基于微波热辐射及空间谱估计的隐身目标探测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有效地探测隐身目标已成为当前国防急需解决的问题。利用微波辐射计探测隐身目标是一种有效的无源探测方法,该方法具有隐蔽性好,不受气候条件和战场烟尘影响等优点。采用天线阵列可将多个小口径天线合成为一个等效的大天线,以提高空间分辨率,但传统的阵列信号处理方法(如:综合孔径算法)的空间分辨率受到天线阵列最大基线长度的限制。
     为了进一步提高分辨率,论文将阵列信号处理中的空间谱估计方法应用于微波热辐射稀疏阵列接收系统,提出一种新的基于目标微波热辐射信号和空间谱估计的全被动探测方法,该方法利用天线阵列实现高分辨率;利用空间谱估计进一步提高分辨率(实现超分辨率,超越硬件系统空间分辨率的极限);利用稀疏排列减少所需的阵元数,以保证在不降低系统分辨力的情况下降低系统的复杂度和成本。
     论文对隐身目标的微波热辐射及传输特性进行了分析,建立了集空中隐身目标、大气传输信道及微波热辐射探测系统于一体的隐身目标微波热辐射信号传输模型,可给出隐身目标和背景的辐射亮温分布,并辅以计算机仿真和实测实验验证了该模型的正确性和有效性。
     论文从本质上对空间谱估计算法的内在联系和区别作了归纳和总结,选取部分主流算法对其性能进了分析及仿真。并研究了将空间谱估计算法直接用于稀疏阵列所带来的阵列流型模糊进而导致的信号方向估计模糊问题,提出了一种基于任意整数倍间距排列的线阵阵列流型维数的计算方法,可以快速得到以任意整数倍间距排列线阵的维数及与入射信号数相对应的所有模糊角度,可用于解决部分线阵由于稀疏排列所引起信号方向估计模糊问题。
     在此基础上,论文建立了基于微波热辐射信号及空间谱估计的隐身目标探测模型,利用该模型分析了理想探测系统的性能,包括灵敏度和分辨率,并与采用其他信号处理方法的探测系统的性能通过理论分析和实验进行了对比,结果表明,采用空间谱估计的探测系统的分辨率高于采用其他信号处理方法的探测系统的分辨率,可实现目标的超分辨探测。
     实际系统不可避免地存在误差,误差会降低空间谱估计的性能,需要研究误差模型和误差校正方法。论文首先对阵列误差、阵列误差模型和校正算法进行了概述和分类。然后针对微波热辐射信号弱的特点,建立了低信噪比阵列误差模型,并基于该模型提出了两种新的阵列误差校正算法。最后通过仿真和实验验证了在低信噪比和存在误差的情况下,论文所提出的阵列误差模型及校正算法依然使得具有高分辨率的空间谱估计算法能够很好地应用于微波热辐射阵列接收系统进行隐身目标的探测。
How to effectively detect stealthy targets has become a critical problem as far as national defense issues are concerned. The microwave radiometer detection approach, which is highly invisible and barely influenced by weather or battlefield environment, has proved itself a potent way to detect targets passively. The antenna array constructed of several small antennas has a very high space resolution which is equivalent to that of a big antenna. While the space resolution of traditional array signal processing algorithms, such as inversion algorithm of synthetic aperture microwave radiometer, are determined by the maximum baseline of antenna array.
     In this paper, spatial spectrum estimation algorithm is employed to calculate the directions of microwave radiation signals received by the microwave radiation array systems. A novel spatial spectrum estimation method for passive detection is proposed. By using this method a super resolution-beyond resolution of the hardware system- can be achieved. Furthermore, with the same resolution performance, system complexity and equipment expenditure can be reduced by sparse array arrangement.
     Based on the analysis of microwave radiation signals characteristic and the atmosphere channel, a transmission model of stealthy targets, atmosphere channel and microwave radiation detecting system is established, which can show the distribution of stealthy targets' and the background's brightness temperature. The validity of this model is proved by the apropos simulations and the experiments.
     The intrinsic relationships of those common spatial spectrum estimation algorithms are discussed. And the performances of some algorithms are analyzed and simulated. By applying spatial spectrum estimation algorithms to the sparse array system, the problem of DOA (direction of arrival) ambiguity which results from array manifold ambiguity is discussed. Based on that, a novel algorithm is proposed to calculate the manifold dimension of a linear array arranged by arbitrarily integral multiple of half-wavelength, which can easily find out the manifold dimension and all the possible ambiguous angles due to the impinging of multi-signals. This method can be used to resolve the problem of the DOA ambiguity by removing some sensors of certain positions in the array.
     Furthermore, a model based on spatial spectrum estimation and the radiation signals is proposed to detect stealthy targets. The performances of this model, including sensitivity and space resolution, are analyzed and comparisons are made between our model and others employing other signal processing methods. The results demonstrate that our model is superior to others in the aspect of resolution and even a super-resolution could be achieved.
     In the practical scenarios, there are many inevitable errors which would deteriorate the performance of spatial spectrum estimation algorithms. Therefore, error calibration algorithms must be investigated to model the practical environments. A brief review of various errors models and errors calibration algorithms is first presented. Considering the weakness of radiation signals' energy, a new array errors model for low SNR scenario is proposed, then two calibration methods based on this model are further presented. In the situation of low SNR and in the presence of practical errors, the proposed array errors model and the calibration methods can facilitate the application of spatial spectrum estimation algorithms in the microwave radiation array systems effectively, which is proved by the simulations and the experiments.
引文
[1] 柳权.飞机隐身技术的发展趋势.航空紧密制造技术,2004,40(5):6-8
    [2] 王野.舞者的新装-飞行器的总体隐身设计.现代兵器,2006,5:54-55
    [3] 李大光.隐身技术与隐身武器.现代军事,2004,12:32-35
    [4] 冯永宝,丘泰,张明雪等.涂覆型雷达吸波材料研究进展.材料导报,2003,17(12):56-58
    [5] 娄国伟,李兴国,汪敏.毫米波涂层隐身材料吸波性能的测试研究.红外与毫米波学报,2000,19(4):318-320
    [6] 彭智慧,曹茂盛,袁杰等.雷达吸波材料设计理论与方法研究进展.航空材料学报,2003,23(3):58-63
    [7] 丁鹭飞,耿富录.雷达原理.西安:西安电子科技大学出版社,2004
    [8] Harry L. V. T. Detection, Estimation, and Modulation Theory Part Ⅲ: Radar-Sonar Signal Processing and Gaussian Signals in Noise. New York: John Wiley & Sons, 2001
    [9] 许传武.更快速更精确更隐蔽-机载目标探测定位技术面临的挑战和对策.国际航空,2001,2:59-61
    [10] Jian H., Tiguo G. A novel millimeter wave synthetic aperture radiometer passive imaging system. Proceedings of ICMMT, 2004:414-417
    [11] 张瑜,杨毫强.空中目标无源探测方法研究.现代雷达,2006,28(10):9-15
    [12] Suess H. Possible military requirements and applications of active and passive imaging sensors at micro- and millimeter wave frequencies. Proceedings of IGARSS, 2002, 2:693-695
    [13] 董晓龙,吴季,姜景山.微波辐射计用于隐身目标探测的性能分析.系统工程与电子技术,2001,123(13):54-57
    [14] 张瑜.微波辐射计对隐身飞行物的测量和定位方法.现代电子,2002,1:17-21
    [15] 袁龙,尹明,尹忠科等.毫米波辐射计对金属目标的探测.激光与红外,2006,36(10):1004-1006
    [16] 严金海,李兴国,汪敏.毫米波辐射计探测直升机研究.探测与控制学报,2001,23(4):37-40
    [17] 严金海,李兴国,娄国伟.被动毫米波探测巡航导弹研究.南京理工大学学报.2006,30(2):213-215
    [18] 张贤达,保铮.通信信号处理.北京:国防工业出版社,2000
    [19] Allen B., Ghavami M. Adaptive Array Systems Fundamentals and Applications. England: John Wiley&Sons, Ltd, 2005
    [20] Harry L. V. T. Detection, Estimation, and Modulation Theory, Part Ⅳ: Optimum Array Processing. New York: John Wiley & Sons, 2002
    [21] Joseph C. L., Theodore S. R. Smart Antennas for Wireless Communications IS-95 and Third Generation CDMA Applications.北京:机械工业出版社,2002
    [22] 张贤达.现代信号处理.北京:清华大学出版社,2004
    [23] 王永良,陈辉,彭应宁等.空间谱估计理论与算法.北京:清华大学出版社,2004
    [24] Ulaby F. T., Moore R. K., Fung A. K. Microwave Remote Sensing. Massachusetts: Addison-wesley publishing company, 1981, 1
    [25] 谢处方,吴先良.电磁散射理论与计算.安徽:安徽大学出版社,2002
    [26] Manikas T. Differential geometry in array peocessing, london: Imperial College Press, 2004
    [27] Yuri I. A., Alexei Y. G. Positive-Definite Toeplitz Completion in DOA Estimation for Nonuniform Linear Antenna Arrays Part ⅠFully Augmentable Arrays. IEEE Trans. on signal processing, 1998, 46(9): 2458-2471
    [28] Yuri I. A., Nicholas K. S. Resolving Manifold Ambiguities in Directionof Arrival Estimation forNonuniform Linear Antenna Arrays. IEEE Trans. on Signal Processing, 1999, 47(10): 2629-2643
    [29] Proukakis C., Manikas A. Study of ambiguities of linear arrays. Proceedings of ICASSP, Adelaide, Australia, 1994, 4:549-552
    [30] Weiss A. J., Friendlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm. IEEE Trans. on Signal Processing, 1994, 42(6): 1519-1526
    [31] Li F., Vaccaro R. J. Sensitivity analysis of DOA estimation algorithms to sensor errors. IEEE Trans. on Aerospace and Electronic Systems, 1992, 28(3): 708-717
    [32] Swindlehurst A. L., Kailath T. A performance analysis of subspace-based methods in the presence of model errors, part Ⅰ: the MUSIC algorithm. IEEE Trans. on Signal Processing, 1992, 40(7): 1758-1773
    [33] 周庆辉,靳学明,许宗泽.超分辨测向中通道间不一致的校正.雷达科学与技术,2006,4(5):280-283
    [34] Hung E. Matrix-construction method for antenna arrays. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36(3): 819-828
    [35] Zhang M., Zhou Z. D. DOA estimation with sensor gain, phase and position perturbations. Proceedings of the IEEE National Aerospace and Electronics Conference, NAECO, 1993: 67-69
    [36] Fistas N., Manikas A. A new general global array calibration method. Proceedings of IEEE ICASSP'94, 1994, 4:73-76
    [37] 王绶琯.射电天文方法.北京:科学出版社,1988
    [38] 韦前华,郭伟,张祖荫.微波无源探测技术在制导和定位中的应用.制导与引信,2003,1:23-29
    [39] krim H., Viberg M. Two decades of array signal processing research. IEEE Signal Processing Magazine, 1996, 13(4): 67-94
    [40] Burg J. P. Maximum entropy spectral analysis. Proceedings of the 37th meeting of the Annual Int. SEG Meeting, Oklahoma City, Okla., 1967
    [41] Capon J. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 1969, 57(8): 1408-1418
    [42] Pisareako. V F. The Retrieval of Harmonics from a Covariance Function. Geophys.J.Roy.Astron.Soc., 1973, 33:347-366
    [43] Kumaresan R., Tufts D. W. Estimating the angles of arrival of multiple plane waves. IEEE Trans. on AES, 1983, 19(1):134-139
    [44] Schmidt R. O. Multiple emitter location and signal parameter estimation. IEEE Trans. on Antennas and Propagation, 1986, AP-34(3): 276-280
    [45] Stoica P., Nehorai A. MUSIC, Maximum likehood, and Cramer-Rao bound. Proceedings of ICASSP, 1988, 4:2296-2299
    [46] Cadzow J. A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources. IEEE Trans. on ASSP, 1988, 36(7): 965-979
    [47] Clergeot H., Tressens S., Ouamri A. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao. IEEE Trans. on ASSP, 1989, 37(11): 1703-1720
    [48] Schmidt R. O. Multilinear array manifold interpolation. IEEE Trans. on Signal Processing, 1992, 40(4): 857-866
    [49] Weiss A. J., Friedlander B. Manifold interpolation for diversely polarized arrays. IEEE Proceedings-randar, Sonar Navig, 1994, 141(1): 19-24
    [50] Flanagan B. P., Bell K. L. Array self calibration with large sensor position errors. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 1999, 1 : 258-262
    [51] Flanagan B. P., Bell K. L. Improved array self calibration with large sensor position errors for closely spaced sources. IEEE Proceedings of Sensor Array and Multichannel Signal Processing Workshop, 2000:484-488
    [52] Yang K., Liao G., Bao Z. Auto-calibration for sensor gain/phase perturbations via exploitation of antenna arrays' symmetry property. IEEE Signal Processing Workshop on Statistical Signal and Array Processing, SSAP, 1998:240-243
    [53] 程春悦,吕英华.基于子空间的阵列天线幅相误差校正算法.天线技术,2005,35(6):40-41
    [54] 辜永忠,顾杰,马洪.一种新的阵列天线幅相误差校正算法.中国电子科学研究院学报,2007,2:158-161
    [55] See C. M. S. Method for array calibration in high-resolution sensor array processing. IEE processing of Radar, Sonar and Navigation, 1995, 142(3): 90-96
    [56] See C. M. S. Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases. Electronics Letters, 1994, 30(5): 373-374
    [57] Boon C. N., Chong M. S. Sensor-array calibration using a maximum-likelihood approach. IEEE Trans. on Antennas and Propagation, 1996, 44(6): 827-835
    [58] Zhang X. F., Xu D. Z. Antenna array self-calibration algorithm with sensor location errors. Proceedings of the 6th International Symposium on Antennas, Propagation and EM Theory, 2003:225-228
    [59]徐青,陶海红,廖桂生.基于GA的阵列幅相误差校正新方法.系统工程与电子技术,2006,28(5):654-657
    [60]于斌,宋铮,张军.阵列天线阵元位置误差的一种有源校正方法.雷达科学与技术,2004,2(5):315-320
    [61]于斌,黄赪东.遗传算法在阵列天线误差校正及优化中的应用.现代防御技术,2007,35(2):101-108
    [62]Wang B. H., Wang Y. L., Chen H. Array calibration of angularly dependent gain and phase uncertainties with instrumental sensors. IEEE International Symposium on Phased Array Systems and Technology, 2003:182-186
    [63]秦洪峰,黄建国,张群飞.基于子空间类法的阵列幅相误差校正方法.计算机工程与应用,2001,19:55-57
    [64]韩芳明,张守宏,潘复平.阵列误差对MUSIC算法性能的影响与校正.西安电子科技大学学报,2003,30(5):585-589
    [65]陈亚林,卓颉,马远良等.基于阵列误差校正的波束域方位估计算法实验研究.西北工业大学学报,2003,25(2):220-223
    [66]刘源,邓维波,许荣庆.阵列天线阵元互耦的一种校正方法.哈尔滨工业大学学报,2005,37(6):724-726
    [67]于斌,尹成友,沈辉.阵列误差对测向性能的影响及校正方法.现代雷达,2007,29(4):34-42
    [68]于斌,刘海波.利用模拟退火算法校正阵列天线通道失配.电子对抗技术,2006,4:18-23
    [69]章宏,陈荆花,周希朗.阵列天线阵元位置误差、通道不一致性和互耦的校正.上海交通大学学报,2002,36(9):1284-1290
    [70]严盟,廖桂生.阵列天线在近场条件下的幅相校正和阵元位置估计.雷达科学与技术,2005,3(6):383-386
    [71]Jaffer A. G. Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration. IEEE National Radar Conference, 2002:294-297
    [72]Jeffs B. D., van der Tol S., van der Veen A. J. Direction Dependent Self Calibration of Large Distributed Sensor Arrays. IEEE International Conference on Acoustics, Speech and Signal Processing, 2006, 4:1520-6149
    [73]彭树生,李兴国.毫米波辐射计测量吸收材料反射系数的方法研究.系统工程与电子技术,1997,8:1-3
    [74]缪晨,娄国伟,李兴国.3mm涂层隐身材料的天线温度模型.红外与毫米波学报,2004,23(3):221-224
    [75]Wu Lulu, Liu Yu, Zhu Yaoting, et al. The Effect of the Signal Correlation on the Array of Synthetic Aperture Microwave Radiometer. Proceedings of Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006: 286
    [76]王江安,马治国.海空复杂背景下弱点目标红外辐射特征研究.激光与红外,2003,33(1):48-50
    [77]kong J.A.电磁波理论.北京:电子工业出版社,2003
    [78]Liebe H. J., Hufford G. A., Cotton M. G. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. Proceedings of Atmospheric Propagation Effects through Natural and Man-Made Obscurants for Visible to MM-Wave Radiation, 1993, 3:1-11
    [79]Liebe H. J. MPM-An atmospheric millimeter-wave propagation model. International Journal of Infrared and millimeter waves, 1989, 10:631-650
    [80]RECOMMENDATION ITU-R P. 676-5 Attenuation by atmospheric gases, Radio communication Sector of the ITU. 2001
    [81]RECOMMENDATION ITU-R P. 453-9 The radio refractive index: its formula and refractivity data, Radio communication Sector of the ITU. 2003
    [82]RECOMMENDATION ITU-R P. 835-3 Reference standard atmospheres, Radio communication Sector of the ITU. 1999
    [83]RECOMMENDATION ITU-R P. 840-3 Attenuation due to clouds and fog, Radio communication Sector of the ITU. 1999
    [84]RECOMMENDATION ITU-R P. 838-2 Specific attenuation model for rain for use in prediction methods, Radio communication Sector of the ITU. 2004
    [85]毛天鹏,胡涛,周东方等.微波降雨衰减计算模型及特性分析.信息工程大学学报,2004,5(2):125-127
    [86]RECOMMANDATION ITU-R P. 816-4 Propagation data and prediction methods required for the design. 2003
    [87]Wu Lulu, Liu Yu, Zhu Yaoting. Influence of Complicated Background Noise on Passive Ground-based Radiometer with Low Elevation Angle. Proceedings of SPIE on Passive Millimeter-Wave Imaging Technology X, 2007, 6548(654805): 1-8
    [88]吴露露,刘玉,朱耀庭等.大地背景噪声对低仰角被动式地基辐射计的影响.全国微波毫米会议,2005,3:983-986
    [89]张成,吴季.地面目标微波辐射成像模型的研究.系统仿真学报,2007,19(12):2637-2641
    [90]McKown J., WHamilton R. L. Ray-tracing as a design tool for radio networks. IEEE Network Mag. (S0890-8044), 1991, 5(11): 27-30
    [91]Dimitris G. M., Vinay K. I., Stephen M. K. Statistical and Adaptive Signal Processing-Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing. The McGraw-Hill Companies, 2000
    [92]Rao B. D., Hari K. V. S. Performance analysis of Root-MUSIC. IEEE Trans. on ASSP, 1989, 37(12): 1939-1949
    [93]Zoltowski M. D., Mathews C. P. Direction finding with circular arrays via phase mode excitation and beamspace Root-MUSIC. Antennas and Propagation Society International Symposium, 1992, 7:245-248
    [94]Roy R., Kailath T. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise. IEEE Trans. on ASSP, 1986, 34(10): 1340-1342
    [95]Roy R., Kailath T. ESPRITE-estimation of signal parameters via rotational invariance techniques. IEEE Trans. on ASSP, 1989, 37(7): 984-995
    [96]Bohme J. F. Estimation of source parameters by maximum likelihood and nonlinear regression. IEEE International Conference on Acoustics, Speech and Signal Processing, 1984:7.3.1-7.3.4
    [97]Bohme J. F. Estimation of separate parameters of correlated signals in wavefields. Signal Processing, 1986, 11(4): 329-337
    [98]Tu Lei, Wu Lulu, Liu Siqian, et al. Spectrum Estimation Algorithm based on Minimum Redundancy Linear Array. Proceedings of 2008 IEEE International Conference on Networking, Sensing and Control, 2008:1103-1108
    [99]Abramovich Y. H. Comparison of DOA estimation performance for various types of sparse antenna array geometries. Proceedings of EUSIPCO-96, Eighth European Signal Processing Conference, 1996, 2:915-918
    [100]Moffet A. T. Minimum-redundancy linear arrays. IEEE Trans. on Antennas Propagat, 1968, 16:172-175
    [101]吴露露,胡飞,李青侠等.基于微波热辐射的空间谱估计目标探测方法.微波学报,2009,25(2):92-96
    [102]Born M., Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Britain: cambridge University Press, 1999
    [103]Kaveh M., Barabell A. J. The Statistical Performance of the MUSIC and the Minimum-Norm Algorithms in Resolving Plane Waves in Noise. IEEE Trans. on Acoustics, Speech, Signal Processing, 1986, ASSP-34:331-341
    [104]Xu X. L., Buckley K. M. Bias analysis of the MUSIC location estimator. IEEE Trans. on Signal Processing, 1992, 40(10): 2559-2569
    [105]Zhou C., Haber F. Jaggard D. L. A Resolution Measure for the MUSIC Algorithm and its Application to Plane Wave Arrivals Contaminated by Coherent Interference. IEEE Trans. on Signal Processing, 1991, 39(2): 454-464
    [106]Tan K. C., Goh S. S., Tan E. C. A Study of the Rank-Ambiguity Issues in Direction-of-Arrival Estimation. IEEE Trans. on Signal Processing, 1996, 44(4): 880-887
    [107]Hui C., Yongliang W., Shanhu W. Performance Improvement of Estimation Direction-of-arrival via Array Geometry Arrangement. IEEE Antennas and Propagation Society International Symposium, 1999, 3:1600-1603
    [108]陈辉,王永良,万山虎.利用阵列几何设置改善方位估计.电子学报,1999,27(9):97-99
    [109]梅向明,黄敬之.微分几何.北京:高等教育出版社,2006
    [110] 孙继广.矩阵扰动分析.北京:科学出版社,2001
    [111] Weiss A. J., Friedlander B. Eigenstructure methods for direction finding with sensor gain and phase uncertainties. Circuits, Systems, and Signal Processing, 1990, 9(3): 271-300
    [112] Ruf C. S., Swift C. T., Tanner A. B., et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth. IEEE Trans. on Geoscience and Remote Sensing, 1988, 26(5): 597-611
    [113] Ni Wei, Hu Fei, Wu Lulu. Influence of Atmosphere on Detection of Remote Aerial Target Using Passive Ground-based Radiometer. Proceedings of 8th International Symposium on Antennas, Propagation and EM Theory, 2008:615-618
    [114] 吴露露,李青侠,胡飞等.低信噪比的空间谱估计通道幅相误差校正算法.华中科技大学学报,2009,37(5):5-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700