具有二阶非线性光学性质的二茂铁衍生物结构与性质之间关系的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过渡金属配合物中,二茂铁类衍生物是一类具有很好的光电功能的化合物。长期以来,有关其光电性质的实验和理论研究颇多,这类化合物在非线新光学领域一直是个研究的热点化合物。近年来,大量新型二茂铁化合物被合成出来。我们借助密度泛函(DFT)和含时密度泛函(TDDFT)方法选取和设计了一系列二茂铁类衍生物,这类衍生物具有D-П-A型结构特点。我们通过改变连接电子给体基团D和电子受体基团A之间的П结构桥连双自由基(1,2-亚乙烯基,简称亚乙烯基)的数目,即改变D-П-A结构中П结构的长度得到不同的衍生物。我们计算了这些衍生物的结构、光谱和二阶非线性光学系数,发现随着亚乙烯基数目的增多,分子的二阶非线性光学系数线性增大。我们也在吸电子基团上引入不同的取代基并计算了其结构、光谱与二阶非线性光学性质,结果表明,随着取代基的共轭程度和吸电子能力的增大,体系的二阶非线性光学系数随之增大。我们进一步从分子轨道的层次分析了不同结构的分子的光谱特征与其电子态之间的关系,结果表明,该类化合物随着D与A之间桥连的亚乙烯基数目的增多,其最大吸收峰红移,这是由于参与跃迁的高能级轨道中成分中离域到了乙烯片段上,电子的离域化使得轨道能级降低,吸收峰红移。同样我们也计算了在吸电子基团上引入不同取代基时分子的光谱性质,发现取代基的引入使得吸收的光子主要用于激发点在吸电子基团与引入的侧链之间跃迁。显然最大吸收峰会随着侧链共轭程度的增大而红移。
Among various kinds of transition metal coordinates, Ferrocenyl-containing organometallic complexes possess rich opt-electric properties. Such complexes have been drawing much experimental and theoretical research attention in various field including nonlinear optics. Recently, a great amount of ferrocene derivatives have been synthesized. We studied the structural, absorption spectral and the second-order nonlinearitis properties of a series of ferrocene derivatives. These complexes we studied possess D-П-A structural property. Results obtained by DFT and TDDFT and SOS method showed that changing the number of the bridging ethyldiene can change the second-order nonlinearities of different complex with the same donor and acceptor groups. For the same donor and acceptor groups, the introduction of an conjugated substituent, the second-order nonlinearities increased. Moreover, with the conjugation extent and the electron-withdrawing strength increased, the increase of the second-order nonlinearities were magnified. Result on the absorption spectra and detail analysis of the molecular orbital properties showed that, in D-П-A structure characterized ferrocenyl complexes(a, b, d) without any substituents, electrons were excited from the ferrocenyl moiety to the p-nitrophenyl groups, the delcolization of the high-level orbital to which the ecletron was excited can lead to red shift of the max absorption wavelength. While in the case with substituents the excitation that most contributed to max-wavelength absorption was not from the ferrocenyl groups, such excitations localized between the substituents and the p-nitrophenyl moiety. So it is obvious substituent of large conjugation will lead to red shift of the corresponding absorption wavelength.
引文
1. Kielich S., Nonlinear Molecular Optics, Nauka, Moscow, 1981
    2. Myron W. Evans, Modern Nonlinear Optics, Wiley, Sons, 2001
    3. 徐光宪, 黎乐民. 量子化学基本原理和从头计算法(上册) . 北京:科学出版社, 1981
    4. Knight P. L. and Loudon R.. J. Mod Opt. 34, 709(1987)
    5. Teich M. C. and Saleh B. E. A., Quantum Opt. 1, 153(1989)
    6. Pe?ina .J, Quantum Statistics of Linear and Nonlinear Optical Phenomena, 2ed., Kluwer Dordrecht, 1991.
    7. Zyss J. Molecular Nonlinear Optics: Materials, Physics and Devices , Academic Press: New York, 1994. 1. 12-25.
    8. 钱士雄,王恭明,非线性光学原理与进展, 上海,复旦大学出版社(第一版),2001.
    9. 沈元壤著,顾世杰译,非线性光学原理 (第一版),北京:科学出版社,1987.
    10. 李铭华,杨春晖,徐玉恒,等著。光折变晶体材料科学导论 ,北京:科学出版社(第一版), 2003.
    11. 刘思敏,郭儒,许京军编著。光折变非线性光学及其应用 ,北京:科学出版社(第一版),20004.
    12. 许煜寰.铁电压电材料 ,北京:科学出版社(第一版),1978.
    13. 张克从,王希敏. 非线性光学晶体晶体材料科学 . 北京:科学出版社(第二版). 2005.
    14. 沈德忠. KTP 晶体的电光研究进展.人工晶体学报, 2001,31: 28-35.
    15. Marder S R, Organic nonlinear optical materials: where we have been and where we are going. Chem Commun, 2006, 131-134.
    16. Papadopoulos M G, Leszczynski J, Sadlej A J. Nonlinear Optical Properties of Matter: From Molecules to Condensed Phases , Kluwer: Dordrecht, 2006.
    17. Gong W, Li Q Q, Li Z, et al. Synthesis and Characterization of Indole-Containing Chromophores for Second-Order Nonlinear Optics . J Phys Chem B, 2006, 110, 10241-10247.
    18. Guieu V, Payrastre C, Madaule Y, et al. Large Quadratic Nonlinear Optical Efficiencies in Pseudosymmetric Streptocyanine Dyes. Chem Mater, 2006, 18:3674-3681.
    19. Maier M, Kaiser W, Giordmaine J A. Intense Light Bursts in the Stimulated Raman Effect. Phys Rev Lett, 1966, 17: 1275 – 1277.
    20. Pereira S F, Ou Z Y,Kimble H J. Backaction evading measurements for quantum nondemolition detection and quantum optical tapping. Phys Rev Lett,1994,72: 214-217.
    21. Holland M J, Collett M J, Walls D F et al. Nonideal quantum nondemolition measurements. Phys Rev A,1990, 42: 2995-3005.
    22. Lai W K, Buek V, Knight P L, Interaction of a three-level atom with an SU(2) coherent state. Phys Rev A, 1991, 44: 2003-2012.
    23. Komine H, Long W H, Stappaert E A,et al. Beam cleanup and low-distortion amplification in efficient high-gain hydrogen Raman amplifiers. J Opt Soc Am B ,1986, 3: 1428-1432.
    24. Günter P. Electro-optic and photorefractive materials . Berlin, Heidelberg, New York, London, Paris, Tokyo: Spinger-Verlag, 1986.
    25. Smirnov V V. in Raman Spectroscopy, Linear and Nonlinear . Ed:by J Lascombe, John Wiley &Sons,1982.
    26. Pople J A, Krishnan R, Schlegel H B, Et Al. Electron Correlation Theories and Their Application to Study of Simple Reaction Potential Surfaces. Int J Quant Chem, 1978, 14 (5): 545-560.
    27. Zhang X B, Feng J K, Ren A M. Theoretical study of one- and two-photon absorption properties of octupolar D-2d and D-3 bipyridyl metal complexes. J Phys Chem A, 2007, 111 (7): 1328-1338.
    28. Liu H P, Sun Z G, Hogan S D, et al. Photodissociation dynamics of CF3I investigated by two-color femtosecond laser pulses. European Physical Journal D, 2006, 40 (3): 357-362.
    29. Park J H, Jeon O Y, Lim H H, et al. Fluorescence by two-photon absorption in an organic single, crystal composed of excited-state intramolecular proton transfer molecules. Journal of the Korean Physical Society, 2006, 49: S592-S594.
    30. Hayek A, Bolze F, Nicoud JF, et al. Synthesis and characterization of water-soluble two-photon excited blue fluorescent chromophores for bioimaging . Photochemical & Photobiological Sciences, 2006, 5 (1): 102-106.
    31. Collini E, Ferrante C, Bozio R, et al. Large third-order nonlinear optical response of porphyrin J-aggregates oriented in self-assembled thin films. J Mater Chem, 2006, 16 (16): 1573-1578.
    32. Frazier C C, Harvey M A, Cockerham M P, et al. Second-harmonic generation in transition-metal-organic compounds. J Phys Chem, 1986, 90(22): 5703-5706.
    33. Qin J G, Liu D Y, Dai C Y, et al. Influence of the molecular configuration on second-order nonlinear optical properties of coordination compounds. Coord Chem Rev, 1999, 188: 23-34.
    34. Weyland T, Ledoux I, Brasselet S, et al. Nonlinear Optical Properties of Redox-Active Mono-, Bi-, and Trimetallic -Acetylide Complexes Connected through a Phenyl Ring in the Cp*(dppe)Fe Series. An Example of Electro-switchable NLO Response. Organometallics, 2000, 19: 5235-5237.
    35. Curreli S, Deplano P, Faulmann C, et al. Electronic Factors Affecting Second-Order NLO Properties: Case Study of Four Different Push-Pull Bis-Dithiolene Nickel Complexes. Inorg Chem, 2004, 43;5069-5079.
    36. Clem P, Humphrey M G. Nonlinear optical properties of transition metal acetylides and their derivatives. Coord Chem Rev, 2004, 248: 725-756
    37. Coe B J, Harris J A, Jones L A, et al. Syntheses and Properties of Two-Dimensional Charged Nonlinear Optical Chromophores Incorporating Redox-Switchable cis-Tetraammineruthenium(II) Centers. J Am Chem Soc, 2005, 127: 4845-4859.
    38. Qin J G, Su N B, Dai C Y, et al. A tetrahedral coordination compound for second-order nonlinear optics: synthesis, crystal structure and SHG of Zn(2-NH(2)py)(2)Cl-2. Polyhedron, 1999, 18 (26): 3461-3464.
    39. Weyland T, Ledoux I, Brasselet S, et al. Nonlinear Optical Properties of Redox-Active Mono-, Bi-, and Trimetallic σ-Acetylide Complexes Connected through a Phenyl Ring in the Cp*(dppe)Fe Series. AnExample of Electro-switchable NLO Response. Organometallics, 2000, 19: 5235-5237
    40. Cifuentes Marie P, Powell C E, Humphrey M G, et al. Organometallic Complexes for Nonlinear Optics. 24. Reversible Electrochemical Switching of Nonlinear Absorption. J Phys Chem A, 2001, 105:9652-9627
    41. Benjamin J Coe. Molecular Materials Possessing Switchable Quadratic Nonlinear Optical Properties. Chem Eur J, 1999, 5: 2464-2471.
    42. Hurst S K, Cifuentes M P, Morrall J P L, et al. Organometallic Complexes for Nonlinear Optics. 22.1 Quadratic and Cubic Hyperpolarizabilities of trans-Bis(bidentate phosphine)ruthenium σ-Arylvinylidene and σ-Arylalkynyl Complexes. Organometallics,
    43. Cheng L T, Tam W, Stevenson S H, et al. Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J Phys Chem, 1991, 95(26): 10631-10643.
    44. Lucas A I, Martín N, Sánchez L, et al. The first tetrathiafulvalene derivatives exhibiting second-order NLO properties. Tetrahedron, 1998, 54: 4655-4662.
    45. David R K, Mark A R, Tobin J M. Calculation and electronic description of quadratic hyperpolarizabilities. Toward a molecular understanding of NLO responses in organotransition metal chromophores. J Am Chem Soc, 1992, 114(26): 10338-10357.
    46. Levine B F. Donor-Acceptor Charge Transfer Contributions to the Second Order Hyperpolarizability. Chem Phys Lett, 1976, 37: 516-521.
    47. Oudar J L. Optical Nonlinearities of Conjugated Molecules. Stibene Derivatives and Highly Polar Aromatic Compounds. J Chem Phys, 1977, 67: 446-457.
    48. Prasad P N, William D J. Introduction to Nonlinear Optical Effects in Molecules and Polymer (Wiley, New York, 1991).
    49. Albota M, Beljonne D, Bredas J L, et al. Design of organic molecules with large two-photon absorption cross sections. Science, 1998, 281: 1653-1656.
    50. Lu D Q, Chen G H, Perry J W, et al. Valence-Bond Charge-Transfer Model for Nonlinear Optical Properties of Charge-Transfer Organic Molecules. J Am Chem Soc, 1994, 116:10679-10685.
    51. Cho M, Kim H, Jeon S J. An elementary description of nonlinear optical properties of octupolar molecules: Four-state model for guanidinium-type molecules. J Chem Phys, 1998, 108:7114-7120.
    52. Hahn S, Kim D, Cho M H. Nonlinear optical properties of the linear quadrupolar molecule: Structure-function relationship based on a three-state model. J Phys Chem B, 1999, 103 (39): 8221-8229.
    53. Cho M H, An S Y, Lee H, et al. Nonlinear optical properties of tetrahedral donor-acceptor octupolar molecules: Effective five-state model approach. J Chem Phys, 2002, 116 (21): 9165-9173.
    54. Pawel N, Morel Y, Olivier S P, et al. Two-photon absorption spectrum of poly(fluorene). Chem PhysLett, 2001, 343: 44-48.
    55. Kuzyk M G. Fundamental limits on third-order molecular susceptibilities. Optics Letters, 2000, 25 (16): 1183-1185.
    56. Born M, Oppenheimer J R. Zur quantentheorie der molekeln. Ann. Physik. 1927, band84 (20): 457-484.
    57. Michael I. Bruce, Transition metal complexes containing Allenylidene, Cumulenylidene, and related ligands. Chem. Rev. 1998. 98. 2797.
    58. Benjamin J. Coe, Molecular Materials Possessing Switchable Quadratic Nonlinear Optical Properties. Chem.-Eur. J. 1999. 5. 2464.
    59. Sundararaman Venkatraman, Rajeev Kumar, Jeyaraman Sankar, TavarekereK. Chandrashekar, Kaladevi Sendhil, C. Vijayan, Alexandra Kelling, and Mathias O. Senge, Oxasmaragdyrin-Ferrocene and Oxacorrole-Ferrocene Conjugates: Synthesis, Structure, and Nonlinear Optical Properties, Chem.-Eur. J. 2004. 10. 1423.
    60. Rajeev Kumar, Rajneesh Misra, Viswanathan Prabhu Raja, and Tavarekere K. Chandrashekar, Modified expanded correle-ferrocene conjugates: syntheses, structure and properties. Chem.-Eur. J. 2005. 11. 5695.
    61. Jie Wu, Yinglin Song, Erpeng Zhang, Hongwei Hou, Yaoting Fan, and Yu Zhu, Studies on cage-type tetranuclear metal clusters with ferrocenylphosphonate ligands, Chem.-Eur. J. 2006. 12. 5823.
    62. Michael C. B. Colbert, Andrew J. Edwards, Jack Lewis, Nicholas J. Long, Nicola A. Page, David G. Parker and Paul R. Raithby, Synthesis of novel Dornor-Acceptor mangansese(Ⅰ)complexes of ferrocenylacetylene: Crystal structure of [(C5H5)Fe(C5H4)C≡CMn(CO)3{Ph2PCH(Me)CH2PPh2}], which has potential for second-order non-linear optics. Dalton Trans. 1994. 17. 2589.
    63. Benjamin J. Coe, Jean-Dominic Foulon, Thomas A. Hamor, Christopher J. Jones, Jon A. McCleverty, David Bloor, Graham H. Cross and Tony L. Axon, Non-linear optical materials containing molybdenum or tungsten mononitrosyl redox centres: diaromatic azo derivatives. Dalton Trans. 1994. 23. 3427.
    64. Benjamin J. Coe, Thomas A. Hamor, Christopher J. Jones, Jon A. McCleverty, David Bloor, Graham H. Cross and Tony L. Axon, Non-linear and potential non-lnear optical materials containing molybdenum or tungsten mononitrosyl redox centres. Stilbene derivatives containing ferrocenyl, methoxy or dimethylamino donor groups, Dalton Trans. 1995. 4. 673.
    65. Lionel P. Clarke, John E. Davies, Paul R. Raithby and Gregory P. Shields, Synthesis, characterization and electrochemistry of the novel ferrocenyl-dienediyltrisomium cluster [Os(CO)9{ μ 3- η 4-Fe[C5H4(C2SiMe3)]2}], Dalton Trans. 1996. 22. 4147.
    66. Peiyi Li, Ian J. Scowen, John E. Davies and Malcolm A. Halcrow, Co-ordination chemistry of bis(ferrocenylcarbaldimine) Schiff bases, Dalton Trans. 1998. 22. 3791.
    67. C. John McAdam, Jason J. Brunton, Brian H. Robinson * and Jim Simpson, Ferrocenylethynylnaphthalenes and acenaphthylenes communication between ferrocenyl and cluster redox centres, Dalton Trans. 1999. 15. 2487.
    68. Tony Farrell, Timo Meyer-Friedrichsen,b Maik Malessa, Detlev Haase, Wolfgang Saak, Inge Asselberghs, Kurt Wostyn, Koen Clays, André Persoons, Jürgen Heck and Anthony R. Manning, Azulenylium and guaiazulenylium cations as novel acceptingmoieties in extended sesquifulvalene type D–_–A NLO chromophores. Dalton Trans. 2001. 1. 29.
    69. Ramon Costa, Concepción López, Elies Molins, Enric Espinosa and José Pérez Heterodimetallic copper(II) compounds containing ferrocenecarboxylato(-1) and triamines as ligands, Dalton Trans. 2001. 19. 2833.
    70. Wai-Yeung Wong, Guo-Liang Lu, Ka-Fai Ng, Ka-Ho Choi and Zhenyang Lin, Synthesis, structures and properties of platinum(II) complexes of oligothiophene-functionalized ferrocenylacetylene, Dalton Trans. 2001. 22. 3250.
    71. Paul Frédéric, Jean-Yves Mevellec and Claude Lapinte, Electron-rich Fe(II) and Fe(III) organoiron _-alkynyl complexes bearing a functional aryl group. Vibrational spectroscopic investigations of the substituent effect on the C≡C triple bond. Dalton Trans. 2002. 8. 1783.
    72. Christoph Janiak, Engineering coordination polymers towards applications, Dalton Trans. 2003. 14. 2781.
    73. Bernd Kayser, Janina Altman, Heinrich N?th, J?rg Knizek, and Wolfgang Beck, Metal Complexes of Alkyne-Bridged a-Amino Acids, Eur. J. Inorg. Chem. 1998. 11. 1791.
    74. Oliver Briel, Karlheinz Sünkel, Ingo Krossing, Heinrich N?th, Elmar Schm?lzlin, Klaus Meerholz, Christoph Br?uchle, and Wolfgang Beck, Synthesis and Nonlinear Optical Properties of Carbonylrhenium Bromide Complexes with Conjugated Pyridines, Eur. J. Inorg. Chem. 1999. 3. 483.
    75. Hans Wong, Timo Meyer-Friedrichsen, Tony Farrell, Christoph Mecker, and Jürgen Heck, Second Harmonic Generation and Two-Photon Fluorescence as Nonlinear Optical Properties of Dipolar Mononuclear Sesquifulvalene Complexes, Eur. J. Inorg. Chem. 2000. 4. 631.
    76. Matthias Tamm, Thomas Bannenberg, Kim Baum, Roland Fr?hlich, Thomas Steiner, Timo Meyer-Friedrichsen, and Jürgen Heck, First Hyperpolarizabilities of Manganese(I)2Chromium(0) Sesquifulvalene Complexes. Eur. J. Inorg. Chem. 2000. 6. 1161.
    77. Pascal G. Lacroix, Second-Order Optical Nonlinearities in Coordination Chemistry: The Case of Bis(salicylaldiminato)metal Schiff Base Complexes, Eur. J. Inorg. Chem. 2001. 2. 339.
    78. Dong Mok Shin, In Su Lee, and Young Keun Chung, Crystal Engineering with Structurally Flexible 1,1_-Substituted Ferrocenes for Nonlinear Optical Materials, Eur. J. Inorg. Chem. 2003. 12. 2311.
    79. Hongwei Hou, Gang Li, Yinglin Song, Yaoting Fan, Yu Zhu, and Lu Zhu, Synthesis, Crystal Structures and Third-Order Nonlinear Optical Properties of Two Novel Ferrocenyl Schiff-Base Complexes [Ag(L)2](NO3)(MeOH)(EtOH) and [HgI2(L)] {L -1,2-Bis[(ferrocen-l-ylmethylene)amino]ethane}, Eur. J. Inorg. Chem. 2003. 12. 2325.
    1. 徐光宪, 黎乐民. 量子化学基本原理和从头计算法(上册) . 北京:科学出版社, 1981
    2. Schr?dinger E. Quantisierung als eigenwertproblem , Ann. Phys. 1926, band79: 361-376.
    3. Schr?dinger E. An undulatory theory of the mechanics of atoms and molecules, Phys. Rev. 1926, 28(6): 1049-1070.
    4. Born M, Oppenheimer J R. Zur quantentheorie der molekeln. Ann. Physik. 1927, band84 (20): 457-484.
    5. Born M, Huang K. Dynamical Theory of Crystal Lattices . Oxford University Press, New York, 1954
    6. Hartreee D R Proc Cambridge Phil Soc. 1928, 24: 89.
    7. Hartree D. Calculations of Atomic Structure . Wiley, 1957.
    8. Roothaan C C J. New developments in molecular orbital theory . Rev. Mod. Phys. 1951, 23(2), 69-89.
    9. Roothaan C C J. New developments in molecular orbital theory. Rev Mod Phy, 1951, 23 (2):69-89.
    10. ople J A, Segal G A. Approximate self-consistent molecular orbital theory.Ⅱ. Calculation with complete neglect of differential overlap . J Cheml Phys, 1965, 43: S136-S151.
    11. Pople J A, Beveridge D L, 近似分子轨道理论方法. 江元生译. 北京: 科学出版社, 1976.
    12. Ridley J E, Zerner M C, Triplet states via intermediate neglect of differential overlap: benzene, pyridine and the diazines . Theoretical Chem Acta, 1976, 42: 223-236.
    13. Stewart J J P, Optimization of Parameters for Semi-Empirical Methods I-Method. J Comput Chem, 1989, 10:209–220.
    14. Koch W, Holthausen M C, A Chemist’s Guide to Density Functional Theory . Weinheim, Germany: Wiley-VCH, 2000.
    15. Stratmann R E, Scuseria G E, Frisch M J, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys, 1998, 109, 8218-8225.
    16. Petersilka M, Gossmann U J, Gross E K U, Excitation energies from time-dependent density-functional theory . Phys Rev Lett, 1996, 76: 1212-1215.
    17. Yang W. Direct calculation of electron density in density-functional theory. Phys Rev Lett, 1991, 66: 1438-1441.
    18. Li X P, Nunes R W, Vanderbilt D. Density-matrix electronic-structure method with linear system-size scaling. Phys Rev B, 1993, 47: 10891-10894.
    19. Mauri F, Galli G, Car R. Orbital formulation for electronic-structure calculations with linear system-size scaling. Phys Rev B, 1993, 47: 9973-9976.
    20. Ordejón P, Drabold D A, Grumbach M P, et al. Unconstrained minimization approach for electronic computations that scales linearly with system size. Phys Rev B 48, 1993, 14646-14649.
    21. Gibson A, Haydock R, LaFemina J P. Ab initio electronic-structure computations with the recursion method. Phys Rev B 1993, 47: 9229-9237.
    22. Aoki M. Rapidly convergent bond order expansion for atomistic simulations. Phys Rev Lett, 1993, 71: 3842-3845.
    23. Goedecker S, Colombo L. Efficient linear scaling algorithm for tight-binding molecular dynamics. Phys Rev Lett, 1994, 73: 122-125.
    24. Hernádez E, Gillan M J. Self-consistent first-principles technique with linear scaling. Phys Rev B, 1995, 51: 10157-10160.
    25. Kohn W. Density functional and density matrix method scaling linearly with the number of atoms. Phys Rev Lett, 1996, 76, 3168-3171.
    26. Drabold D A, Sankey O F. Maximum entropy approach for linear scaling in the electronic structure problem. Phys Rev Lett, 1993, 70: 3631-3634.
    27. Iitaka T, Nomura S, Hirayama H, et al. Calculating the linear response functions of noninteracting electrons with a time-dependent Schr?dinger equation. Phys Rev E, 1997, 56: 1222-1229.
    28. Nakayama T, Shima H. Computing the Kubo formula for large systems. Phys Rev E, 1998, 58: 3984-3992.
    29. Yokojima S, Chen G H. Time domain localized-density-matrix method. Chem Phys Lett, 1998, 292: 379-383.
    30. Yokojima S, Chen G H. Linear scaling calculation of excited-state properties of polyacetylene. Phys Rev B, 1999, 59: 7259-7262.
    31. Liang W Z, Yokojima S, Chen G H. Generalized linear-scaling localized-density-matrix method. J Chem Phys, 1999, 110: 1844-1855.
    32. Yokojima S, Wang X J, Zhou D H. et al. Localized-density-matrix, segment-molecular-orbitals and poly(p-phenylenevinylene) aggregates. J Chem Phys, 1999, 111: 10444-10451.
    33. Liang W Z, Yokojima S, Zhou D H, et al. Localized-density-matrix method and its application to carbon nanotubes. J Phys Chem A, 2000, 104: 2445-2453.
    34. Liang W Z, Yokojima S, Chen G H. Localized-density-matrix method and nonlinear optical response. J Chem Phys, 2000, 113: 1403-1408.
    35. Pariser P, Parr R G, A Semi-Empirical Theory of the Electronic Spectra and Structure of Complex Unsaturated Molecules II. J Chem Phys, 1953, 21: 767-776.
    36. Del Bene J, Jaffé H H. Use of the CNDO method in spectroscopy. I. benzene, pyridine, and the diazines. J Chem Phys, 1968, 48: 1807-1813; Use of the CNDO method in spectroscopy. II. five-membered rings. J Chem Phys, 1968, 48: 4050-4055.
    37. Stewart J J P. Optimization of parameters for semiempirical methods. 2. applications. J Comput Chem, 1989, 10, 209; 221-264.
    38. Yokojima S, Zhou D H, Chen G H. Photoexcitations in poly(p-phenylenevinylene) aggregates. Chem Phys Lett, 2001, 333: 397-402.
    39. Takahashi A, Mukamel S. Anharmonic oscillator modeling of nonlinear susceptibilities and its application to conjugated polymers. J Chem Phys, 1994, 100, 2366-2384.
    40. Tretiak S, Chernyak V, Mukamel S, et al. Recursive density-matrix-spectral-moment algorithm for molecular nonlinear polarizabilities. J Chem Phys, 1996, 105, 8914-8928
    1. Seth R. Marder, Joseph W. Perry, ChristopherP. Yakymyshyn, Organic salts with large second-order optical nonlinearities. Chem. Mater, 1994. 6. 1137
    2. Krishnan A., Pal S.K, Nandakumar P., Samuelson A. G., Das P. K., Ferrocenyl Donor-organic acceptor complexes for second oeder nonlinear optics. Chem. Phys. 2001. 265. 313.
    3. Ramon Costa, Concepción López, Elies Molins, Enric Espinosa and José Pérez Heterodimetallic copper(II) compounds containing ferrocenecarboxylato(-1) and triamines as ligands, Dalton Trans. 2001. 19. 2833.
    4. Wim Wenseleers, Etienne Goovaerts, Pascale Hepp, M. Helena Garcia, M. Paula Robalo, A. R. Dias, M. Fatima, M. Piedade, M. Tersa, Duarte. High firsr hyperpolarizability and perfectly aligned crystal packing for an organometallic compound[Fe( η 5-C5H5)((R)-PROPHOS)(p-NCC6H4NO2)][PF6] ?CH2Cl2. Chem. Phys. Lett. 2003. 367. 390.
    5. Inge Asselberghs, Koen Clays, André persons, Andrew M. McDonagh, Michael D. Ward, Jon A. McCleverty, In situ reversible electrochemical swiching of the molecular first hyperpolarizability. Chem. Phys. Lett. 2003. 368. 408.
    6. Dong Mok Shin, In Su Lee, and Young Keun Chung, Crystal Engineering with Structurally Flexible 1,1_-Substituted Ferrocenes for Nonlinear Optical Materials, Eur. J. Inorg. Chem. 2003. 12. 2311.
    7. Patrizia Calaminici, Density functional calculations of molecular electric properties in iron containing systems. Chem. Phys. Lett. 2003. 374. 650.
    8. Bj?rn Pedersen, Gabriele Wagner, Rudolf Herrmann, Wolfgang Scherer, Klaus Meerholz, Elmar Schma¨lzlin, Christoph Bra¨uchle, Ferrocenylethenylsilatranes and a cymantrenylsilatrane, J. Organomet. Chem. 1999. 590. 129.
    9. Michael I. Bruce, Transition metal complexes containing Allenylidene, Cumulenylidene, and related ligands. Chem. Rev. 1998. 98. 2797.
    10. Benjamin J. Coe, Molecular Materials Possessing Switchable Quadratic Nonlinear Optical Properties. Chem.-Eur. J. 1999. 5. 2464.
    11. Jayaprakash K. N., Paresh C. Ray, Isao Matsuoka, Mohan M. Bhadbhade, Vedavathi G. Puranik, Pushpendu K. Das, Hiroshi Nishihara, and Amitabha Sarkar, Ferrocene in Conjugation with a Fischer Carbene: Synthesis, NLO, and Electrochemical Behavior of a Novel Organometallic Push-Pull System, Organometallics. 1999. 18. 3851.
    12. Sundararaman Venkatraman, Rajeev Kumar, Jeyaraman Sankar, TavarekereK. Chandrashekar, Kaladevi Sendhil, C. Vijayan, Alexandra Kelling, and Mathias O. Senge, Oxasmaragdyrin-Ferrocene and Oxacorrole-Ferrocene Conjugates: Synthesis, Structure, and Nonlinear Optical Properties, Chem.-Eur. J. 2004. 10. 1423.
    13. Rajeev Kumar, Rajneesh Misra, Viswanathan Prabhu Raja, and Tavarekere K. Chandrashekar, Modified expanded correle-ferrocene conjugates: syntheses, structure and properties. Chem.-Eur. J. 2005. 11. 5695.
    14. Jie Wu, Yinglin Song, Erpeng Zhang, Hongwei Hou, Yaoting Fan, and Yu Zhu, Studies on cage-type tetranuclear metal clusters with ferrocenylphosphonate ligands, Chem.-Eur. J. 2006. 12. 5823.
    15. Tony Farrell, Anthony R. Manning, Timothy. Murphy, Timo Meyer-Friedrichsen, Jürgen Heck, Inge Asselberghs and Andre′ Persoons[c], Structure-Property Dependence of the First Hyperpolarisabilities of Organometallic Merocyanines Based on the ì-Vinylcarbynediiron Acceptor and Ferrocene Donor, Eur. J. Inorg. Chem. 2001. 2365.
    16. Lorena Millán, Mauricio Fuentealba, Carolina Manzur, David Carrillo, Nadège Faux, Bertrand Caro, Fran?oise Robin-Le Guen, Sourisak Sinbandhit, Isabelle Ledoux-Rak,[d] and Jean-René Hamon, Dipolar Organoiron Pyranylideneacetaldehyde Hydrazone Complexes: Synthesis, Characterization, Crystal Structure, Linear and Nonlinear Optical Properties, Eur. J. Inorg. Chem. 2006. 6. 1131.
    17. Stephen Barlow, Heather E. Bunting, Catherine Ringham, Jennifer C. Green, Gerold U. Bublitz, Steven G. Boxer, Joseph W. Perry, and Seth R. Marder, Studies of the Electronic Structure of Metallocene-Based Second-Order Nonlinear Optical Dyes, J. Am. Chem. Soc. 1999. 121. 3715.
    18. Marcus. R. A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. J. Chem. Phys. 1965. 24. 966
    19. Gerhard Laus, Herwig Schottenberger, Norbert Schuler, Klaus Wurst and Rolfe H. Herber, A novel solvatochromic 2-nitroacrylonitrile derived from octamethylferrocenecarbaldehyde, J. Chem. Soc.-Perkin Trans. 2. 2002. 8. 1445.
    20. Jose A. Campo, Mercedes Cano, Jose V. Heras, Carolina Lopez-Garabito, Elena Pinilla, Rosario Torres, Gema Rojoc and Fernando Agullo′-Lo′pez, Second-order non-linear optical properties of ‘bent’ ferrocenyl derivatives, J. Mater. Chem. 1999. 9. 899.
    21. Michael C. B. Colbert, Andrew J. Edwards, Jack Lewis, Nicholas J. Long, Nicola A. Page, David G. Parker and Paul R. Raithby, Synthesis of novel Dornor-Acceptor mangansese(Ⅰ)complexes of ferrocenylacetylene: Crystal structure of [(C5H5)Fe(C5H4)C≡CMn(CO)3{Ph2PCH(Me)CH2PPh2}], which has potential for second-order non-linear optics. Dalton Trans. 1994. 17. 2589.
    22. Benjamin J. Coe, Jean-Dominic Foulon, Thomas A. Hamor, Christopher J. Jones, Jon A. McCleverty, David Bloor, Graham H. Cross and Tony L. Axon, Non-linear optical materials containing molybdenum or tungsten mononitrosyl redox centres: diaromatic azo derivatives. Dalton Trans. 1994. 23. 3427.
    23. Benjamin J. Coe, Thomas A. Hamor, Christopher J. Jones, Jon A. McCleverty, David Bloor, Graham H. Cross and Tony L. Axon, Non-linear and potential non-lnear optical materials containing molybdenum or tungsten mononitrosyl redox centres. Stilbene derivatives containing ferrocenyl, methoxy or dimethylamino donor groups, Dalton Trans. 1995. 4. 673.
    24. Lionel P. Clarke, John E. Davies, Paul R. Raithby and Gregory P. Shields, Synthesis, characterizationand electrochemistry of the novel ferrocenyl-dienediyltrisomium cluster [Os(CO)9{ μ 3- η4-Fe[C5H4(C2SiMe3)]2}], Dalton Trans. 1996. 22. 4147.
    25. Peiyi Li, Ian J. Scowen, John E. Davies and Malcolm A. Halcrow, Co-ordination chemistry of bis(ferrocenylcarbaldimine) Schiff bases, Dalton Trans. 1998. 22. 3791.
    26. Benjamin J. Coe, Christopher J. Jones and Jon.A. McCleverty, An assessment of second harmonic generation by donor acceptor molecules containing stilbenyl or diarylazo bridges between ferrocenyl donor and nitro acceptor groups, J. Organomet. Chem. 1997. 531. 183.
    27. Michael C.B, Colbert, Jack Lewis, Nicholas J. Long, Paul R Raithby, David A. BIoor, Graham H. Cross, The synthesis of chiral ferrocene tigands and their metal complexes Eric Hendrickx ~, Andr6 Persoons a, Sylvie Samson b, G. Richard Stephenson, Nonlinear optical properties in bimetallic monocation "n'-complexes of iron, J. Organomet. Chem. 1997. 542. 295.
    28. Jose Mata, Santiago Uriel, Eduardo Peris, Rosa Llusar, Stephan Houbrechts, André Persoons, Synthesis and characterization of new ferrocenyl heterobimetallic compounds with high NLO responses, J. Organomet. Chem. 1998. 562. 197.
    29. Rudolf Herrmann, Bj?rn Pedersen, Gabriele Wagner, Joo-Hack Youn, Molecules with potential applications for non-linear optics: the combination of ferrocene and azulene, J. Organomet. Chem. 1998. 571. 261.
    30. Gilbert G. A. Balavoine, Jean-Claude Daran, Gabriel Iftime, Pascal G. Lacroix, and Eric Manoury, Synthesis, Crystal Structures, and Second-Order Nonlinear Optical Properties of New Chiral Ferrocenyl Materials, Organometallics. 1999. 18. 21
    31. K.R. Justin Thomas, Jiann T. Lin, Yuh S. Wen, Synthesis, spectroscopy and structure of new push–pull ferrocene complexes containing heteroaromatic rings (thiophene and furan) in the conjugation chain, J. Organomet. Chem. 1999. 575. 301.
    32. Oliver Briel, Armin Fehn, Wolfgang Beck, Hydrocarbon bridged metal complexes XLV. Dinuclear polyene-bridged Fischer carbene complexes and a star-shaped benzene-bridged tris(ferrocenyl-decapentaenyl) compound, J. Organomet. Chem. 1999. 578. 247.
    33. Sushanta K. Pal, Anu Krishnan, Puspendu K. Das, Ashoka G. Samuelson, Schiff base linked ferrocenyl complexes for second-order nonlinear optics, J. Organomet. Chem. 2000. 604. 248.
    34. Wai-Yeung Wong, Guo-Liang Lu, Ka-Fa Chun-Kin Wong, Ka-Ho Cho, Synthesis, structures and electrochemistry of bis(alkynylferrocene) complexes with fluorene spacers, J. Organomet. Chem. 2001. 637. 159.
    35. Richard D. A. Hudson, Inge Asselberghs, Koen Clays, Laurence P. Cuffe, John F. Gallagher c, Anthony R. Manning , Andre′ Persoons, Kurt Wostyn, The linear and nonlinear optical properties of organometallic chromophores derived from ferrocene and terthienyl spacers. Crystal structure of 2-[(E)-2-ferrocenylethenyl]-5-(2-thienyl) thiophene, J. Organomet. Chem. 2001. 637. 435.
    36. Yaofeng Yuan, Zhong Cao, Nanyan Fu, Jitao Wang, Linhong Weng, Antonio Bezerra de Carvalho, Clovis Peppe, Preparation, characterization, electrochemical studies and crystal structure determinationof salicylaldehyde–aroylhydrazone, ferrocenyl–aroylhydrazone and salicylaldehyde–ferrocenoylhydrazone complexes of indium, J. Organomet. Chem. 2001. 637. 531.
    37. Sushanta K. Pal, Anu Krishnan, Puspendu K. Das , Ashoka G. Samuelson, Second harmonic generation in ferrocene based hydrogen bonded assemblies, J. Organomet. Chem. 2001. 637. 827.
    38. Stephanie K. Hurst, Mark G. Humphrey, Joseph P. Morrall, Marie P. Cifuentes, Marek Samoc b, Barry Luther-Davies b, Graham A. Heath c, Anthony C. Willis, Organometallic complexes for nonlinear optics Part 31. Cubic hyperpolarizabilities of ferrocenyl-linked gold and ruthenium complexes, J. Organomet. Chem. 2003. 670. 56.
    39. Izabela Janowska, Janusz Zakrzewski, Keitaro Nakatani, Jacques A. Delaire, Marcin Palusiak c, Marcin Walak d, Henryk Scholl, Ferrocenyl D-p-A chromophores containing 3-dicyanomethylidene-1- indanone and 1,3-bis(dicyanomethylidene)indane acceptor groups, J. Organomet. Chem. 2003. 675. 35.
    40. Xiaoming Zhao, Hemant K. Sharma, Francisco Cervantes-Lee, Keith H. Pannell, Gary J. Long b, Ahmed M. Shahin, Bis-silyl substituted ferrocenylenes, including dicyanovinyl electronwithdrawing groups, as potential non-linear optical materials, J. Organomet. Chem. 2003. 686. 235.
    41. Nazia Chawdhury, Nicholas J. Long, Mary F. Mahon, Li-ling Ooi, Paul R. Raithby, Stephanie Rooke, Andrew J.P. White, David J. Williams, Muhammad Younus, Synthesis and characterisation of aromatic ethynyl-bridged ferrocenes, J. Organomet. Chem. 2004. 689. 840.
    42. Damian Pla_zuk, Janusz Zakrzewski, One-step synthesis of aryl-capped vinylferrocenes from ferrocene and aryl-substituted oxiranes, J. Organomet. Chem. 2006. 691. 287.
    43. Izabela Janowska a, Janusz Zakrzewski, Keitaro Nakatani,Marcin Palusiak, Marcin Walak d, Henryk Scholl, Ferrocenyl D–p–A conjugated polyenes with 3-dicyanomethylidene-1-indanone and 1,3-bis(dicyanomethylidene)indane acceptor groups: Synthesis, linear and second-order nonlinear optical properties and electrochemistry, J. Organomet. Chem. 2006. 691. 323.
    44. C. John McAdam, Jason J. Brunton, Brian H. Robinson * and Jim Simpson, Ferrocenylethynylnaphthalenes and acenaphthylenes communication between ferrocenyl and cluster redox centres, Dalton Trans. 1999. 15. 2487.
    45. Wai-Yeung Wong, Guo-Liang Lu, Ka-Fai Ng, Ka-Ho Choi and Zhenyang Lin, Synthesis, structures and properties of platinum(II) complexes of oligothiophene-functionalized ferrocenylacetylene, Dalton Trans. 2001. 22. 3250.
    46. Frédéric Paul, Jean-Yves Mevellec and Claude Lapinte, Electron-rich Fe(II) and Fe(III) organoiron _-alkynyl complexes bearing a functional aryl group. Vibrational spectroscopic investigations of the substituent effect on the C≡C triple bond. Dalton Trans. 2002. 8. 1783.
    47. Christoph Janiak, Engineering coordination polymers towards applications, Dalton Trans. 2003. 14. 2781.
    48. David R. Kanis, Pascal G. Lacroix, Mark A. Ratner, and Tobin J. Marks, Electronic Structure and Quadratic Hyperpolarizabilities in Organotransition-Metal Chromophores Having Weakly Coupled 7r-Networks. Unusual Mechanisms for Second-Order Response, J. Am. Chem. Soc. 1994. 116. 10089.
    49. Stephen Barlow, Heather E. Bunting, Catherine Ringham, Jennifer C. Green, Gerold U. Bublitz, Steven G. Boxer, Joseph W. Perry, and Seth R. Marder, Studies of the Electronic Structure of Metallocene-Based Second-Order Nonlinear Optical Dyes, J. Am. Chem. Soc. 1999. 121. 3715.
    50. Yi Liao, Bruce E. Eichinger, Kimberly A. Firestone, Marnie Haller, Jingdong Luo, Werner Kaminsky, Jason B. Benedict, Philip J. Reid, Alex K-Y Jen, Larry R. Dalton, and Bruce H. Robinson, Systematic Study of the Structure-Property Relationship of a Series of Ferrocenyl Nonlinear Optical Chromophores, J. Am. Chem. Soc. 2005. 127. 2758.
    51. Lin Ke Li, Ying Lin Song, Hong Wei Hou, Yao Ting Fan, and Yu Zhu, Syntheses, Structures, and Optical Properties of β-Ferrocenylacrylate Metal Polymers, Eur. J. Inorg. Chem. 2005. 16. 3238.
    52. Xiaoming Zhao, Hemant K. Sharma, Francisco Cervantes-Lee, Keith H. Pannell, Gary J. Long b, Ahmed M. Shahin, Bis-silyl substituted ferrocenylenes, including dicyanovinyl electronwithdrawing groups, as potential non-linear optical materials, J. Organomet. Chem. 2003. 686. 235.
    53. Peter Butler, John F. Gallagher, Anthony R. Manning, Synthesis and characterisation of alkynylacetal and alkynylaldehyde derivatives of Ni( II) and Fe( II), Inorg. Chem. Commun. 1998. 1. 343.
    54. Maik Malessa, Jürgen Heck, Jürgen Kopf, and M. Helena Garcia, Polar Cofacially Fixed Sandwich Complexes: Do They Demonstrate Second Harmonic Generation (SHG)? Eur. J. Inorg. Chem. 2006. 4. 857.
    55. Ute Hagenau,, Andr é Persoons, Thomas Schuld, and Hans Wong, (1-Ferrocenyl- η 6-borabenzene)( η5-cyclopentadienyl)cobalt(1+): A New Heterobimetallic Basic NLO Chromophore, Inorg. Chem. 1996. 35. 7863.
    56. Gang Li, Yinglin Song, Hongwei Hou, Linke Li, Yaoting Fan, Yu Zhu, XiangruMeng, and Liwei Mi, Synthesis, Crystal Structures, and Third-Order Nonlinear Optical Properties of a Series of Ferrocenyl Organometallics, Inorg. Chem. 2003. 42. 913.
    57. Chaoyong Mang, Kechen Wu, First Hyperpolarizabilities of Vinylogue Organometallic Sesquifulvalene Chromophores: A DFT Study, Int. J. Quantum Chem. 2006. 106. 2529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700