as well as hydrothermal synthesis, these methods not only have provide a broader space for the preparation of phosphonates, but also to study their applications has supply with a solid foundation. phosphonates containing multi-functional, zero-dimensional (clusters), one-dimensional, two-dimensional, three-dimensional structure and open framework of using organic amine as template, have been increasing in number. High-dimensional and low-dimensional(cluster) phosphonates are relative rare. Phosphonates with pore and zero-dimensional multinuclear magnetic metal are the research topic of the day, because the potential applications in the field of adsorption or ion exchange for hole phosphates and showing magnetic phenomena in an orderly manner for some zero-dimensional polynuclear phosphonates with some physical properties such as magnetic quantum tunnels—this kind of single-molecular magnets can be used as magnetic storage equipment materials. However, the phosphonic acid used in synthesis of these compounds are relatively limited, corresponding phosphonates reported being more scarce. Thus, by controlling the pH value of solution, we select three phosphonic acid, H_2O_3PCH_2N (CH_2CO_2H)2 (H_4L~1), (H_2O_3PCH_2)2NCH_2CO_2H (H_5L~2), H_2O_3PCH_2N(C_2H_4) 2NCH_2PO_3H_2 (H_4L~3) to synthesize seven phosphonates successfully.
     However, study on sulfonate ligands have been attracted attention only in recent years. Both organic sulfonic acid (R–SO_3~–) and phosphonic acid group (R–PO_3~(2-)) structure are very similar, but they possess different charge and the different ability of the formation of hybrid materials. The bonded ability between metal-oxygen in organic sulfonate is weaker than that of in phosphonate. If we can find the appropriate soft metal ions, in some cases sulfonic group compete with the water molecules to coordinate with metal ion, and stable structural compounds would be obtained. At present the synthesis of organic sulfonates containing a variety of functional groups is emerging as a hot area. Because introducing carboxyl and amino, nitrogen heterocyclic groups into organic sulfonates not only make structure rich and colorful but also result in the possible application. From the point of view of the synthesis, introduction of new functional groups both increases solubility of organic acid in the water, but also provides more coordinated sites and coordination modes. Accordingly, we introduce NaH_2SIP into the system of the synthesis. According to the literature, organic amine used in the synthesis are the most rigid or semi-rigid, and flexible organic amine in the synthetic system seldom reported. In this thesis, we described the synthesis, crystal structure and some properties of a series of metal (Ni, Co, Mn, Pb) phosphonates, matal (Mn, Pb) sulfonates and metal-organic(Cd, Ni) chlorids, and summarized the rules of synthesis and compared the difference of structures and synthesis.
     Under mild sovlothermal conditions, two phosphonates (NH_4)_2[Ni(L~1)(H_2O)] (1) with one-demensional chain and (H_3O)_8[Ni_4O_2(HL~1)_4(H_2O)_2] (2) with tetranuclear cluster structure have been synthesized and characterized by single crystal X-ray diffraction. The construction of 1D chain structure in the compound 1 can be viewed as the assembly of octahedral [NiO_5N] building units and carboxylate groups in cis-trans mode, being different from those of reported compounds in which the phosphonate group or 4,4’-bpy bridges metal to produce 1D chain. Magnetic analytic result indicates there is an antiferromagnetic coupling between Ni(II) ions in the chain. In the process of synthesizing compound 1, compound 2 is obtained at the same time. compound 2 possesses tetranuclear structure built from carboxylate groups in cis-trans mode. Magnetic analytic result indicates there is a spin-canting antiferromagnetic coupling between Ni(II) ions. compound 2 reveals the better fluorescence owing to the formation of multinuclear clusters. Under mild sovlothermal conditions, three phosphonates
     [NH_3(CH_2)_3NH_3](NH_4)_4[Ni(L~2)(H_2O)]_2 (3), (H_3O)_3[Ni(L~2)(H_2O)_2]·4H_2O (4) and (H_3O)[Co(H_2L~2)(H_2O)_2]·2H_2O (5) have been synthesized and characterized by single crystal X-ray diffraction. By adjusting pH value of solution, compound 3 is obtained. Compound 3 is a 3D supramalecule constructed from binuclear building unit, at the same time organic amine is located at among tetraclusters. So organic amines can not only adjust pH value of solution but also perform the function of template and structure-directing agents. Magnetic analytic result indicates ferromagnetic coupling interactions is prominent between Ni(II) ions above 7 K. Using TMAOH instead of 1,3-PDA, compounds 4 and 5 are obtained. Their coordination mode with H5L2 ligand are similar, but belong to different space group attributed to metal ionic electronic configuration of the outer. With organic amine study, we found that the template size decreases, compounds tend to generate low-nuclear structure. Water chain is the first be found which lead to form 3D supramalecular network in the compound 4. The formation of water chain both increases structural stability and make compound possibly have property. Magnetic analytic result indicates ferromagnetic coupling interactions is prominent between Ni(II) ions above 40 K in compound 4, but antiferromagnetic coupling for compound 5. Both compounds 2 and 4 reveal the better fluorescence, however compound 5 doesn’t show fluorescence owing to metal ionic electronic configuration of the outer.
     Herein, We discuss the syntheses and structural features of these novel compounds and the structural relationships among them. In addition, we find that F– ion is a very important effect factors for the synthesis of phosphonates.
     We successfully prepared two phosphonates under mild hydrothermal synthesis conditions, namely, [Mn(H_2L~3)]·2(H_2O)_(1/2) (6) and [Pb_2(HL~3)]·(NO_3)·2(H_2O) (7). 3D framework structure with one-dimensional channels is formed through organic moiety PIP of ligand connecting with inorganic chain in compound 6. 2D layer structure is built up from organic moiety PIP linking with inorganic chain in compound 7. It is noteworth that compound 7 is new 2D layer example with positive charge [Pb_2(HL_3)]~+.
     Two sulfonates are isolated from hydrothermal and water–ethanol system, respectively, namely [H_3N(CH_2)_3NH_3][Pb_2(SIP)_2]·6H_2O (8) and [Cd(HSIP)(PIP)(H_2O)_2] (9). The crystal structure of compound 8 is built up from dinuclear units [Pb_2O_2], through bridging sulfonate group giving rise to 2D layer structure. The octahedra {CdO_5N} as the basic building unit are connected by carboxylate group of ligand, producing 1D chain structure in the compound 9. Both 8 and 9 can form 3D supramolecular network by hydrogen-bond interactions. The compounds 8 and 9 both reveal the better fluorescence.
     Using different organic amine as template agents, one one-dimensional compound 10, namely {CdCl_3[(CH_3)_3NH]} (10), and two three-dimensional open-framework compounds 11, 12, namely [NiCl_2(C_4N_2H_8)] (11) and [CdCl_2(C_4N_2H_8)] (12), are prepared from sovlothermal and water-ethanol system, respectively. The connectivity between Cd(II) ions and chlorin ions gives rise to a inorganic anionic chain architecture [CdCl_3]~(n–) in the compound 10. Interactions of static electricity force between inorganic anionic chain [CdCl_3]~(n–) and trimethylamine cations gives rise to the formation of supramalecule. TGA-DTA analysis exhibits that framework of compound 10 starts collapse until the temperature rising up to 410°C, showing the higher thermal stability. In the solid state compound 10 exhibits intense photoluminescence (λmax = 631 nm) at excite band 464 nm. They may be good candidates for blue-light emitting diode devices, since these condensed materials are highly thermally stable and insoluble in common polar and non-polar solvents. The compounds 11 and 12 are isostructural, and possess 3D open-framework structure with one-dimensional channels constructed through connectivity PIP molecules with neutro-inorganic chain. Magnetic measure result reveals that ferromagnetic coupling interactions is prominent between Ni(II) ions above 55 K in compound 11. In the solid state compound 11 exhibits the stronger photoluminescence. The adsorption result shows that the compound 12 can adsorb the nitrogen with a Langmuir surface area of 153.7 m~2/g and a pore volume of 0.1561 cm~3/g, which can be attributed to the dynamic feature of the framework.
     In this paper, we reviewed the syntheses and structural characterization of a series of Ni~(II), Co~(II), Mn~(II), Pb~(II) phosphonates, Mn~(II), Pb~(II) sulfonates and inorganic-organic hybrid Cd~(II) and Ni~(II) chlorids. These results show that it is possible to prepare structural complex structural metal phosphonates, sulfonates and chlorids based on demands by transferring different organic amines and adjusting proper reagents molar compostions.
引文
[1] P. Gomez-Romero, M. Lira-Cantu, Hybrid Materials, in Kirk-Othmer Encyclopedia of Chemical Technology, Wiley Interscience, New York, 2002.
    [2] (a) A. F. Wells, Three-Dimensional Nets and Polyhedra, Wiley, New York, 1977. (b) A. F. Wells, Structural Inorganic Chemistry, Oxford University Press, Oxford, 1979.
    [3] Bouzid Menaa and Ian J. Shannon, School of Chemical Sciences, University of Birmingham, Birmingham, J. Mater. Chem., 2002, 12, 350?355.
    [4] A. Clearfield, Current Opinion in Solid State and Materials Science, 2002, 6, 495?506.
    [5] (a) A. Clearfield, Coordination chemistry of phosphonic acids with special relevance to rare earths, Journal of Alloys and Compounds, 2006, 418, 128?138. (b) Sanjit Konar, Bhuvanesh, A. Clearfield, Oxo-, Hydroxo-, and Peroxo-Bridged Fe(III) Phosphonate Cages, J. Am. Chem. Soc. 2006, 128, 9604?9605 (c) Jiang-Gao Mao, Structures and luminescent properties of lanthanide phosphonates, Coordination Chemistry Reviews, 2007 (d) Viswanathan Baskar, Metal cages using a bulky phosphonate as a ligand, Chem. Commun., 2007, 37?39
    [6] (a) G. Can, H. Hong, T. E. Mallouk, Acc. Chem. Res., 1992, 25, 420. (b) A. Clearfield, Coordination chemistry of phosphonic acids with special relevance to rare earths., J. Alloys and Compounds, 2006, 418, 128?138. (c) Sanjit Konar, Bhuvanesh, A. Clearfield, Oxo-, Hydroxo-, and Peroxo-Bridged Fe(III) Phosphonate Cages, J. Am. Chem. Soc. 2006, 128, 9604?9605. (d) Viswanathan Baskar, Muralidharan Shanmugam, E. Carolina Sańudo, Maheswaran Shanmugam, David Collison, Eric J. L. McInnes, Qiang Wei and Richard E. P. Winpenny, Metal cages using a bulky phosphonate as a ligand, Chem. Commun., 2007, 37?39. (e) F. Fredoueil, M. Evain, D. Massiot, M. Bujoli-Doeu and B. Bujoli, J. Mater. Chem., 2001, 11, 1106. (f) Jared M. Taylor, Amir H. Mahmoudkhani, and George K. H. Shimizu, A Tetrahedral Organophosphonate as a Linker for a Microporous Copper Framework, Angew Chem. Int. Ed., 2006, 45, 1?5.
    [7] I. G. Alhert, in Comprehensive supramolecular Chemistry, Lehn J. M. Ed., Pergemon, E Sevier Science, Ltd.: Oxford, U. K 1996, 7.
    [8] A. Clearfield, in Prog. Inorg. Chem. 1998, 47, 371.
    [9] L. Snover, H. By, E .P. Suponeva, E. Vicenzi, M. E. Tompson, Chem. Mater. 1996, 8, 1490.
    [10] L . A .Vermculen, M. E. Thompson, Nature 1992, 358, 656.
    [11] G. Alberti, U. Constantino, M. Casciola, Vivani R. Ada. Mater. 1996, 8, 291.
    [12] (a) S. Yamanaka, M. Koizumi, Clay, Clay Miner., 1975, 23, 477. (b) S. Yamanaka, lnorg Chem, 1978,15, 2811.
    [13] G. Alberti, U. Costsntino, S. Allulli, N. Tomsssini, Inorg. Nucl. Chem., 1978, 40, 1113?1117.
    [14] Melissa A. Petmska, Daniel R. Talham, Organic-Inorganic Langmuir-Blodgett Films Based on Metal Phosphonates, 4. Thermal Stability, Langmuir, 2000, 16, 5123?5129.
    [15] Melissa A-Petruska, Brian C. Watson, Mark W. Meisel, Daniel R. Talham,Organic-Inorganic Langmuir-Blodgett Films Based on Metal Phosphonates, 5. A Magnetic Manganese Phosphonate Film Including a Tetrathiafulvalene Amphiphile, Chem. Mater., 2002, 14, 2011?2019.
    [16] Melissa A. Petruska, Gail E. Fanucci, Daniel R. Talham, Organic-Inorganic Langmuir-Blodgett Films Based on Metal Phosphonates: Preparation and Characterization of Phenoxy- and Biphenoxy- Substituted Zireonium Phosphonate Films, Chem. Mater., 1998, 10, 177?189.
    [17] Melissa A. Petruska, Daniel R. Talham, Organic-Inorganic Langmuir-Blodgett Films Based on Metal Phosphonates, 3. An Azobenzenel Derivatized Phosphonic Acid Forms Continuous Lattice Layers with Divalent, Trivalent and Tetravalent Metal Ions, Chem. Mater., 1998, 10, 3672?3682.
    [18] Grace A. Neif, Marcus R. Helfrich, Matthew C. Clifton, Catherine J. Page, Layer-by-Layer Growth of Acentrie Multilayers of Zr and Azobenzene Bis(phosphonate): Structure, Composition, and Second-Order Nonlinear Optical Properties, Chem. Mater., 2000, 22, 2363?237l.
    [19] Aiping Wu, Daniel R. Talham,Photoisomerization of Azobenzene Chromophores Organic/Inorganic Zirconium Phosphonate Thin Films Prepared Using a Combined Langmuir-Blodgett and Self-Assembled Monolayer Deposition, Langmuir, 2000, 16, 7449?7456.
    [20] Grace Ann Neff, Catherine J. Page, Emesta Meintjes, T. Tsuda, W.-C.Pilgrim, Neil Self-Assembly of Multilayer Films: Use of Solid State Magic Angle Spinning 31 P NMR as a Probe of Reactions on Surfaees, Langmuir, 1996, 12, 238-242.
    [21] Christine M. Nixon, Karine Le Claire, Fabrice Odobel, Brdno Buioli, Daniel R. Taiham, Palladium Porphyrin Containing Zirconium Phosphonate, Langmuir-Blodgett Films, 1999, 11, 965?976.
    [22] Thomas E. Mallouk, Juliaa A. Gain, Molecular Recognition in Lamellar Solids and Thin Films, Acc. Chem. Res., 1998, 31, 209?217.
    [23] A. Clearfield, Organically Pillared Micro- and Mesoporous Materials, Chem. Mater., 1998, 10, 2801?2810.
    [24] Eric Burkholder, Vladimir Golub, Charles J O’Connor and Jon Zubicta, Solid State Coordination Chemistry: One, Two-, and Three-Dimensional Materials Constructed from Molybdophosphonate Subunits Linked through Binuelear Copper Tetra-2-py-dylpyrazine Groups, Inorg. Chem., 2003, 42, 6729?6740.
    [25] Baolong Zhang, Abraham Cleaffield, Crown Ether Pillared and Functionalized LayeredZireonium Phosphonates: A New Strategy to Synthesize Novel Ion Selective Materials, J. Am. Chem. Soc., 1997, 119, 2751?2752.
    [26] Guang Can, Hun-Gi Hong, Thosmas E Mallouk, Layered Metal Phosphates and Phosphonates: From Crystals to Monolayers, Acc. Chem. Res., 1992, 25, 420?427.
    [27] Mark E Thompson, Use of Layered Metal Phosphonates for the Design and Construction Of Moleeular Materials, Chem. Mater., 1994, 6, 1168?1175.
    [28] Solomon B Ungashe, William L. Wilson, Howard E. Katz, Geoffrey R. Schelier and Thomas M-Putvinski, Synthesis, Self-Assembly, and Photophysical Dynamics of StackedLayers of Porphyrin and Viologen Phosphonates, J. Am. Chem. Soc. 1992, 114, 8717?8719.
    [29] Jonathan L. Shover, Houston Byrd, Elena P. Suponeva, Edward Vicenzi, Mark E Thompson, Growth and Characterization of Photoactive and Electroactive Zirconium Bisphosphonate Multilayer Films, Chem.Mater. 1996, 8, 1490?1499.
    [30] S. M. Zakceruddin, M. K. Nazeeruddin, P. Pcchy, F. P. Rotzinger, R. Humphry?Baker, K. Kalyanasundaram, M.Graltzel, V. Shklover, T. Haibach, Molecular Engineering of Photosensitizers for Nanocrystailine Solar Cells: Synthesis and Characterization of Ru Dyes Based on Phosphonated Terpyridines, Inorg. Chem., 1997, 36, 5937?5946.
    [31] Karen Libson, Edward Deutsch, B. L. Barnet, Structural Characterization of a 99Tc-Diphosphonate Complex. Implications for the Chemistry of 99mTc Skeletal Imaging Agents, J. Am. Chem. Soc., 1980, 102, 2476?2478.
    [32] Silvia S. Jurisson, James J. Benedict, R. C. Elder, R Whittle, Edward Deutsch, Calcium Affinity of Coordinated Diphosphonate Ligands. Single-Crystal Structure of [(en)2Co(O2P(OH)CH2P(OH)O2)1ClO4·H2O. Implications for the Chemistry of Technetium-99m-Diphosphonate Skeletal Imaging Agents, Inorg. Chem., 1983, 22, 1332?1338.
    [33] lsabeUe Gillaizeau?Gauthier, Fabrice Odobel, Mooica Alebbi, Roberto Argazzi, Emiliana Costa, Carlo Albeao Bignozzi, Ping Qu, Gerald J. Meyer, Phosphonate-Based Bipyridine Dyes for Stable Photovoltaic Devices. Inorg. Chem., 2001, 40, 6073?6079.
    [34] C. Y. Ortiz-Avila, C. Bhardwaj, A. Clearfield, Zirconium Polyimine Phosphonates, a New Class of Remarkable Complexing Agents, Inorg. Chem., 1994, 33, 2499?2500.
    [35] Louis C. Brousseau, Thomas E. Mallouk, Molecular Design of Intercalation-Based Sensors, 1. Ammonia Sensing with Quartz Crystal Microbalances Modified by Copper Biphenylbis(phosphonate)Thin Films, Anal. Chem., 1997, 69, 679?687.
    [36] Louis C. BrOuSSP, David J. Aurentz, Alan J. Benesi, Thomas E. Mallouk, Molecular Design of Intercalation-Based Sensors, 2. Sensing of Carbon Dioxide Functionalized Thin Films of Copper-Octanediylbis(phosphonate), Anal. Chem., 1997, 69, 688?694.
    [37] Guang Cao, L. k. Rabenberg, Christine M. Nunn, Thomas E. Mallouk, Formation of Quantum-Size Semiconductor Particles in a Layered Metal Phosphonate Host Lattice, Chem. Mater., 1991, 3, 149?156.
    [38] Kazuyuki Maeda, Yoshimichi Kiyozumi, Fujio Mizukami, Characterization and Gus Adsorption Properties of Aluminum Methylphosphonates with Organically Lined Unidimensional Channels, J. Phys. Chem. B, 1997, 101, 4402?4412.
    [39] Fabrice Odobel, Bruno Bujoli, Dominique Massiot, Zirconium Phosphonate Frameworks Covalently Pillared with a Bipyridine Moiety, Chem. Mater., 2001, 13, 163?173.
    [40] David Deniaud, Bcmd SchoUorn, Daniel Mansuy, Jean Rowel, Pierrette Battion Bruno Bujoli, Synthesis and Catalytic Properties of Manganese Porphyrins Incorporated into Phosphonate Networks, Chem. Mater. 1995, 7, 995?1000.
    [41] Houston Byrd, Abraham Clearfield, Damodara Poojary, Kenneth P. Rcis, Mark E. Thompson, Crystal Structure of a Porous Zirconium Phnsphate-Phosphonate Compound and Photocatalytic Hydrogen Production from Related Materials, Chem. Mater., 1996, 8, 2239?2246.
    [42] Isa O. Benitez, Bruno Bujoli, Lament J. Camus, Christine M. Lee, Fabrice Odobel, Daniel R Talham,Monolayers as Models for Supported Catalysts:Zirconium Phosphonate Films Containing Manganese(III) Porphyrins., J. Am. Chem. Soc., 2002, 124, 4363?4370.
    [43] Gail E. Fanucci, J. Krzystek, Mark W. Meisel, Louis-Claude Brunel, Daniel R. Talham, Antiferromagnetic Resonance as a Tool for Investigating Magnetostructural Correlations: The Canted Antiferromagnetic State of KMnPO4·H2O and a Series of Manganese Phosphonates, J. Am. Chem. Soc., 1998, 120, 5469?5479.
    [44] Cé1ine Maillet, Pascal Janvier, Muriel Pipclier, Thoniyot Praveen, Yves Andres, Bruno Bujoli, Hybrid Materials for Catalysis Design of New Phosphonate-Based Supported Catalysts for the Hydrogenation of Ketones under Hydrogen Pressure, Chem. Mater. 2001, 13, 2879?2884.
    [45] Jay C.Amicangelo, Guy L. Rosenthal, Willem R.Leenstra, Molecular Modeling of Interlayer Catalytic Sites for Aniline Polymerization in a Zirconium Mixed Phosphonate Phosphate, Chem. Mater., 2003, 15, 390?394.
    [46] Mguo Hu, Helen L. Ngo and Wenbin Lin, Chiral Porous Hybrid Solids for Practical Heterogeneous Asymmetric Hydrogenation of Aromatic Ketones, J. Am. Chem. Soc., 2003, 125, 11490?11491.
    [47] Lori A.Vermeulen, Mark E. Thompson, Stable photoinduced charge separation in layered viologen compounds, Nature, 1992, 358, 656?658.
    [48] Yi-ping Zhang, A. Clearfield, Synthesis, Crystal Structures, and Coordination Intercalation Behavior of Two Copper Phosphonates, Inorg. Chem., 1992, 31, 2821?2826.
    [49] Guang Cao, Thomas E. Mallouk, Shape-Selective Intercalation Reactions of Layered Zinc and CobaIt Phosphonates, Inorg. Chem., 1991, 30, 1434?1438.
    [50] Karen J. Frink, Ren-chain Wang, Jorge L. Colbn, A. Cleadield, Intercalation of Ammonia into Zinc and Cobalt Phenylphosphonates, Inorg. Chem., 1991, 30, 1438?1441.
    [51] Yi-ping Zhang, Karen J. Scott, A. Clearfield, Intercalation of AIkylamines into Layered Copper Phosphonates, Chem. Mater., 1993, 5, 495?499.
    [52] Damodara M. Poojary, Yiping Zhang, Baolong Zhang, A. Clearfield, Synthesis, X-ray Powder Structure, and Intercalation Behavior of Molybdenyl Phenylphosphonate MoO2(O3PC6H5)·H2O, Chem, Mater., 1995, 7, 822?827.
    [53] Guang Cao, Vincent M. Lynch, Leonard N. Yacullot, Synthesis, Structural Characterization and Intercalation Chemistry of Two Layered Cadmium Organophosphonates, Chem. Mater., 1993, 5, 1000?1006.
    [54] Tsuyoshi Kijima, Shinichi Watanabe, Masato Machida, Carbon Number Dependence of the Intercalation and Interlayer Amidation Properties of a,o-Alkylidiamines for Layered Zirconium(Carboxyethyl)phosphonate, Inorg. Chem., 1994, 33, 2586?2591.
    [55] Damodara M. Poojary. A. Clearfield, Coordinative Intercalation of Alkylamines into Layered Zinc Phenylphosphonate, Crystal Structures from X-ray Powder Diffraction Data, J. Am. Chem. Soc., 1995, 1l7, 11278?11284.
    [56] Jack W. Johnson, A. J. Jacobson, J. F. Brody, J. T. Lewandowski, Layered Compounds with Alternating Organic and Inorganic Layer: Vanadyl Organophosphonates, Inorg. Chem., 1984, 23, 3842?3844.
    [57] Jack W. Johnson, Altan J. Jacobson, Wayne M. Buder, Shaft E. Rosenthal, John F. Brody, Joseph T. Lewandowsk, Molecular Recognition of Alcohols by Layered Compounds with Alternating Organicand and Inorganic, J. Am. Chem. Soc., 1989, 111, 381?383.
    [58] Jack W. Johnson, John F. Brady, and Roberl M. Alexander, Vanadyl Benzylphosphonates and Vanadyl Naphthylphosphonates: Intercalation Reactions with Bntanols, Chem. Mater., 1990, 2, 198?201.
    [59] (a) Guang Cao, Hun Gi Hong, Thomas E. Mallouk, Acc. Chem. Res., 1992, 25, 420?427. (b) Mark E. Thompson, Chem. Mater. 1994, 6, 1168?1175.
    [60] Ewa Matczak-Jon, Veneta Videnova-Adrabińska, Supramolecular chemistry and complexation abilities of diphosphonic acids, Coordination Chemistry Reviews, 2005, 249, 2458–2488.
    [61] Deng-Ke Cao,Jing Xiao, Yi-Zhi Li, Juan Modesto Clemente-Juan, Eugenio Coronado and Li-Min Zheng, Metal Phosphonates Based on {[(Benzimidazol-2-ylmethyl)imino]bis-(methylene)}bis(phosphonic Acid): Syntheses, Structures and Magnetic Properties of the Chain Compounds M{(C7H5N2)CH2N(CH2PO3H)2}](M = Mn, Fe, Co, Cu, Cd), Eur. J. Inorg. Chem. 2006, 1830?1837.
    [62] Jiang-Gao Mao, Structures and luminescent properties of lanthanide phosphonates, Coordination Chemistry Reviews, 2007, 251, 1493?1520.
    [63] W. T. A. Harrison, L. L. Dussack, A. J. Jacobson, Inorg. Chem., 1996, 35, 1461?1467.
    [64] G. Huan, V. W. Day, A. J. Jacobson, D. P. Goshorn, J. Am. Chem. Soc., 1991, 113, 3188-3189.
    [65] D. Kong, Y. Li, X. Ouyang, A. V. Prosvirin, H. Zhao, J. H. Ross, K. R. Dunbar, A. Clearfield, Syntheses, Structure, and Magnetic Properties of New Types of Cu(II), Co(II), and Mn(II) Organophosphonate Materials: Three-Dimensional Frameworks and a One-Dimensional Chain Motif, Chem. Mater., 2004, 16, 3020?3031.
    [66] D. M. Poojary, B. Zhang, P. Bellinghausen, A. Clearfield, Synthesis and X-ray Powder Structures of Covalently Pillared Lamellar Zinc Bis(phosphonates), Inorg. Chem., 1996, 35, 5254?5263.
    [67] L.-M. Zheng, S. Gao, P. Yin, X.-Q. Xin, One-Dimensional Cobalt Diphosphonates Exhibiting Weak Ferromagnetism and Field-Induced Magnetic Transitions, Inorg. Chem., 2004 43, 2151?2156.
    [68] Yin, P., Gao, S., Zheng, L.-M., Xin, X.-Q., Magnetic Properties of Metal Diphosphonate Compounds with One-Dimensional Chain Structures, Chem. Mater., 2003, 15, 3233?3236.
    [69] Song, H.-H.; Zheng, L.-M.; Wang, Z.; Yan, C.-H.; Xin, X.-Q. Zinc Diphosphonates Templated by Organic Amines: Syntheses and Characterizations of [NH3(CH2)2NH3]Zn(hedpH2)2·2H2O and [NH3(CH2)nNH3]Zn2(hedpH)2·2H2O (n= 4, 5, 6) (hedp = 1-Hydroxyethylidenediphosphonate), Inorg. Chem. 2001, 40, 5024?5029.
    [70] Clearfield, A., Sharma, C. V. K.,, Zhang, B. P., Crystal Engineered Supramolecular Metal Phosphonates: Crown Ethers and Iminodiacetates, Chem. Mater., 2001, 13, 3099?3112.
    [71] Dattelbaum, A. M., Martin, J. D., Inorg. Chem., 1999; 38, 6200?6205.
    [72] Zheng, L.-M., Song, H.-H., Duan, C.-Y., Xin, X.-Q., Template-Directed One- andTwo-Dimensional Copper(II) Diphosphonates: Structures and Characterizations of (NH4)2Cu3(hedp)2(H2O)4, [NH3(CH2)4NH3]Cu3(hedp)2·2H2O, and [NH2(C2H4)2NH2]Cu3(hedp)2 (hedp = 1-Hydroxy ethylidenediphosphonate), Inorg. Chem., 1999, 38, 5061?5066.
    [73] A. Choudhury, S. Natarajan, C. N. R. Rao, Chem. Commun., 1999, 14, 1305.
    [74] C. Lei, J. G. Mao, Y. Q. Sun, H.-Y. Zeng, A. Clearfield, {Zn6[MeN(CH2CO2)(CH2PO3)]6(Zn)}4- Anion: The First Example of the Oxo-Bridged Zn6 Octahedron with a Centered Zn(II) Cation, Inorg. Chem., 2003, 42, 6157?6159.
    [75] Z. Shi, S. Feng, S. Gao, L. Zhang, G. Yang and J. Hua, Angew. Chem., Int. Ed., 2000, 39, 2325.
    [76] M. I. Khan, L. M. Meyer, R. C. Haushalter, A. L. Schweitzer, J. Zubieta, J. L. Dye, Chem. Mater., 1996, 8, 43.
    [77] D. Riou, F. Fayon, D. Massiot, Chem. Mater., 2002, 14, 2416
    [78] U. Kortz, J. Vaissermann, R. Thouvenot, P. Gouzerh, Inorg. Chem., 2003, 42, 1135-1139.
    [79] R. C. Wang, Y. Zhang, H. Hu, R. R. Ffrausto, A. Clearfield, Chem. Mater., 1992, 4, 371.
    [80] Stephanie Drumel, Pascal Janvier, David Deniaud, and Bruno Bujoli, Synthesis and crystal structure of Zn(03PC21-I4NH2), the first functionalized zeolite-like phosphonate, J. Chem. Soc., Chem. Commun., 1995, 1051?1052.
    [81] Anne Distler and Slavi C. Sevov, Synthesis and characterization of Co3(O2C CH2CH2PO3)2·6H2O, a metal carboxylate-phosphonate with a framework structure, Chem. Commun., 1998, 9, 959?960.
    [82] F. Fredoueil, M. Evain, M. Bujoli-Doeuff, and B. Bujoli, How the Organic Moiety Drives the Coordination Chemistry of Metal Phosphonates: The First Enantiomerically Pure Zinc Phosphonate, Eur. J. Inorg. Chem., 1999, 1077?1079.
    [83] A. Turner, B. P. A. Jaffres, E. J. Maclean, D. Villemin, V. McKee, G. B. Hix, Hydrothermal synthesis and crystal structure of two Co phosphonates containing trifunctional phosphonate anions: Co3(O3PCH2NH2CH2PO3)2 and Co3(O3PCH2-NC4H7-CO 2)2·5H 2O, Dalton Trans., 2003, 7, 1314?1319.
    [84] D. Kong and A. Clearfield, Novel copper macrocyclic leaflet with N-phosphonomethyl-monoaza-18-crown-6, Chem. Commun., 2005, 1005?1006.
    [85] X. Shi, G. S. Zhu, S. L. Qiu, K. L. Huang, J. Yu, and R. R. Xu, Zn2[(S)-O3PCH2NHC4H7CO2]2 : A Homochiral 3D Zinc Phosphonate with Helical Channels, Angew. Chem. Int. Ed., 2004, 43, 6482?6485.
    [86] Yun-Sheng Ma, You Song, Wen-Xin Du, Yi-Zhi Li and Li-Min Zheng, Dinuclear and layered copper 2-pyridylphosphonates with weak ferromagnetism observed in layer compound Cu(C5H4NPO3), Dalton Trans., 2006, 3228?3235.
    [87] Jing Li, Lei Meng, Zhen-Gang Sun, Synthesis and characterizations of a layered antimony (III) phosphonate: [NH2CH2CH2NH2][Sb2{O3PCH(OH)CO2}2], Inorganic Chemistry Communications, 2007, 10, 535?537.
    [88] Jun-Ling Song, Han-Hua Zhao, Jiang-Gao Mao, Kim R. Dunbar, New Types of Layered and Pillared Layered Metal Carboxylate-Phosphonates Based on the 4,4’-Bipyridine Ligand, Chem. Mater., 2004, 16, 1884?1889.
    [89] Jiang-Gao Mao, Zhi-Ke Wang and Abraham Clearfield, Hydrothermal synthesis, characterization and crystal structures of two new zinc(II) phosphonates: Zn2[(O3PCH2)2NHCH2CO2] and Zn2[HO3PCH2NH(CH2PO3)2], New J. Chem., 2002, 26, 1010?1014.
    [90] Jun-Ling Song, Jiang-Gao Mao, Yan-Qiong Sun, Hui-Yi Zeng, Reinhard K. Kremer, and Abraham Clearfield, Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines, Journal of Solid State Chemistry, 2004, 177, 633?641.
    [91] Jun-Ling Song, Han-Hua Zhao, Jiang-Gao Mao, and Kim R. Dunbar, New Types of Layered and Pillared Layered Metal Carboxylate-Phosphonates Based on the 4,4’-Bipyridine Ligand, Chem. Mater., 2004, 16, 1884?1889.
    [92] Si-Fu Tang, Jun-Ling Song, and Jiang-Gao Mao, Syntheses, Crystal Structures, and Characterizations of a Series of New Layered Lanthanide Carboxylate-Phosphonates, Eur. J. Inorg. Chem., 2006, 2011?2019.
    [93] Anca Mateescu, Catherine P. Raptopoulou, Aris Terzis, Vassilis Tangoulis, and Athanasios Salifoglou, pH-Specific Synthesis and Structural and Spectroscopic Characterization of a Complex between Co(II) and N,N-Bis(phosphonomethyl)glycine: Cobalt–Phosphonate Interactions in the Solid State and in Solution, Eur. J. Inorg. Chem., 2006, 1945?1956.
    [94] Anca Mateescu, Catherine Gabriel, Raphael G. Raptis, Peter Baran, Athanasios Salifoglou, pH–Specific synthesis, spectroscopic, and structural characterization of an assembly of species between Co(II) and N,N-bis(phosphonomethyl)glycine. Gaining insight into metal-ion phosphonate interactions in aqueous Co(II)–organophosphonate systems, Inorganica Chimica Acta, 2007, 360, 638?648.
    [95] Tuikka Matti, Haukka Matti, Ahlgrén Markku, Three barium diphosphonates with 3-D structures, Solid State Sciences, 2007, 9, 535?541.
    [96] Brian Adair, Srinivasan Natarajan, Anthony K. Cheetham, Synthesis and structural characterization of a novel tin(II ) phosphonate, Sn2(O3PCH3)(C2O4), J. Mater. Chem., 1998, 8, 1477?1479.
    [97] Norbert Stock, Galen D. Stucky and Anthony K. Cheetham, The hybrid open-framework of tin(II) phosphonopropionate oxalate, Sn4(O3PCH2CH2CO2)2(C2O4), Chem. Commun., 2000, 2277?2278.
    [98] J. L. Song, C. Lei, Y. Q. Sun, J. G. Mao, Syntheses, characterizations and rystal structures of two lead(II) phosphonate-sulfonate hybrid materials, J. Solid State Chem., 2004, 177, 2557.
    [99] J. L. Song, J. G. Mao, Y. Q. Sun, A. Clearfield, Novel Hybrid Porous 3D Networks of Lead(II) Diphosphonate and Triphosphonate Containing 1,3,5-Benzenetricarboxylate, Eur. J. Inorg. Chem. 2003, 4218.
    [100] Si-Fu Tang, Jun-Ling Song, Xiu-Ling Li, and Jiang-Gao Mao, Novel Luminescent Lanthanide(III) Diphosphonates with Rarely Observed Topology, Crystal Growth & Design, 2007, 7, 360?366.
    [101] Adrien P. C?té, George K. H. Shimizu, The supramolecular chemistry of the sulfonategroup in extended solids, Coordination Chemistry Reviews, 2003, 245, 49?64.
    [102] P. L. Dedert, T. Sorrell, T. J. Marks, J. A. Ibers, Inorg. Chem., 1982, 21, 3506.
    [103] J. Cai, C.-H. Chen, Feng X.-L., Liao C. Z. and Chen X.-M., J. Chem. Soc., Dalton Trans., 2001, 2370.
    [104] Q.-Y. Liu, and L. Xu, Eur. J. Inorg. Chem., 2006, 1620?1628.
    [105] G .M. J. Schmidt, Photodimerization in the solid state, Pure Appl. Chem., 1971, 27, 647?678.
    [106] G. R. Desiraju, Supramolecular Synthons in Crystal Engineering, A New Organic Synthesis, Angew Chem. Int. Ed., 1995, 34, 2311?2327.
    [107] Adrien P. C?té, George K. H. Shimizu, The supramolecular chemistry of the sulfonate group in extended solids, Coordination Chemistry Reviews, 2003, 245, 49–64.
    [108] E. K. H. Shimizu, G. D. Enright, C. I. Ratclife, G. S. Rego, J. L. Reid, and J. A. Ripmeester, Silver Sulfonates: An Unexplored Class of Layered Solids, Chem. Mater., 1998, 10, 3282?3283.
    [109] E. K.H. Shimizu, G. D. Enright, C. I. Ratclife, K. F. Preston, J. L. Reid, J. A. Ripmeester, A layered silver sulfonate in corporating nine-coordinate A gein a hexag onal grid, Chem. Commun., 1999, 1485?1486.
    [110] K. T. Holman, A. M. Pivovar, J. A. Swift, and M.D. Ward, Metric Engineering of Soft Molecular Host Frameworks, Acc. Chem. Res., 2001, 2, 107?118.
    [111] F. H. Alien, Acta Crystallogr. B58, 2002, 380.
    [112] H. Place, et al., Inorganica Chimica Acta. 1998, 279, 1.
    [113] J.R.D. DeBord, et al., Chem. Commun. 1997, 1365.
    [114] R.P. Hammond, et al., Inorg. Chem. 1999, 38, 1288.
    [115] D.J. Chesnut, et al., Inorganica Chimica Acta. 1999, 292, 41.
    [116] M.T. Garland, et al., Acta Cryst. C44, 1988, 1204.
    [117] D.D. Swank, et al., Inorganic Chemistry, 1980, 2321.
    [118] R.A. Bream, et al., Inorganic Chemistry, 1975, 1672.
    [119] A.J. Black, et al., Crystal Engineering 1999, 2 181.
    [120] J.Y. Lu, et al., Inorg. Chem. 1999, 38, 4608.
    [121] P.M. Graham, et al., Inorg. Chem. 2000, 39, 512.
    [122] A.J. Black, et al., J. Chem. Soc., Dalton Trans. 1999, 2103.
    [123] P.C. Healy, et al., J. Chem. Soc., Dalton Trans. 1983, 1905.
    [124] B.W. Skelton, et al., Aust. J. Chem. 1999, 44, 1207.
    [125] P.C. Healy, et al., J. Chem. Soc., Dalton Trans. 1985, 2531.
    [126] P.C. Healy, et al., J. Chem. Soc., Dalton Trans. 1985, 2541.
    [127] L.M. Engelhardt, et al., Aust. J. Chem. 1989, 42, 149.
    [128] P.C. Healy, et al., Aust. J. Chem. 1983, 1851, 36.
    [129] N.K. Mills, et al., J. Chem. Soc., Dalton Trans. 1984, 225.
    [130] 金琼花等,全国第五界无机化学学术会议论文集 2000, 854.
    [131] 8th Chinese National Conference on Solid State Chemistry and Inorganic Synthesis 2002, 185.
    [132] Megumu Munakata, et al., Chem. Commun. 1980, 219.
    [133] Y. Wang, et al., Chem. Mater. 1999, 11, 530.
    [134] J. D. Martin, et al., Angew. Chem., Int. Ed. Engl. 1997, 36, 2072.
    [135] A. Rabenau, Angew. Chem. Int. Ed., 1985, 24, 1026.
    [136] H. Schafer, Chem. Trans. Reactions, Academic Press, New York, 1964
    [137] Shou-Hua Feng and Ru-Ren Xu, New Materials in Hydrothermal Synthesis, Acc. Chem. Res. 2001, 34, 239?247.
    [138] D. M. Bibby, M. P. Dale, Nature, 1985, 317, 153
    [139] M. Sugimoto, K. Takatsu, N. Kawata, T. Konishi, Proc. of 7th International Zeolite Conference, Tokyo, 1986, 193
    [140] H. W. Kouwenhoven, J. M. Nanne, Zeolites, 1987, 7, 286
    [141] R.M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, 1982.
    [142] E. M. Flanigen, R. L. Patton, USP at 4073865, 1978.
    [143] 范勇,吉林大学博士学位论文,2005.
    [144] (a) F. Williams, C. Floriani, A. E. MeMerbach, Eds. Perspectives in Coordination Chemistry, VCH, Weinheim, 1992. (b) S. J. Lippard, J. M. Berg, Principles of Bioinorganic Chemistry, University Science Books, California, 1994. (c) D. W. Bruce, D. O'Hard, Eds. Inorganic Materials, 2nd Ed., John Wiley&Sons, New York, 1996. (d) Pedro Gómez-Romero and Clément Sanchez, Functional Hybrid Materials, WILEY-VCH Verlag GmbH &Co. 2004.
    [145] D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior, and M. J. Rosseinsky, Design, Chirality, and Flexibility in Nanoporous Molecule-Based Materials, Acc. Chem. Res. 2005, 38, 273?282.
    [146] K. Mueda, Metal phosphonate open-framework materials, Microporous and Mesoporous Materials, 2004, 73, 47?55.
    [147] C. V. K. Sharma, A. J. Hessheimer, A. Clearfield, Novel materials based on self-assembly of organophosphonic acids, Polyhedron, 2001, 20, 2095?2104.
    [148] U. Muller, M. Hesse, L. Lobree, et a1. US 097 724 Al, 2004.
    [149] U. Mtlller, M. Hesse, O. M. Yaghi, et a1. US 6624 318 B1, 2003.
    [150] J. S. Seo, D. Whang, H. Ke, et a1. Nature, 2000, 404, 982?986.
    [151] (a) M. Eddaoudi, J. Kim, N. Rosi, et al. Science, 2002, 295, 469?472. (b) M. Kondo, M. Shimarrim, S. Noro, et a1. Chem. Mater., 2000, 12, l288?l299.
    [152] (a) N. L. Rosi, J. Eckert, O. M. Yaghi, et a1. Science, 2003, 300, 1127?l129. (b) J. L. C. Rowsell, A. R. Millward, K. S. Park, et a1. J. Am. Chem. Soc., 2004, 126, 5666?5667.
    [153] X. J. Zheng, L. C. Li, L. P. Jin, et a1. Polyhedron, 2004, 23, l257?l262.
    [154] L. Pan, M. B. Sander, X. Huang, et a1. J. Am. Chem. Soc., 2004, 126, l308?l309.
    [155] Oybtsev D. N., Chun H., Yoon S. H., et a1., J. Am. Chem. Soc., 2004, 126, 2?33.
    [156] W. P. Su, M. C. Hong, J. B.Weng, R. Cao, S. F. Lu, Angew Chem. Int. Ed., 2000, 39, 2911.
    [157] H. K. Fun, S. S. S. Ray, R. G. Xiong, J. L. Zuo, X. Y. You, J. Chem. Soc., Dalton Trans., 1999, 1915.
    [158] 洪茂椿 陈荣 梁文平 21 世纪的无机化学 科学出版社 2005,8 月.
    [159] Xiao-Ming Chen and Ming-Liang Tong, Solvothermal in Situ Metal/Ligand Reactions: A New Bridge between Coordination Chemistry and Organic Synthetic Chemistry, Acc.Chem. Res. 2007, 40, 162?170.
    [160] (a) R. Sessoli, D. Gatteschi, A. Caneschi and M. A. Novak, Nature, 1993, 365, 141. (b) D. Gatteschi and R. Sessoli, Angew Chem. Int. Ed., 2003, 42, 268. (c) A. K. Boudalis, C. P. Raptopoulou, B. Abarca, R. Ballesteros, M. Chadlaoui, J. P. Tuchagues and A. Terzis, Angew Chem. Int. Ed., 2006, 45, 432.
    [161] (a) Viswanathan Baskar, Muralidharan Shanmugam, E. Carolina Saňudo, Maheswaran Shanmugam, David Collison, Eric J. L. McInnes, Qiang Wei and Richard E. P. Winpenny, Metal cages using a bulky phosphonate as a ligand, Chem. Commun., 2007, 37?39. (b) Jared M. Taylor, Amir H. Mahmoudkhani, and George K. H. Shimizu, A Tetrahedral Organophosphonate as a Linker for a Microporous Copper Framework, Angew Chem. Int. Ed., 2006, 45, 1?5. (c) Maxym V. Vasylyev, Ellen J. Wachtel, Ronit Popovitz-Biro, and Ronny Neumann, Titanium Phosphonate Porous Materials Constructed from Dendritic Tetraphosphonates, Chem. Eur. J. 2006, 12, 3507?3514. (d) Katherine M. E. Jones, Amir H. Mahmoudkhani, Brett D. Chandler and George K. H. Shimizu, An adamantane-based tetraphosphonic acid that forms an open diamondoid net via a hydrogen-bonded phosphonic acid–water cluster, CrystEngComm, 2006, 8, 303?305.
    [162] A. Clearfield, Prog. Inorg. Chem., 1998, 47, 371.
    [163] Alberti G., Constantino U. Casciola M., Vivani R. Ada., Mater., 1996, 8, 291.
    [164] A. Clearfield, Organically Pillared Micro- and Mesoporous Materials, Chem. Mater., 1998, 10, 2801?2810.
    [165] M. L. Occelli, H. Rubs, Synthesis of Microporous Materials, Ed: Van Nostrand Reinhold: New York, 1992, 240?349.
    [166] (a) Feng P., Bu X., Stocky G. D., Nature, 1997, 388, 735. (b) Lii K. H., Huang Y. F., Zima V, Huang C. Y., Lin H. M., Jiang Y. C., Liao F. L., Wang S. L., Chem. Mater., 1998, 10, 2599. (c) Feng S. H., Xu R. R., Acc. Chem. Res, 2001, 34 , 239. (d) 曹登科,王颖,郑丽敏,多孔金属有机膦酸化合物的制备,无机化学学报,2003, 19(12), 1273?1279.
    [167] Mueda, K. Metal phosphonate open-framework materials, Microporous and Mesoporous Materials, 2004, 73, 47?55.
    [168] Drumel S., Janvier P., Demand D., Bujoli B., J. Chem. Soc., Chem. Commun., 1995,1051.
    [169] Zheng L. M., Duan C. Y., Ye X. R., Zhang L. Y., Wang C., Yin X. Q., J .Chem. Soc., Dalton Trans., 1998, 905.
    [170] Sughanumdar V., Chen Q., Haushalter R. C., Zubieta J., Angew Chem. Int. Ed. Eng., 1995, 34, 223.
    [171] Zheng L. M., Song H. H., Xin X .Q. Commentson, Inorg. Chem., 2000, 22, 129.
    [172] (a) Zheng L. M., Song H. H., Duan C. Y., Xin X. Q., Template-Directed One- and Two-Dimensional Copper(II) Diphosphonates: Structures and Characterizations of (NH4)2Cu3(hedp)2(H2O)4, [NH3(CH2)4NH3]Cu3(hedp)2·2H2O, and [NH2(C2H4)2NH2]Cu3(hedp)2 (hedp=1-Hydroxyethylidenediphosphonate), Inorg. Chem., 1999, 8, 5061. (b) Zheng L. M, Can S., Song H. H., S. Decurtins, Allan J. Jacobson, Xin X. Q., Metamagnetic Copper(II) Diphosphonates with Layered Structures, Chem. Mater., 2002, 14, 3143.
    [173] (a) Song H. H., Yin P., Zheng L. M., Korp J. D., Jacobson A. J., Gao S., Xin X .Q.,Syntheses, crystal structures and magnetic properties of manganese(II)-hedp compounds involving alkylenediamine templates (hedp=1-hydroxyethylidene-diphosphonate), J. Chem. Soc., Dalton Trans., 2002, 2752. (b) Song H. H., Zheng L. M. Wang Z. M., Yan C. H., Xin X. Q., Zinc Diphosphonates Templated by Organic Amines: Syntheses and Characterizations of [NH3(CH2)2NH3]Zn(hedpH2)2·2H2O and [NH3(CH2)nNH3]Zn2(hedpH)2·2H2O(n=4,5,6)(hedp=1-Hydroxyethylidenediphosphonate), Inorg. Chem., 2001, 40, 5024. (c) Zheng L. M., Song H. H. Lin C. H., Wang S. L., Hu Z. Z., Xin X. Q., Inorg. Chem., 1999, 38, 461.
    [174] Poojary L. A., Vermeulen E., Vieenzi A., Clearfield A., Thatnpaon M .E., Chem, Mater., 1994, 6, 1845.
    [175] Fabrice Odobel, Bruno Bujoli, and Dominique Massiot, Zirconium Phosphonate Frameworks Covalently Pillared with a Bipyridine Moiety, Chem. Mater., 2001, 13, 163.
    [176] Cao G., Garcia M. E., Alcala M., Burgess L. F., Mallouk T. E., J. Am. Chem. Soc., 1992, 114, 7574.
    [177] J. He, X. Yang, D.G. Evans, X. Duan, “New methods to remove organic templates from porous materials”, Mater. Chem. Phys., 2002, 77, 270
    [178] M.T.J. Keene, R. Denoyel, P. L. Llewellyn, “Ozone treatment for the removal of surfactant to form MCM-41 type materials”, Chem. Commun., 1998, 2203
    [179] M.E. Davis et al., Nature, 1998, 393, 52
    [180] J.Y. Li, J.H. Yu, W.F. Yan, Y.H. Xu, W.G. Xu, S.L. Qiu, R.R. Xu, “Structures and Templating Effect in the Formation of 2D Layered Aluminophosphates with Al3P4O163- Stoichiometry”, Chem. Mater., 1999, 11, 2600
    [181] (a) A. J. Black, N .R. Brooks, N. R. Champness, P. A. Cooke, A. M.Deveson, D. Fenske, P. Hubberstey, W. S. Li, M. Schr?der, J. Chem. Soc. Dalton Trans., 1999, 2103. (b) P. M. Graham, R. D. Pike, M. Sabat, R. D. Bailey, W. T. Pennington, Inorg. Chem., 2000, 39, 5121. (c) C. H. Arnby, S. Jagner, I. Dance, Cryst. Eng. Comm., 2004, 6, 257. (d) D. B. Mitzi, J. Chem. Soc., Dalton Trans., 2001, 1. (e) J. H. Yu, H.Y. Bie, J. Q. Xu, T. G. Wang, Chin. J. Inorg. Chem., 2004, 20, 1. (f) C. R. Kagan, D. B. Mitzi, K. Chondroudis, Science, 1999, 286, 945. (g) D. B. Mitzi, K. Chondroudis, C. R. Kagan, IBM J. Res. Dev., 2001, 45, 29. (h) X. Xue, X. S. Wang, R.G. Xiong, X. Z. You, B. F. Abrahams, C. M. Chi, H. X. Ju, Angew Chem. Int. Ed., 2002, 41, 2944. (i) R. D. Willett, C. Galeriu, C. P. Landee, M. M. Turnbull, B. Twamley, Inorg. Chem., 2004, 43, 3804. (j) M. Vitale, P. C. Ford, Coord. Chem. Rev., 2001, 219, 3. (k) E. Cariati, X. Bu, P. C. Ford, Chem. Mater., 2000, 12, 3385. (l) P. C. Ford, E. Cariati, J. Bourassa,
    Chem. Rev., 1999, 99, 3625. (m) Jie-Hui Yu, Qin Hou, Tie-Gang Wang, Xiao Zhang, Ji-Qing Xu, Journal of Solid State Chemistry, 2007, 180, 518?522.
    [182] (a) E. Montoneri, Phosphorus, Sulfur Silicon Relat. Elem., 1991, 55, 201. (b) E.Montoneri, M. C. Gallazzi, Dalton Trans., 1989, 1819.
    [183] Baolong Zhang, Damodara M. Poojary, and Abraham Clearfield, Synthesis and Crystal Structure of the Linear Chain Zirconium Organophosphonate (NH4)Zr[F2][H3{O3PCH2NH(CH2CO2)2}2]·3H2O·NH4Cl, Inorg. Chem. 1998, 37, 249?254.
    [184] Debbie C. Crans, Feilong Jiang, Oren P. Anderson, and Susie M. Miller, DinuclearOxovanadium(IV) N-(Phosphonomethyl)iminodiacetate Complexes: Na4[V2O2{(O)2P(O)CH2N(CH2COO)2}2]·10H2O and Na8[V2O2{(O)2P(O)CH2N(CH2COO)2}2]2·16H2O, Inorg. Chem. 1998, 37, 6645?6655.
    [185] Siegfried O. H. Gutschke, Daniel J. Price, Annie K. Powell, and Paul T. Wood, Solvothermal Synthesis of the Canted Antiferromagnet {K2[CoO3PCH2N(CH2CO2)2]}6·xH2O, Angew Chem. Int. Ed., 1999, 38, 1088?1090.
    [186] Jiang-Gao Mao and Abraham Clearfield, Metal Carboxylate-Phosphonate Hybrid Layered Compounds: Synthesis and Single Crystal Structures of Novel Divalent Metal Complexes with N-(Phosphonomethyl)iminodiacetic Acid, Inorg. Chem. 2002, 41, 2319?2324.
    [187] Jiang-Gao Mao, Zhike Wang, and Abraham Clearfield, New Lead Inorganic-Organic Hybrid Microporous and Layered Materials: Synthesis, Properties, and Crystal Structures, Inorg. Chem., 2002, 41, 6106?6111.
    [188] Hongxia Pei, Sheming Lu, Yanxiong Ke, Jianmin Li, Shoubo Qin, Shuxi Zhou, XintaoWu, Wenxin Du, Synthesis and Crystal Structure of a New Copper–PMIDACompound (H4PMIDA=H2O3PCH2N(CH2CO2H)2), Structural Chemistry, 2004, 15, 207?210.
    [189] Filipe A. Almeida Paz, Fa-Nian Shi, Tito Trindade, Jacek Klinowski and Jo?o Rocha, [Hydrogen N-(phosphonomethyl)iminodiacetato](1,10-phenanthroline) copper(II) trihydrate: a low-temperature redetermination, Acta Cryst., 2005, E61, m2247–m2250.
    [190] Filipe A. Almeida Paz, Fa-Nian Shi, Jacek Klinowski, Jo?o Rocha, and Tito Trindade, Synthesis and Characterisation of the First Three-Dimensional Mixed-Metal-Center Inorganic-Organic Hybrid Framework with N-(Phosphonomethyl)iminodiacetate, Eur. J. Inorg. Chem. 2004, 2759?2768.
    [191] Jun-Ling Song, Andrey V. Prosvirin, Han-Hua Zhao, and Jiang-Gao Mao, Syntheses and Crystal Structures of Two Cobalt Carboxylate_Phosphonates with 4,4’-Bipyridine as a Secondary Metal Linker, Eur. J. Inorg. Chem. 2004, 3706?3711.
    [192] Yong Fan, Guanghua Li, Zhan Shi, Dong Zhang, Jianing Xu, Tianyou Song, and Shouhua Feng, Hydrothermal synthesis, crystal structure, and magnetic property of a three-dimensional inorganic–organic hybrid material: Mn(H2O)[O3PCH2NH(CH2CO2)2], Journal of Solid State Chemistry, 2004, 177, 4346–4350.
    [193] Fa-Nian Shia, Filipe A. Almeida Paza, Penka I. Girginovaa, Luís Mafraa, Vítor S. Amaralc, Jo?o Rocha, Anna Makald, Krzysztof Wozniakd, Jacek Klinowskie, Tito Trindade, Hydrothermal synthesis, structural characterisation and magnetic behaviour of hybrid complexes of N-(phosphonomethyl)iminodiacetate, Journal of Molecular Structure, 2005, 754, 51?60.
    [194] Yong Fan, Guanghua Li, Wenping Jian, Miao Yu, Li Wang, Zhenfen Tian, Tianyou Song, Shouhua Feng, Solvothermal synthesis, crystal structure, magnetic and luminescent properties of (H3O)6[Co4(H2O)4(HPMIDA)2(PMIDA)2)]·2H2O, Journal of Solid State Chemistry, 2005, 178, 2267?2273.
    [195] Filipe A. Almeida Paz, Fa-Nian Shi, Luís Mafra, Anna Makal, Krzysztof Wozniak, Tito Trindade, Jacek Klinowski and Jo?o Rocha, [Co(H2O)6]{[Co(C4H4N2)(H2O)2][V2O2(pmida)2]}·2H2O [H4pmida N-(phosphonomethyl)iminodiacetic acid]: the first two-dimensional hybrid frameworkcontaining [V2O2(pmida)2]4- building blocks, Acta Cryst., 2005, E61, m1628–m1632.
    [196] Filipe A. Almeida Paz, Jo?o Rocha, Jacek Klinowski,Tito Trindade, Fa-Nian Shi , Luís Mafra, Optimised hydrothermal synthesis of multi-dimensional hybrid coordination polymers containing flexible organic ligands, Progress in Solid State Chemistry, 2005, 33, 113?125.
    [197] Fa-Nian Shi, Filipe A. Almeida Paz, Penka I. Girginova, Vítor S. Amaral, Jo?o Rocha, Jacek Klinowski, Tito Trindade, Hydrothermal synthesis, structural characterisation and magnetic behaviour of (4,4’-bpyH)2[M(4,4’-bpy)(H2O)4]-[V2O2(pmida)2]·2H2O (M=Mn2+ and Co2+), Inorganica Chimica Acta, 2006, 359, 1147?1158.
    [198] Dale Cave, Fiona C. Coomer, Eduardo Molinos, Hans-Henning Klauss, and Paul T. Wood, Compounds with the “Maple Leaf” Lattice: Synthesis, Structure, and Magnetism of Mx[Fe(O2CCH2)2NCH2PO3]6·nH2O, Angew. Chem. Int. Ed., 2006, 45, 803–806.
    [199] Luís Mafra, Filipe A. Almeida Paz, Fa-Nian Shi, Jo?o Rocha, Tito Trindade, Christian Fernandez, Anna Makal, Krzysztof Wozniak, and Jacek Klinowski, X-ray Diffraction and Solid-State NMR Studies of a Germanium Binuclear Complex, Chem. Eur. J., 2006, 12, 363?375.
    [200] Fa-Nian Shi, Filipe A. Almeida Paz, Tito Trindade and Jo?o Rocha, [N-(2-Ammonioethyl)ethylenediaminej2N,N’][hydrogenN-(phosphonatomethyl)-iminodiacetato] copper(II) sesquihydrate, Acta Cryst., 2006, E62, m335?m338.
    [201] Fa-Nian Shi, Filipe A. Almeida Paz, Penka Girginova, Jo?o Rocha, Vítor S. Amaral, Jacek Klinowski, Tito Trindade, One-dimensional coordination polymer of N-(phosphonomethyl)iminodiacetic acid with iron(II), Journal of Molecular Structure, 2006, 789, 200?208.
    [202] Si-Fu Tang, Jun-Ling Song, Xiu-Ling Li, and Jiang-Gao Mao, Luminescent Lanthanide(III) Carboxylate-Phosphonates with Helical Tunnels, RYSTAL GROWTH & DESIGN, 2006, 6, 2322?2326.
    [203] Luís Cunha-Silva, Fa-Nian Shi, J. Klinowski, T. Trindade, J. Rocha, F. A. A. Paz,Decaaquadioxobis[μ3-N-(phosphonomethyl)-iminodiacetato] dimanganesedivanadium dehydrate, Acta Cryst., 2007, E63, m372?m375.
    [204] Robert LaDuca, David Rose, Jeffrey R. D. DeBord, Robert C. Haushalter, Charles J. O’Connor, and Jon Zubieta, Three-Dimensional Metal Piperazinyldiphosphonate Phases with Ellipsoidal Cavities Defined by 44-Membered Rings: Crystal Structures of [M{O3PCH2NH(C2H4)2NHCH2PO3}]·H2O, M = Mn and Co, Journal of Solid State Chemistry, 1996, 123, 408?412.
    [205] John A. Groves, Paul A. Wright and Philip Lightfoot, The pH-controlled hydrothermal synthesis and crystal structures of two zinc N,N’-piperazinebis(methylenephosphonate) frameworks, Dalton Trans., 2005, 2007?2010.
    [206] Zi-Yi Du, Shao-Ming Ying, Jiang-Gao Mao, Two new lead(II) diphosphonates with second ligands as an intercalated species or a multidentate metal linker, Journal of Molecular Structure, 2006, 788, 218?223.
    [207] Zi-Yi Du, Hai-Bing Xu, and Jiang-Gao Mao, Rational Design of 0D, 1D, and 3D Open Frameworks Based on Tetranuclear Lanthanide(III) Sulfonate-Phosphonate Clusters, Inorg.Chem., 2006, 45, 9780?9788.
    [208] Christian Serre, John A. Groves, Philip Lightfoot, Alexandra M. Z. Slawin,Paul A. Wright, Norbert Stock, Thomas Bein, Mohamed Haouas, Francis Taulelle, and Gérard Férey, Synthesis, Structure and Properties of Related Microporous N,N’-Piperazinebismethylenephosphonates of Aluminum and Titanium, Chem. Mater. 2006, 18, 1451?1457.
    [209] Nick Choi, Imtiaz Khan, Ray W. Matthews, Mary McPartlin and Brian P. Murphy, Syntheses and crystal structures of piperazine-1,4-diylbis(methylene)bis(phosphonic acid)hydrochloride, [H5L]Cl, and its complex with cadmium(II), [Cd(OH)(H3L)(H2O)3]n·nH2O, Polyhedron, 1994,13, 847?850.
    [210] John A. Groves, Paul A. Wright, and Philip Lightfoot, Two Closely Related Lanthanum Phosphonate Frameworks Formed by Anion-Directed Linking of Inorganic Chains, Inorg. Chem., 2005, 44, 1736?1739.
    [211] John A. Groves, Nicholas F. Stephens, Paul A. Wright, Philip Lightfoot, Novel open-framework architectures in lanthanide phosphonates, Solid State Sciences, 2006, 8, 397?403.
    [212] John A. Groves, Stuart R. Miller, Stewart J. Warrender, Caroline Mellot-Draznieks, Philip Lightfoot, and Paul A. Wright, The first route to large pore metal phosphonates, Chem. Commun., 2006, 3305?3307.
    [213] Victoria Soghomonian, Roberto Diaz, Robert C. Haushalter, Charles J. O’Connor, and Jon Zubieta, Hydrothermal Syntheses and Crystal Structures of Two Oxovanadium-Organodiphosphonate Phases: [H2N (C2H4)2NH2][(VO)2(O3PCH2CH2CH2PO3H)2], a "Stair-Step" Structure Incorporating an Organic Cationic Template, and [(VO)(H2O){O3PCH2NH(C2H4)2NHCH2PO3}], a Layered Structure "Pillared" by a Piperazinium-Tethered Diphosphonate, Inorg. Chem., 1995, 34, 4460?4466.
    [214] Ying Wang, Song-Song Bao, Wei Xu, Jiesheng Chen, Song Gao, and Li-Min Zheng, Structure and magnetic properties of a novel copper diphosphonate with pillared layered structure: Cu2(H2O)2{O3PCH2N(C2H4)2NCH2PO3}, Journal of Solid State Chemistry, 2004, 177, 1297?1301.
    [215] A. Rodriguez-Fortea, P. Alemany, S. Alvarez, E. Ruiz, Chem. Eur. J. 2001, 7, 627.
    [216] C. Y. Weng, PhD Thesis, Carneige-Mellon University, Pittsburg, PA, 1969.
    [217] (a) J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, B. S. Tsukerblat, Inorg. Chem., 1999, 38, 6081. (b) J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, B. S. Tsukerblat, J. Comput. Chem., 2001, 22, 985.
    [218] J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, Oxford, 1932.
    [219] (a) P. C. Ford, A. Vogler, Acc. Chem. Res., 1993, 26, 220–226.(b) A. Vogler, A. Paukner, H. Kunkely, Coord. Chem. Rev., 1980, 33, 227–250.(c) H. Nikol, A. Becht, A. Vogler, Inorg. Chem., 1992, 31, 3277–3279.
    [220] K. K. Nanda, L. K. Thompson, J. N. Bridson, K. Nag, J. Chem. Soc., Chem. Commun., 1994, 1337.
    [221] Ginsberg, A. P.; Lines, M. E. Inorg. Chem., 1972, 11, 2288?2289.
    [222] Koga, T.; Furutachi, H.; Nakamura, T.; Fukita, N.; Ohba, M.; Takahashi, K.; Okawa, H. Inorg. Chem., 1998, 37, 989?996.
    [223] (a) Kahn, O. Molecular Magnetism, Wiley-VCH, New York, 1993. (b) Hitoshi, Miyasaka; Ayumi, Saitoh; Sayaka, anagida; Chihiro, Kachi-Terajima; Ken-ichi, Sugiura; Masahiro, Yamashita. Inorganica Chimica Acta. 2005, 358, 3525?3535.
    [224] H.-L. Sun, Z.-M. Wang, S. Gao, Inorg. Chem., 2005, 44, 2169.
    [225] Kahn, O. Molecular Magnetism, Wiley-VCH, New York, 1993.
    [226] Shi, F.-N.; Almeida Paz, F. A.; Girginova, Penka I.; Mafra, Luís; Amaral, Vítor S.; Rocha, Jo?o; Makal, Anna; Wozniak, Krzysztof; Klinowski, Jacek; Trindade, Tito. Journal of Molecular Structure 2005, 754, 51?60.
    [227] Telser, J.; Drago, R. S. Inorg. Chem. 1985, 24, 4765.
    [228] Angela D. Kulynych and George K. H. Shimizu, A pseudo-honeycomb coordination net formed with 5-sulfoisophthalic acid, CrystEngComm , 2002, 4(18), 102-105.
    [229] Zheng Wang, Markus Str?bele, Kou-Lin Zhang, H.-Jürgen Meyer, Xiao-Zeng You, Zhi Yu, A new family of two-dimensional lanthanide(III) coordination polymers: synthesis, structures and properties of [Ln(SIP)(H2O)4)]n (Ln=Eu, Gd, Ce, and NaH2SIP=5-sulfoisophthalic acid monosodium salt), Inorganic Chemistry Communications, 2002, 5, 230?234.
    [230] Daofeng Sun, Rong Cao, Yanqiong Sun, Xing Li, Wenhua Bi, Maochun Hong, and Yingjun Zhao, Two New Zeolite-Like Supramolecular Copper Complexes, Eur. J. Inorg. Chem., 2003, 94?98.
    [231] Jun Tao, Xin Yin, Rong-Bin Huang, Lan-Sun Zheng and Seik Weng Ng, Poly[[aqua(1-aza-4-azoniabicyclo[2.2.2]octane)-cadmate(II)]-μ-5-sulfatoisophthalato], Acta Cryst., 2003, E59, m473?m475.
    [232] Jun Tao, Xin Yin, Rong-Bin Huang, Lan-Sun Zheng and Seik Weng Ng, Polymeric disodium (μ-trans-4,4’-ethylene-dipyridyl) bis[μ-5-sulfoisophthalato(3-)]-dicadmate(II) Hexahydrate, Acta Cryst., 2003, E59, m611?m613.
    [233] Daofeng Sun, Rong Cao, Yanqiong Sun, Wenhua Bi, Daqiang Yuan, Qian Shi and Xing Li, Syntheses and structures of two novel copper complexes constructed from unusual planar tetracopper(II) SBUs, Chem. Commun., 2003, 1528?1529.
    [234] Jun Tao, Xin Yin, Zan-Bin Wei, Rong-Bin Huang, and Lan-Sun Zheng, Hydrothermal Syntheses, Crystal Structures and Photoluminescent Properties of Three Metal-Cluster Based Coordination Polymers Containing Mixed Organic Ligands, Eur. J. Inorg. Chem., 2004, 125?133.
    [235] El?bieta Sto?, Tadeusz Lis and Veneta Videnova-Adrabińska, Polymeric sodium 3,5-dicarboxy-benzenesulfonate-urea-water (1/1/1), Acta Cryst., 2004, C60, m114?m116.
    [236] Yan-Ping Yuan, Jiang-Gao Mao, and Jun-Ling Song, Syntheses, characterizations and crystal structures of two new lead(II) amino and carboxylate–sulfonates with a layered and a pillared layered structure, Journal of Solid State Chemistry, 2004, 177, 922?927.
    [237] Jun-Ling Song, Chong Lei, Yan-Qiong Sun, and Jiang-Gao Mao, Syntheses, characterizations and crystal structures of two lead(II) phosphonate–sulfonate hybridmaterials, Journal of Solid State Chemistry, 2004, 177, 2557?2564.
    [238] Xing Li, Rong Cao, Daofeng Sun, Wenhua Bi, and Daqiang Yuan, A Novel 3-D Self-Penetrating Topological Network Assembled by Mixed Bridging Ligands, Eur. J. Inorg. Chem., 2004, 2228?2231.
    [239] Dae Sung Kim, Paul M. Forster, Ronan Le Toquin and Anthony K. Cheetham, A thermally stable nanoporous nickel 5-sulfoisophthalate; crystal structure and adsorption properties, Chem. Commun., 2004, 2148?2149.
    [240] Zhong-Ming Sun, Jiang-Gao Mao, Yan-Qiong Sun, Hui-Yi Zeng, and Abraham Clearfield, Synthesis, Characterization, and Crystal Structures of Three New Divalent Metal Carboxylate-Sulfonates with a Layered and One-Dimensional Structure, Inorg. Chem., 2004, 43, 336?341.
    [241] Daofeng Sun, Wenhua Bi, Xing Li, Rong Cao, A novel interpenetrating nickel polymer with mixed ligand containing 1D chain and 2D bilayer motifs constructed by 4,4’-bipy, Inorganic Chemistry Communications, 2004, 7, 683?686.
    [242] Mao-Lin Hu, Qian Miao, Qian Shi and Ming-De Ye, Poly[[bis[aqua(1,10-phenanthroline)-lanthanum(III)]-μ-aqua-di-μ-5-sulfonatoisophthalato]monohydrate] and poly[[[triaqualanthanum(III)]-μ-5-sulfonatoisophthalato] monohydrate], Acta Cryst., 2004, C60, m460?m464.
    [243] Jun-Ling Song, Chong Lei, and Jiang-Gao Mao, Syntheses, Crystal Structures, and Luminescent Properties of Novel Layered Lanthanide Sulfonate-Phosphonates, Inorg. Chem., 2004, 43, 5630?5634.
    [244] Xing Li, Rong Cao, Wenhua Bi, Daqiang Yuan, and Daofeng Sun, Self-Assembly of 1D to 3D Cadmium Complexes: Structural Characterization and Properties, Eur. J. Inorg. Chem., 2005, 3156?3166.
    [245] Xin-Hua Li, Hong-Ping Xiao, Qiao Zhang and Mao-Lin Hu, catena-Poly[[bis[aqua(1,10-phenan-throline)lead(II)]-di-μ3-5-carboxy-3-sulfonatobenzoato] dehydrate, Acta Cryst., 2005, C61, m130-m132.
    [246] Qing-Yan Liu, and Li Xu, (H2O)12-containing infinite chain encapsulated in supramolecular open framework built of cadmium(II), 1,3-di(4-pyridyl)propane and 5-sulfoisophthalic acid monosodium salt, CrystEngComm, 2005, 7(12), 87–89.
    [247] Wei-Dong Wang and Xin-Hua Li, Diaqua-κ2O-tris(1,10-phenanthroline)-1κ2N,N’; 2κ4N,N’-μ-5-sulfonatoisophthalato-1:2κ4O1,O1’:O3,O3’-dicopper(II) erchlorate trihydrate, Acta Cryst., 2005, E61, m1534–m1536.
    [248] Qing-Yan Liu and Li Xu, Novel Structure Evolution of Lanthanide–SIP Coordination Polymers (NaH2SIP = 5-Sulfoisophthalic Acid Monosodium Salt) from a 1D Chain to a 3D Network as a Consequence of the Lanthanide Contraction Effect, Eur. J. Inorg. Chem., 2005, 3458–3466.
    [249] Qing-Yan Liu and Li Xu, catena-Poly[[aqua(piperazin-1-ium-κN4)copper(II)]-μ-5-sulfonatoisophthalato-κO1: κO3], Acta Cryst., 2005, E61, m1972–m1974.
    [250] Paul M. Forster, Dae Sung Kim, Anthony K. Cheetham, Two coordination polymers based on a new nickel fluoride cluster, Solid State Sciences, 2005, 7, 594–602.
    [251] Hu Mao Lin, Cai Xiao Qing, Miao Qian, and Xiao Hong Ping, Hydrothermal Synthesis and Crystal Structure of a Europium(III) Coordination Polymer with 5-Sulfoisophthalate Trivalent Anions and Free 4,4'-Bipyridine Molecules, Russian J. coord. chem., 2005, 31(5), 368.
    [252] Qing-Yan Liu, Li Xu, Synthesis, crystal structures and photophysical properties of two supramolecular complexes of cadmium(II), Inorganic Chemistry Communications, 2005, 8, 401–405.
    [253] Hong-Ping Xiao and Ali Morsali, A Novel Three-Dimensional Coordination Polymer Involving Pb_Pb Interactions and Three Different Hemidirected Lead(II) Coordination Spheres: X-Ray Crystal Structure of Tris(1,10-phenanthroline-κN1, κN10)-bis[{μ3-[5-(sulfo-κO)benzene-1,3-dicarboxylate(3-)-κO1,κO1’:κO2,κO2’:κO2]}trilead (Pb-Pb) Trihydrate ([Pb3(phen)3(H2O)2(sip)2]n·3H2O), Helvetica Chimica Acta, 2005, 88, 2543?2549.
    [254] Zi-Yi Du, Shao-Ming Ying, Jiang-Gao Mao, Two new lead(II) iphosphonates with second ligands as an intercalated species or a multidentate metal linker, Journal of Molecular Structure, 2006, 788, 218–223.
    [255] Lili Wen, Yizhi Li, Zhenda Lu, Jianguo Lin, Chunying Duan, and Qingjin Meng, Syntheses and Structures of Four d10 Metal-Organic Frameworks Assembled with Aromatic Polycarboxylate and bix [bix =1,4-Bis(imidazol-1-ylmethyl)benzene, Crystal Growth & Design, 2006, 6, 530?537.
    [256] Qing-Yan Liu and Li Xu, Synthesis, Crystal Structures, and Photophysical Properties of Two Novel Lead(II)–SIP Coordination Polymers (NaH2SIP = 5-Sulfoisophthalic Acid Monosodium Salt) Containing Tetranuclear Lead(II) Units, Eur. J. Inorg. Chem., 2006, 1620–1628.
    [257] Wang Yan, Pan Zhao-Rui, Wang Zuo-Wei, Hu Zheng, Li Yi-Zhi, Zheng He-Gen, Synthesis, Crystal Structure and Fluorescence Property of [Y(sip)(H2O)4]n with 5-Sulfoisophthalate Ligand, Chinese J. Struct. Chem., 2006, 25(9), 1057?1062.
    [258] Qing-Yan Liu, Yu-Ling Wang, and Li Xu, Synthesis, Crystal Structures and Photoluminescent Properties of Three Novel Cadmium(II) Compounds Constructed from 5-Sulfoisophthalic Acid (H3SIP), Eur. J. Inorg. Chem., 2006, 4843–4851.
    [259] Lili Wen, Zhenda Lu, Jianguo Lin, Zhengfang Tian, Huizhen Zhu, and Qingjin Meng, Syntheses, Structures, and Physical Properties of Three Novel Metal-Organic Frameworks Constructed from Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Synthons, CRYSTAL GROWTH & DESIGN, 2007, 7, 93?99.
    [260] Hyunsoo Park, Gabriel Krigsfeld, and John B. Parise, Solvothermal Synthesis and Structural Characterization of New Zn-Triazole-Sulfoisophthalate Frameworks, CRYSTAL GROWTH & DESIGN, 2007, 7, 736?740.
    [261] Yu-Ling Wang, Qing-Yan Liu, and Li Xu, catena-Poly[[pentaaquathulium(III)]-μ-5-sulfonatobenzene-1,3-dicarbox-ylato] 4,4’-bipyridyl 1.5-solvatehemihydrate], Acta Cryst., 2007, C63, m304?m307.
    [262] Hong-Ping Xiao, Ali Morsali, A new three-dimensional polymeric PbII complex involving holo- and hemidirected coordination spheres, Solid State Sciences, 2007, 9, 155?158.
    [263] (a) J. B. Goodenough, Phys. Rev. 1955, 100, 564; (b) J. Kanamori, J. Phys. Chem. Solids 1959, 10, 87; (c) P. W. Anderson, Phys. Rev. 1959, 115, 2. (d) C. G. Barraclough, R. W. Brookes, J. Chem. Soc., Faraday Trans. 1974, 2, 1364. (e) A. Bencini, D. Gatteschi, Inorg. Chim. Acta 1978, 31, 11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700