大型冷凝器清洗机器人的智能鲁棒控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多关节机械手和移动机器人的控制问题一直是控制科学工作者普遍关注的研究领域,同时也取得了许多理论成果,然而大部分工作都集中在传统的机械手或移动机器人的控制上。移动机械手结合了机械手和移动机器人两者的优点,同时具有移动和操作的功能,这种特点使得它优于传统的移动机器人和机械手,不仅具有机械手的操作灵活性,而且具有移动机器人工作空间的广阔性,具有几乎无限大的工作空间。基于移动机械手这种特点,本项目组研究了一种基于移动机械手的智能自动化清洗系统对大型冷凝器进行长期自主在线清洗,合理、高效地实现冷凝器污垢的在线清洗,改善冷凝器传热效果,提高汽轮机组的运行效率。本文重点开展用于大型冷凝器自动化清洗的移动机械手的智能鲁棒控制理论方法研究。全文主要工作包括如下几个方面。
     论文首先系统深入地介绍了大型冷凝器的工作原理和主要的清洗方法以及存在的不足;然后阐述了移动机械手的研究进展和机器人鲁棒控制的研究现状。并在此基础上阐述本论文的研究意义。
     本文所设计和研究的大型冷凝器自动清洗机器人是一类移动机械手系统,由于该移动机械手是由一个具有非完整性的移动机器人系统和完整约束的机械手组成,因此,论文第二章首先详细地介绍了非完整系统的运动学和动力学建模与特性、多关节机械手的运动学和动力学问题,然后针对移动机械手的整体控制策略和分散控制策略分别建立了相应的系统运动学和动力学模型。
     在移动机械手的整体控制策略方面,由于滑模控制方法是一种针对不确定系统的有效非线性反馈控制方法,论文第三章首先根据移动机械手系统的不确定性和外界干扰的有界性设计了滑模控制器,该控制器优点在于滑模控制不需要被控对象精确的数学模型,而只要知道模型中参数的误差范围或变化范围;而且,滑模控制对有界干扰和参数变化具有不敏感性,可以削弱由于负载变化或干扰对系统控制性能的影响。然而,当不确定性和外界干扰的界未知时,滑模控制存在本身固有抖振现象,使得控制器不能得到很好地应用。针对这种情况,论文利用神经网络的非线性逼近能力来辨识移动机械手系统的不确定性和干扰,提出了一种基于神经网络的移动机械手滑模控制,使滑模控制器的抖振大大减少,并利用Lyapunov定理设计了具有神经网络补偿的滑模控制器结构和神经网络的学习算法,从而保证了系统的稳定性、改善了系统的动态性能,实验结果表明基于神经网络的滑模控制方法能够有效地削弱抖振现象,具有很强的抗干扰能力和很好的动态特性。
     论文第四章首先针对CMAC中存在的问题,将模糊理论引入CMAC,在划分输入空间和激活联想强度时采用了模糊化的方法,提出了一种比传统CMAC更好的逼近能力的模糊CMAC神经网络模型。利用模糊CMAC神经网络的逼近能力对移动机械手进行建模,并在此基础上,提出了一种具有自适应能力的H_∞控制策略,通过H_∞控制策略减少了外扰和模糊CMAC神经网络重构误差对系统的影响。理论分析证明了该控制器能够将移动机械手系统的外扰影响控制在指定的范围内,且闭环系统的所有信号都是有界的。在仿真实验中,为了验证基于模糊CMAC神经网络的H_∞控制策略的有效性,将其与计算力矩控制方法进行比较,仿真结果表明,在存在外扰的情况下,所提出的控制策略具有比计算力矩控制方法更好的鲁棒性能。
     在移动机械手的分散控制策略方面,论文第五章将移动机械臂分成两个子系统,即非完整约束的移动平台子系统和完整约束的机械臂子系统,然后考虑了移动平台的运动学控制器,对两个子系统分别设计Lyapunov函数,将两个子系统之间的耦合看成干扰,之后针对机器人的部分参数未知和全部参数未知分别给出了相应的鲁棒自适应控制器设计,并分别根据Lyapunov稳定性理论证明了整个移动机械手系统的稳定性,且跟踪误差和自适应系数矩阵误差一致终值有界,保证了系统的稳定性、改善了系统的动态性能。实验结果表明,所设计的鲁棒自适应控制器是有效的,且具有较强的鲁棒性和自适应能力。
     基于体积、成本等方面的考虑,机器人系统通常不配备速度测量装置,仅通过位置反馈获取速度信息,论文第六章提出了一种模糊自适应非线性鲁棒观测器估计关节速度的方法,利用模糊逻辑来逼近系统参数的不确定性,引入鲁棒项抑制外扰和模糊逻辑逼近过程中的重构误差,采用严格正实Lyapunov设计方法分析观测误差是一致最终有界的;然后在鲁棒观测器的基础上,设计了机器人的模糊自适应输出反馈控制器,模糊系统参数基于Lyapunov稳定性理论自适应调整,整个控制器保证了具有不确定性的机器人系统渐近的跟踪轨迹,且闭环系统的所有信号均有界。仿真实验结果表明了该方法的有效性。
     针对冷凝器在线高效清洗要求,论文第七章提出了一种冷凝器在线清洗的新方案,根据冷凝器的水室结构及管束布局,将高压水射流清洗与化学清洗相结合并通过两关节机械臂清洗喷枪来实现清洗。并介绍了清洗系统结构,详细分析了适用于不同发电机组的自动化清洗机器人的机械结构及其控制系统结构。论文最后总结了全文的主要创新性研究成果,并对下一步研究工作进行了展望。
The control problem of multi-joint manipulator and mobile robot has been paid a great attention for a long time, and many theoretical results have been reported. However, most of research works are focused on the control issues of the traditional manipulator or mobile robot systems. A mobile manipulator is a robotic manipulator mounted on a moving base, with the function of mobile and operation, which makes it superior to the traditional characteristics of mobile robots and manipulators. It not only has the manipulator operational flexibility, but also increases the size of the robot workspace, with almost infinite work space. For the purpose of improving the heat transfer performance of condenser and increasing the efficiency of thermal cycle of turbo-generator unit, we investigate intelligent automated cleaning system for large condenser based on a mobile manipulator. This dissertation focuses on the methods of intelligent robust control for cleaning mobile manipulator of large condenser. Main results and contributions of this dissertation are as follows:
     Firstly, the principle of the large condenser, the cleaning method and its shortcomings are introduced. Then, the research progress of the mobile manipulator and robust control of robot are generalized. And, the research significance of this dissertation is presented.
     In this dissertation, design and research of the large condenser cleaning robot is a kind of mobile manipulator system, and the mobile manipulator is composed of a nonholonomic mobile robot and a honolomic manipulator. In chapter 2, the kinematics and dynamics model and its characteristics of a nonholonomic system and a multi-joint manipulator are introduced respectively. Then, aiming at the centralized control strategy and decentralized control strategy of mobile manipulator, the corresponding kinematics and dynamics model are founded.
     In the centralized control strategy, as sliding mode control is an effective nonlinear feedback control method of uncertain systems, in chapter 3, a sliding controller is designed based on the bound of parameter uncertainties and external disturbances of mobile manipulator system. The advantages of this controller are sliding control does not need precise mathematical model of the controlled object, and that as long as know the change scope of the error of parameters. The control rules of sliding mode control are to change the switching motion constantly, make the state trajectory of the system arrive the sliding mode. In theory, when the state trajectory of the system reaches and slips on the surface, equivalent control can make the state trajectory slide to the sliding surface and keep on it. However, when the uncertainties and external disturbances are unknown, there inherent chattering phenomenon of sliding control can not be made good use of. The existence of chattering may cause instability of the system, and restrain the application of the sliding mode control in a certain extent. For counteracting the defects of sliding mode control, a sliding mode control system for mobile manipulator based on neural network is designed. The neural network is used to compensate the uncertainties and external disturbances. Based on Lyapunov theorem, the structure of sliding mode controller and the learning algorithm of the neural network are designed. So the stability of the system is guaranteed, and the dynamic performance of the system is improved. The simulation results show that the sliding mode control method based on neural network can weaken chattering phenomenon effectively, and has an excellent dynamic characteristics.
     In Chapter 4, aim at the existing problems in cerabellar model articulation controller (CMAC), by fuzzifying the space division method of cerabellar model articulation controller, a fuzzy CMAC neural network is proposed. Then, using fuzzy CMAC neural network approaches the model of mobile manipulator, and on this basis, an H_∞controller with adaptive mechanism is proposed. The effects of external disturbances and the reconstruction error of fuzzy CMAC neural network are reduced by using the H_∞control strategy. Theoretical analysis shows that the controller can restrict the effects in a designated area, and all signals in closed-loop system are bounded. Finally, in order to validate the effectiveness of the H_∞control strategy based on fuzzy CMAC neural network, a set of experiences which is compared with computed torque control method is drawn. The simulation results show that the proposed control strategy is better than computed torque control method under external disturbances, has better robust performance.
     In decentralized control strategy, mobile manipulator is divided into two subsystems in Chapter 5, that is, nonholonomic mobile platform subsystems and holonomic manipulator subsystem. Then, considering the kinematics controller of the mobile platform, Lyapunov function of the two subsystems are designed. The couple between the two subsystems is regarded as disturbances, and aim at some unknown parameters and all unknown parameters, corresponding robust adaptive controller are given respectively. According to the Lyapunov stability theory, the overall mobile manipulator system is stable, and the tracking error and adaptive coefficient error is uniformly ultimately bounded (UUB). The stability of the system is ensured and the dynamic performance is improved. Finally, simulation results show that the robust adaptive controller is effective, and has good robust and adaptive capacity.
     Considering the size, cost and so on, robot system is usually not equipped with speed measuring devices, and obtains speed information only through position feedback. In Chapter 6, a fuzzy adaptive nonlinear robust observer is proposed. The parameters of system uncertainties are approximated by fuzzy logic, and the robust term restrains external disturbances and reconstruction error of fuzzy logic. The observing errors are proven to be UUB by strictly positive real Lyapunov design. Then, on the basis of the designed observer, a fuzzy adaptive output feedback controller is designed. Parameters of fuzzy system are tuned adaptively based on Lyapunov stability theory, the controller can guarantee uncertainty robot tracking desired trajectory stability, and all signals in the closed-loop system are bounded. Finally simulation results show that the method is effective.
     Aim at the requirements of condenser online efficient cleaning, a new online cleaning project for condenser is presented in chapter 7. According to the condenser structure and layout, high pressure water jet cleaning and chemical cleaning are combined, and cleaning project is realized by two-joint robot arm. The cleaning system structure is introduced, and the architectures of three generations of cleaning robot are analyzed in detail.
     Finally, the main innovations of the thesis are summarized, and the fields for further research are expected.
引文
[1] 杨善让. 汽轮机凝汽设备及运行管理. 北京: 水利电力出版社, 1993.
    [2] 沈士一, 庄贺庆, 康松, 等. 汽轮机原理. 北京: 水利电力出版社, 1997.
    [3] 吴季兰主编. 汽轮机设备及系统. 北京: 中国电力出版社, 2006.
    [4] 樊绍胜. 冷凝器污垢清洗的智能测量与控制方法研究[博士学位论文]. 长沙: 湖南大学, 2006.
    [5] 杨善让, 徐志明, 孙灵芳. 换热设备污垢与对策. 北京: 科学出版社, 2004.
    [6] 衡世权, 姜莉. 换热器腐蚀污垢的形成机理及其防治措施. 节能 2004, 22(4): 37-41.
    [7] 王耀南. 机器人智能控制工程. 北京: 科学出版社, 2003
    [8] S. Lin. Robust and Intelligent Control of Mobile Manipulator [Ph.D. thesis]. University of Toronto, 2001.
    [9] J. D. Tan. Control of Mobile Manipulator [Ph.D. thesis]. Michigan State University, 2002.
    [10] 宋佐时, 易建强, 赵冬斌. 移动机械手控制研究进展. 机器人, 2003, 25(5): 465-469.
    [11] Y. Yamamoto, X. P. Yun. Coordinating locomotion and manipulation of a mobile manipulator. Proc. the 31st Conf. Decision and Control, 1992, 2643-2648.
    [12] H. Seraji. Motion Control of mobile manipulators. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 1993, 2056-2063.
    [13] S. Lin, A. A. Goldenberg. Robust damping control of mobile manipulators. IEEE Trans. Syst., Man and Cybern., Part B, 2002,32(1): 126-132.
    [14] 董文杰, 徐文立. 不确定非完整移动机械手的鲁棒控制. 清华大学学报, 2002, 19(3): 345-348.
    [15] S. Jagannathan. Discrete-Time Fuzzy Logic Control of a Mobile Robot with an Onboard Manipulator. Int. J. Systems Science, 1997, 28(12): 1195-1209.
    [16] S. Lin, A. A. Goldenberg. Neural-Network Control of Mobile Manipulators. IEEE Trans. Neural Network, 2001, 12(5): 1121-1133.
    [17] 刘雪峰, 刘金平, 孔庆军. 考虑污垢因素的凝汽器经济性分析. 电站系统工程, 2002, 18(6): 29-31.
    [18] 徐志明. 电站凝汽器污垢费用估算. 动力工程, 2005, 25(1): 102-106.
    [19] P. A. Thackery. The cost of fouling in heat exchanger plant. Effluent and Water Treatment Journal, 1980, 12(2): 34-41.
    [20] W. L. V. Nostrand, J. S. H. Leach. Economic penalties associated with the fouling of refinery heat transfer equipment. Fouling of Heat Transfer Equipment, 1981, 8(5): 619-643.
    [21] 窦照英. 凝汽器的清洗. 化学清洗, 1998, 14(2): 12-15.
    [22] 王秉国, 黎志飞(译). 冷凝器防腐和清理方法. 长沙: 湖南电力试验研究所, 1991, 137-139.
    [23] 张少峰, 刘燕.换热设备防除垢技术. 北京: 化学工业出版社, 2003.
    [24] G. I. Efimochkin, S. G. Shipilev. Development of Systems for Ball Cleaning of Condensers and Experience of Their Operation. Power Technology and Engineering, 2002, 36(2): 67-70.
    [25] 廖瑞琮. 凝汽器胶球清洗系统. 东方电气评论, 2002, 16(1): 49-52.
    [26] 吴华, 华祥惠. 国外喷丸清洗技术的发展. 化学清洗, 1998, 14(1): 33-35.
    [27] 陈旭俊. 工业清洗剂及清洗技术. 北京: 化学工业出版社, 2002.
    [28] 辛承梁, 张齐庄. 高压水射流技术在清洗行业中的应用. 化学清洗, 1998, 14(2): 21-24.
    [29] A. C. Burck, K. R. Dirr and D. T. Horn. High pressure turbine chemical cleaning. Proc. American Power Conf., 1991, 53(1): 750-755.
    [30] F. Charles; H. F. James and H. W. Jack. Chemical foam cleaning technology for steam and gas turbines, TAPPI Fall Technical Conference: Engineering, Pulping and PCE and I, Proceedings, 2003, 3023-3034.
    [31] W. J. Harper. Sanitation in dairy food plants. Westport: AVI Pub Company Inc, 1972, 167-173.
    [32] W. G. Jennings. Theory and practice of hard surface cleaning. Advance foods research, 1970, 14(2): 325-348.
    [33] 倪诚, 柳胜春, 向军淮. 化学清洗技术及其应用. 化学清洗, 1997, 13(4): 23-25.
    [34] 江萍. 循环水系统在线化学清洗技术的应用. 工业水处理, 2003, 3(9): 77-79.
    [35] J. Quarini. Ice-pigging to reduce and remove fouling and to achieve clean-in-place. Applied Thermal Engineering, 2002, 22(3): 747-753.
    [36] 贾仲德. 蓝星引进乌克兰空气爆破清洗尖端技术. 管道技术与设备. 1993, 4(6): 17-18.
    [37] 弱爆炸波清灰器在我国首次开发成功. 科技日报, 2003.02.19
    [38] 方启平, 林仲茂. 超声清洗的新技术-兆赫超声清洗. 化学清洗, 1998, 14(2):31-32.
    [39] 张银江. 激光清洗技术及其应用. 化学清洗, 1999, 15(4): 20-22.
    [40] Hitachi Zosen, CEPCO. Condenser Tube Cleaning and Inspection Robot. http://www.energia-pet.com/e/info/T-P6/2/T-P6-2_fukusuiki.html.
    [41] 周立, 俞天兰. 立式水冷器污垢自动清洗扭带结构优化研究. 湘潭大学自然科学学报, 2001, 23(1): 88-90.
    [42] 贺运初, 彭德其. 套管式换热器管间污垢循环流态化在线清洗技术. 化工装备技术, 1999, 20(5): 24-26.
    [43] R. Murphy. Introduction to AI robotics. Cambridge, MA: MIT Press, 2000.
    [44] 张福学. 机器人技术及其应用. 北京: 电子工业出版社, 2000.
    [45] Y. Nagao, H. Urabe and F. Honda. Development of a teachingless robot system for welding a large-sized box-type construction. Advanced Robotics, 2001, 15(3): 287-291.
    [46] Y. Isozaki, K. Nakai. Development of a work robot with a manipulator and a transport robot for nuclear facility emergency preparedness. Advanced Robotics, 2002, 16(6): 489-492.
    [47] R. Siewart, I. R. Nourbakhsh. Introduction to autonomous mobile robots. Cambridge, MA: MIT Press,2004
    [48] M. Christian, R. Nils, L. Oliver, et al. A friend for assisting handicapped people. IEEE Trans. Robotics and Automation, 2001, 8(1): 57-65.
    [49] E. Prassler, A. Ritter, C. Schaefferand, et al. A Short History of Cleaning Robots. Autonomous Robots, 2000, 9(3): 211-226.
    [50] R. Kurazume, S. Hirose. Development of a Cleaning Robot System with Cooperative Positioning System. Autonomous Robots, 2000, 9(3): 237-246.
    [51] 杨雄. 风管清洗机器人国产化研究及应用. 清洗世界, 2004, 20(11): 37-40.
    [52] 张兆君, 颜宁, 宗光华. 壁面吊挂清洗机器人真空吸附力和牵引力设计研究. 机器人, 2005, 27(1): 57-62.
    [53] S. Hirose, A. Nagakubo. Legged Wall-Climbing Robot. J. Robotics Society of Japan, 1992, 10(5): 575-580.
    [54] K. Arikawa, S. Hirose. Study of Walking Robot for 3-Dimensional Terrain. Proc. 1995 IEEE Int. Conf. Robotics and Automation, 1995, 1: 703-708.
    [55] K. Ikeda, T. Yano. Development of a Wall Climbing Robot with Scanning Type Suction Cups. Proc. Int. Mechanical Engineering Congress Sydney, 1991, 46-51.
    [56] T. Yano, T. Suwa, K. Sakurada, et al. Development of a Wall Climbing Robot IIwith Scanning Type Suction Cups. Proc. the 2nd ECPD Int. Conf. Advanced Robotics, Intelligent Automation and Active Systems, 1996, 368-373.
    [57] 刘淑霞. 爬壁机器人技术的应用. 机器人, 1999, 21(2): 148-155.
    [58] 李景春, 蒋玉洁, 张国忠. 飞机表面清洗机器人系统设计. 组合机床与自动化加工技术, 2004, 10: 68-69.
    [59] K. D. Rupp FhG/IPA O.Wurst Putzmeister. Implementation of CAN-system in truck-based aircraft washing system. Int. CAN Conf. in Mainz (Germany), 1994, 1: 1-9.
    [60] 曾我知克. 航空機自動洗净装置. ロボッ. 1995, 98: 16-23.
    [61] 王丽惠. 水下船体表面清刷机器人及相关技术研究[硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2002.
    [62] 宋佐时. 移动机械手协调控制研究[博士学位论文]. 北京: 中国科学院研究生院, 2005.
    [63] G. J. Wiens. Effects of dynamics coupling in mobile robotic system. Proc. World Conf. Robotic Systems. 1989, 43-57.
    [64] G. J. Wiens, W. M. Jang. Passive Joint Control of Dynamic Coupling in Mobile Robots. Int. J. Robotics Research, 1994, 13(3): 209-220.
    [65] Y. Yamamoto, X. P. Yun. Coordinating Locomotion and Manipulation of a Mobile Manipulator. IEEE Trans. Automatic Control, 1994, 39(6): 1326-1332.
    [66] H. K. Lee, T. Takubo, H. Arai, et al. Control of Mobile Manipulators for Power Assist Systems. J Robotic Systems, 2000, 17(9): 469-477.
    [67] P. Evangelos, P. John. Planning and model-based control for mobile manipulators. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2000, 1810-1815.
    [68] K. Liu, F. L. Lewis. Decentralized continuous robust controller for mobile robots. Proc. IEEE Int. Conf. Robotics and Automation, 1990, 1822-1827.
    [69] J. H. Chung, S. A. Velinsky and R. A. Hess. Interaction control of a redundant mobile manipulator. Int. J. Robotics Research, 1998, 17(12): 1302-1309.
    [70] S. Dong, F. Garry. A Synchronization Approach to the Mutual Error Control of a Mobile Manipulator. Proc. Int. Conf. Robotics and Automation, Taiwan, 2003, 3005-3010.
    [71] J. D. Tan, N. Xi. Unified Model Approach for Planning and Control of Mobile Manipulators. Proc. Int. Conf. Robotics and Automation, 2001, 3145-3152.
    [72] J. D. Tan, N. Xi, Y. Wang. Hybrid Force/Position Control of Redundant Mobile Manipulators. The 15th IFAC Triennial World Congress, 2002.
    [73] Y. Yamamoto, X. P. Yun. Effect of the Dynamic Interaction on Coordinated Control of Mobile Manipulators. IEEE Trans. Robotics and Automation, 1996, 12(5): 816-824.
    [74] W. Dong and W. Xu. On Robust Control of Mobile Manipulators. Control Theory and Applications, 2002, 19 (3): 345-348.
    [75] 董 文 杰 , 徐 文 立 . 移 动 机 械 手 的 跟 踪 控 制 . 控 制 与 决 策 , 2001, 16(6): 914-917.
    [76] 吴玉香, 胡跃明. 轮式移动机械臂的鲁棒跟踪控制研究. 计算机工程与应用, 2006, 42(24): 230-232.
    [77] 申铁龙. 机器人鲁棒控制(第一版). 北京: 清华大学出版社, 2000.
    [78] C. Abdallah, D. Dawson, P. Dorato, et al. Survey of robust control for rigid robots. IEEE Control Systems Magazine, 1991, 11(2): 24-30.
    [79] H. G. Sage, M. F. Demathelin and E. Ostertag. Robust control of robot manipulators: a survey. Int. J. Control, 1999, 72(16): 1498-1552.
    [80] 谢 明 江 , 代 颍 , 施 颂 椒 . 机 器 人 鲁 棒 控 制 研 究 进 展 . 机 器 人 , 2000, 22(1):73-79.
    [81] J. J. E. Slotine, W. Li. Applied Nonlinear Control. Englewood Clifs, NJ: Prentice Hall, 1991.
    [82] Z. Man, M. Palaniswami. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Automation Control, 1994, 39(1): 84-88.
    [83] S. Jauasuriya, C. N. Hwang. Tracking controllers for robot manipulators a high gain perspective, ASME Journal of Dynamics Systems, Measurement and Control, 1998, 110: 39-45.
    [84] G. Zames. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans. Automatic Control, 1981, 26: 301-320.
    [85] B. A. Francis, G. Zames. On H-infinity optimal sensitivity theory for SISO feedback systems. IEEE Trans. Automatic Control, 1984, 29: 888-900.
    [86] J. Doyle, K. Glover, P. Khargonekar, et al. State-space solutions to standard H2 and H∞ optimal control problems. IEEE Trans. Automatic Control, 1989, 34(8): 831-847.
    [87] K. Ohishi. Manipulator motion control based on a robust acceleration controller. Advanced Robotics, 1993, 7(6): 547-557.
    [88] H. X. Li, P. P. Van den Bosch. A robust disturbance based control and itsapplication. Int. J. of Control, 1993, 59(3): 537-554.
    [89] W. L. Stout, M. E. Sawan. Application of H∞ theory to robot manipulator control. Proc. Conf. Control Application, 1992, 1: 148-153.
    [90] 申铁龙. H∞控制理论及应用. 北京: 清华大学出版社, 1996.
    [91] B. S. Chen, Y. C. Chang and T. C. Lee. Adaptive control in robotic systems with H∞ tracking performance. Automatica, 1997, 33(2): 227-234.
    [92] B. S. Chen, Y. C. Chang. Nonlinear mixed H2/H∞ control for robust tracking design of robotic systems. Int. J. Control, 1997, 67(6): 837-857.
    [93] Van der Schaft. L2-gain analysis of nonlinear systems and nonlinear state-feedback H∞ control. IEEE Trans. Automatic Control, 1992, 37(6): 770-784.
    [94] A. Isidori, A. Astolfi. Disturbance attenuation and H∞ control via measurement feedback in nonlinear systems. IEEE Trans. Automatic Control, 1992, 37(9): 1283-1293.
    [95] A. Isidori, W. Kang. H∞ control via measurement feedback for general nonlinear systems. IEEE Trans. Automatic Control, 1995, 40(3): 466-472.
    [96] N. Becker, W. M. Grimm. On L2 and L∞ stability approaches for the robust control of robot manipulators. IEEE Trans. Automatic Control, 1988, 33(1): 118-122.
    [97] W. Feng, I. Postlethwaite. Robust nonlinear H∞/adaptive control of robot manipulator motion. Proc. IFCA World Congress, 1993, 31-34.
    [98] S. Battilotti, L. Lanari. Robust control of rigid robots: an H∞ approach, Proc. European Control Conference, Rome, 1995, 3462-3467
    [99] S. Battilotti, L. Lanari. Adaptive disturbance attenuation with global stability for rigid and elastic robots. Automatica, 1997, 33(2): 239-243.
    [100] Y. Choi, W. K. Chung and Y. Youm. Robust Control of Manipulators using Hamiltonian Optimization. IEEE Int. Conf. Robotic Automation, 1997, 2358-2364.
    [101] 高为炳. 变结构控制的理论及设计方法. 北京: 科学技术出版社, 1998.
    [102] K. K. D. Young. Controller Design for a Manipulator Using Theory of Variable Structure Systems. IEEE Trans. Syst. Man Cybern., 1978, 8(2): 101-109.
    [103] J. J. E. Slotine, S. S. Sastry. Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators. Int. J. Control, 1983, 38(2): 465-492.
    [104] J. J. E. Slotine. The robust control of robot manipulators. Int. J. Robotics Res.,1985, 4(2): 49-64.
    [105] J. J. E. Slotine, W. Li. On the adaptive control of robot manipulators. Int. J. Robotics Research. 1987, 6(2): 49-59.
    [106] Y. Stepanenko, Y. Cao, C. Y. Su. Variable structure control of robotic manipulator with PID sliding surface. Int. J. Robust and Nonlinear Control, 1998, 8: 79-90.
    [107] C. Y. Su, T. P. Leung and Y. Stepanenko. Real-time Implementation of Regressor Based Sliding Mode Control Scheme for Robot Manipulators. IEEE Trans. Industrial Electronics, 1993, 40(1): 71-79.
    [108] R. Ortega, M. W. Spong. Adaptive Motion Control of Rigid Robot: A Tutorial. Automatica, 1989, 25(6): 877-888.
    [109] H. Yu. Robust combined adaptive and variable structure adaptive control of robot manipulators, Robotica, 1998, 1(16): 623-659.
    [110] M. W. Spong. Adaptive control of flexible joint manipulators. Systems and Control Letters, 1989, 13(1): 15-21.
    [111] J. S. Reed, P. A. Ioannou. Instability Analysis and Robust Adaptive Control of Robotic Manipulators. IEEE Trans. Robotics and Automation, 1989, 5(3): 381-386.
    [112] G. Tao. On Robust Adaptive Control of Robot Manipulators. Automatica, 1992, 28(4): 803-807.
    [113] J. J. E. Slotine, W. Li. Composite Adaptive Control of Robot Manipulators. Automatica, 1989, 25(4): 509-519.
    [114] L. L. Whitcomb, A. A. Rizzi and D. E. Koditschek. Comparative Experiments with New Adaptive Cotroller for Robot Arms. IEEE Trans. Robotics and Automation, 1993, 9(1): 59-70.
    [115] F. C. Chen, C. C. Liu. Adaptive Controlling Nonlinear Continuous-Time Systems Using Multilayer Neural Networks. IEEE Trans. Automatic Control, 1994, 39(6): 1306-1310.
    [116] F. C. Chen, H. K. Khalil. Adaptive Controlling of a Class of Nonlinear Discrete-Time Systems Using Neural Networks. IEEE Trans. Automatic Control, 1995, 40(5): 791-801.
    [117] M. M. Polycarpou. Stable Adaptive Neural Control Scheme for Nonlinear Systems. IEEE Trans. Automatic Control, 1996, 41(3): 447-451.
    [118] R. Sanner, J. J. E. Slotine. Gaussian Networks for Direct Adaptive Control. IEEE Trans. Neural Networks, 1992, 3(6): 837-863.
    [119] F. C. Sun, Z. Q. Sun and P. Y. Woo. Stable Neural-Network-Based Adaptive Control for Sampled-Data Nonlinear Systems. IEEE Trans. Neural Networks, 1998, 9(5): 956-968.
    [120] S. Jagannathan. Discrete-Time CMAC NN Control of Feedback Linearizable Nonlinear Systems Under a Persistence of Excitation. IEEE Trans. Neural Networks, 1999, 10(1): 128-137.
    [121] Y. G. Leu, T. T. Lee and W. Y. Wang. Observer-based Adaptive Fuzzy-neural Control for Unknown Nonlinear Dynamical Systems. IEEE Trans. Syst., Man and Cybern. Part B, 1999, 29(5): 583-591.
    [122] B. S. Chen, C. H. Lee and Y. C. Chang. H_∞ Tracking Design of Uncertain Nonlinear SISO Systems: Adaptive Fuzzy Approach. IEEE Trans. Syst., Man and Cybern. Part B, 1996, 26(1): 32-43.
    [123] Y. C. Chang. Neural network-based H_∞ tracking control for robotic system. IEE Proc - Control Theory and Applications, 2000, 147(3): 303-311.
    [124] M. C. Hwang, X. H. Hu. A Robust Position/Force Learning Controller of Manipulators via Nonlinear H_∞ Control and neural Networks. IEEE Trans. Syst., Man and Cybern. Part B, 2000, 30(2): 310-321.
    [125] B. S. Chen, C. S. Tseng and H. J. Uang. Mixed H2/ H_∞ Fuzzy Output Feedback Control Design for Nonlinear Dynamic Systems: an LMI Approach. IEEE Trans. Fuzzy Systems, 2000, 8(3): 249-265.
    [126] R. Sanner, J. J. E. Slotine. Gaussian Networks for Direct Adaptive Control. IEEE Trans. Neural Networks, 1992, 3(6): 837-863.
    [127] Y. H. Kim, F. L. Lewis. Neural Network Output Feedback Control of Robot Manipulators. IEEE Trans. Robotics and Automation, 1999, 15(2): 301-309.
    [128] Z. Liu and C. Li. Fuzzy Neural Networks Quadratic Stabilization Output Feedback Control for Biped Robots via H_∞ Approach. IEEE Trans. Syst., Man and Cybern. Part B, 2003, 33(1): 67-84.
    [129] J. B. D. Cabrera, K. S. Narendra. Issue in the Application of Neural Networks for Tracking Based on Inverse Control. IEEE Trans. Automatic Control, 1999, 44(11): 2007-2027.
    [130] Isidori A. Nonlinear Control Systems: an Introduction (2nd edition). Springer Verlag, 1989.
    [131] 胡跃明, 周其节, 裴海龙. 非完整控制系统的理论与应用. 控制理论与应用, 1996, l3(1): 1-10.
    [132] Kanayama Y, Kimura Y, Miyazaki F, et al. A stable tracking control method foran autonomous mobile robot. Proc. IEEE Int. Conf. Robotics and Automation, 1990, 384-389.
    [133] Jiang Z P, Nijmeijer H. Tracking control of mobile robots: a case study in backstepping. Automatica, 1997, 33(7): 1393-1399.
    [134] Fierro R, Lewis F L. Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. J. Robotic Systems, 1997, 14(3): 149-163.
    [135] Sarker N, Yun X, Kumar V. Control of mechanical System with Rolling Constraints: Application to Dynamic Control of Mobile Robots. Int. J. Robotics Research, 1994, 13(1): 55-69.
    [136] Fierro R, Lewis F L. Control of a Nonholonomic Mobile Robot Using Neural Networks. IEEE Trans. Neural Network, 1998, 9(4): 589-600.
    [137] 郑大钟. 线性系统理论. 北京: 清华大学出版社, 1990.
    [138] J. J. Slotine. Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice Hall, 1991.
    [139] D. Jeon, M. Tomizukz. Learning Hybrid Force and Position Control of Robot Manipulators. IEEE Trans. Robot Automation, 1993, 9(3): 423-432
    [140] K. Kiguchi, T. Fukuba. Intelligent Position/Force Controller for Industrial Robot Manipulators – Application of Fuzzy Neural Networks. IEEE Trans. Industrial Electronics, 1997, 44(6): 753-761
    [141] J. J. Craig, P. Hsu, S. S. Sastry. Adaptive Control of Mechanical Manipulators. Int. J. Robotics Research, 1987, 6(2): 16-28
    [142] 谢光汉, 章云, 李秀华, 等. 机器人轨迹跟踪的滑模变结构控制. 机器人, 1999, 21(1): 46-49
    [143] 王莉, 钟竞, 闫保定, 等. 机器人变结构自适应控制的研究. 机器人, 1995, 17(3): 164-170
    [144] O. Kaynak, K. Erbatur and M. Ertugrul. The Fusion of Computationally Intelligent Methodologies and Sliding-Mode Control-A Survey. IEEE Trans. Ind. Electron, 2001, 48(1): 4-17.
    [145] 胡跃明. 变结构控制理论与应用. 北京: 科学出版社, 2003.
    [146] K. David Young, Vadim I. Utkin. A Control Engineer’s Guide to Sliding Mode Control. IEEE Trans. Syst. Techn., 1999: 7(3), 328-342.
    [147] W. D. Chang, R. C. Hwang, J. G. Hsieh. Application of an Auto-Tuning Neuron to Sliding Mode Control. IEEE Trans. Syst., Man and Cybern, 2002, 32(4): 517-522.
    [148] K. Erbatur, O. Kaynak. Use of Adaptive Fuzzy Systems in Parameter Tuning ofSliding-Mode Controllers. IEEE/ASME Trans. Mechatronics, 2001, 6(4): 474-482
    [149] H. Morioka, K. Wada, A. Sabanovic et al. Neural Network Based Chattering Free Sliding Mode Control. Society of Instrument and Control Engineers, 1995, 1303-1308
    [150] 李世敬, 王解法, 冯祖仁. 基于自适应变结构控制的机器人系统仿真研究. 系统仿真学报, 2002, 14(9): 1255-1258.
    [151] K. S. Yeung, Y. P. Chen. A New Controller Design for Manipulators Using the Theory of Variable Structure Systems. IEEE Trans. Automat. Control, 1988, 33(2): 200-209.
    [152] 任雪梅, 高为炳. 基于神经网络非线性系统辨识和控制的研究. 控制理论与应用, 1995, 12(2): 147-153.
    [153] C. H. Lee and C. C. Teng. Identification and Control of Dynamic Systems Using Recurrent Fuzzy Neural Networks. IEEE Trans. Fuzzy Systems, 2000, 8(4): 349-362.
    [154] A. Astolfi, L. Lanari. Disturbance Attenuation and Set-point Regulation of Rigid Robots via H_∞ Control. Proc. 33rd Conf. Decision and Control. Lake Buena Visna, FL-Dec. 1994, 2578-2583.
    [155] J. Park, W. Chung, and Y. Youm. Analytic Nonlinear H_∞ Optimal Control for Robotic Manipulators. Proc. IEEE Int. Conf. Robotics and Automation, Leuven, Belgium, 1998, 2709-2715.
    [156] B. S. Chen, T. S. Lee and J. H. Feng. A nonlinear H_∞ control design in robotic systems under parameter perturbation and external disturbance. Int. J. Control, 1994, 59(2): 439-461.
    [157] S. Batiloti, L. Lanari. Adaptive Disturbance Attenuation with Global Stability for Rigid and Elastic Joint Robots. Automatica, 1997, 33(2): 239-243.
    [158] J. S. Albus. A new approach to manipulator control: the cerebellar mode articulation controller (CMAC). J. Dynamics System, Measurement and Control, 1975, 3: 220-227.
    [159] J. S. Albus. Data storage in the cerebellar model articulation controller (CMAC). J. Dynamics System, Measurement and Control, 1975, 3: 228-233.
    [160] T. W. Miller, F. H. Glanz, and L. G. Kraft. An associative neural network alternative to backpropagation. Proc. IEEE, 1990, 78(10):1561-1567.
    [161] Y. Wong and A. Sideris. Learning convergence in the cerebellar model articulation controller. IEEE Trans. Neural Networks, 1992, 3(1): 115-121.
    [162] C. S. Lin and C. T. Chiang. Learning convergence of CMAC technique. IEEE Trans. Neural Network, 1997, 8(6): 1281-1292.
    [163] 孙炜, 王耀南. 模糊 CMAC 及其在机器人轨迹跟踪控制中的应用. 控制理论与应用, 2006, 23(1): 38-42.
    [164] J. J. E. Slotine, W P. Li. Adaptive Manipulator Control: A Case Study. IEEE Trans. Automatic Control, 1998, 33(11): 995-1003.
    [165] C. Y Su, T. P. Leung. A Sliding Mode Controller with Bound Estimation for Robot Manipulators. IEEE Trans. Robotics and Automation, 1993, 9(2): 208-214.
    [166] W. Gueaieb, R. Karray, S. A. Sharhan. A Robust Adaptive Fuzzy Position/force Control Scheme for Cooperative Manipulators. IEEE Trans. Control Systems Technology, 2003, 11(4): 516-528.
    [167] Z. H. Qu, D. M. Dawson, J. F. Dorsey, et al. Robust Estimation and Control of Robotic Manipulators. Robotica, 1995, 13(3): 223-231.
    [168] P. Tomei. Robust Adaptive Control of Robots with Arbitrary Transient Performance and Disturbance Attenuation. IEEE Trans. Automatic Control, 1999, 44(3): 654-658.
    [169] E. S. Shin, K. W. Lee. Robust Output Feedback Control of Robot Manipulators Using High-gain Observer. IEEE Int. Conf. Control Applications, 2001, 881-886.
    [170] H. Berghuis, H. Nijmeijer. A passive approach to controller-observer design for robot. IEEE Trans. Robotics and Automation, 1993, 9(6): 740-754.
    [171] F. C. Sun, Z. Q. Sun and P. Y. Woo. Neural network-based adaptive controller design of robotic manipulators with an observer. IEEE Trans. Neural Networks, 2001, 12(1): 54-67.
    [172] L. A. Zadeh. Fuzzy Sets. Information Control, 1965, 8: 338-353.
    [173] E. H. Mamdani. Application of Fuzzy Algorithms for Simple Dynamic Plant. Proc. IEE Control and Science, Part D, 1974, 121(2): 1585-1588.
    [174] L. X. Wang. Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Systems, 1993, 1(2): 146-155.
    [175] L. X. Wang. Adaptive Fuzzy Systems and Controls: Design and Stability Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1998.
    [176] 杨林, 唐川林, 张凤华. 高压水射流技术的发展及应用. 洗净技术, 2004, 1: 9-14.
    [177] 窦照英. 电力工业清洗技术. 北京: 化学工业出版社, 2005.
    [178] 樊 绍 胜 , 王 耀 南 , 等 . 冷 凝 器 污 垢 在 线 测 量 方 法 及 装 置 . 发 明 专 利 : ZL03124598.6, 2005.7.
    [179] 樊绍胜, 王耀南, 等. 二关节冷凝器自动清洗机器人. 发明专利申请号: ZL05416052.4.
    [180] 黄永红, 吉裕晖, 杨东. PLC 控制电机变频调速试验系统的设计与实现. 电机与控制应用, 2007, 34(10): 40-43.
    [181] 孙立忠, 冀玉春, 吕琳. 循环水加药变频自动控制. 东北电力技术, 2002. 4: 47-48.
    [182] 徐正飞, 许春权, 等. 基于 ICP 和 PLC 的移动机器人控制系统设计. 机械与电子. 2001, 4: 25-27.
    [183] 刘淼, 赵群飞, 杨汝清, 等. 基于 PLC 的防爆机器人控制系统设计. 机械, 2004, 31(1): 37-39.
    [184] 韩军. PLC 在变频调速仿形喷涂机器人控制系统中的应用. 制造业自动化, 2000, 22(10): 55-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700