外层人工视网膜的能量供给装置初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线能量传输技术是近十年来兴起的一种新型能量供给技术,日益成为植入式医疗装置供能的研究热点。它是基于电磁感应原理,由发射装置向体内发射特定频率的电磁波信号,通过能量耦合单元,在接收部分得到感应电压。这种供能方式可以为人工视网膜工作提供所需能量。
     本课题在国家自然科学基金面上项目(No.30470469)资助下,采用外层型视网膜修复技术进行人工视网膜研究。为了保证外层型人工视网膜植入体刺激器长期、稳定工作,除了采用低功耗设计之外,还需要附加的能量供给装置。本文针对用于外层型人工视网膜的无线能量传输方式进行初步理论研究和设计探索。
     本文首先分析了植入式无线能量传输技术的概念、分类以及关键需要解决的问题;接着综述了国际、国内这一领域的研究现状,并分析了能量传输技术的研究方向;同时,针对人体复杂生理环境对视网膜生理基础及细胞模型进行初步理论研究;总结和分析了用于外层人工视网膜能量传输的理论和实验依据。无线能量传输系统在设计方案的选择及实施是基于电磁感应原理。当E类功率放大器发射的耦合电磁波穿透人体后,通过谐振回路将电磁波转换为电能,再经过整流、滤波、稳压等辅助电路,最终输出负载能够满足人工视网膜刺激器所需工作电压。
     其次,本文分析了体外发射和体内接收的特点。文章分别从发射模块、接收模块、绕组及电磁场进行分析设计,并且提出了基于射频无线能量传输理论的无线能量传输系统的设计方案。在设计中要综合考虑能量传输效率和电磁波对人体的影响。在保证传输效率的同时,本文根据通用的标准设计射频能量场,尽可能低的降低对人体健康的损伤,最终选择传输工作电压频率为1MHz。
     最后,采用计算机软件Pspice对电路进行软件仿真,对参数进一步优化以提高传输效率。结果证明了无线传输电路的有效性,符合研究应用的电能传输要求;发射模块的输出波形是稳定可靠的,符合射频感应式电能传输的技术要求;负载输出达到200mW的功率,5V工作电压理论能够满足刺激器的工作要求。本文研究的重点内容是:
     ①针对人眼生理环境的细胞模型理论研究,深入分析了线圈的绕组设计及提高接收线圈品质因数的方法;
     ②对接收模块中整流电路进行设计,利用MOS工艺的寄生电容特性形成电荷转运,有效地提高半波整流电路的整流效率。
Artificial visual functions recovery has attracted the most attention in the field of artificial organs. Our project is under the support of NSFC(No. 30470469),our design is based on the subretinal prosthesis。In order to make sure the steady of stimulator unit in the long term,beside adopt low-power design,we need additional power supply。This dissertation will pilot study and explore toward the power supply for subretinal artificial retina.
     Firstly,the concept of wireless transmission technology the sort and the key problem is analysis in detail. The situation of study situation in this field is summarized and the research direction is pointed. Meanwhile, the environments of retina physiology and model of retina cell is pilot study. At last, summarizing and analyzing the theory and experiment base of the retina wireless power transmission.
     Wireless power transmission is based on Faraday electromagnetism induce law. The working principle of power transmission: Class E power magnifier is used in the process of changing the DC into radio signal. The radio signal is converted to the RF energy by the resonant loop. Then the signal will be commuted, filtered and regulated. At last it meets the demand of stimulator unit.
     In the third part, the primary part, second part and coils is design individually. After considering the power transmission efficiency and analyzing the
     electromagnetism effect to the human body. We choose the work frequency is 1MHz. At last , the computer software was used to simulator circuit. In order to enhance transmission efficiency, the optimization parameter is acquired by Pspice simulation. The result present a validity design for the transmission system;The out put of primary part is steady and reliable which can satisfy the technology demand of RF inductive transmission;The out power on the load can arrive 200 mW at 5V voltage which can meet the stimulator unit.
     The main work in this disseration is:
     ①the theory analyze according to the requirement of retina environment;
     ②The improved half-wave rectifier is presented by employing MOS technology based on the deficiency of conventionalarchitecture. By using the character of parasitic capacitor, the charget ransfer can elevate the rectifying efficiency.
引文
[1] Parise R J. Future all-electric Transportation Communication and recharging via wireless power beam [J]. Proceeding of SPIE, 2001, 4214 (7):171-179.
    [2] Schubert M B, Hierzenberger A, Lehner H J, et al. Optimizing photodiode arrays for the use as retinal implants[J].Sensors and Actuators,1999,74:193-197.
    [3]朱云国.无接触能量传输的探索[J].皖西学院学报,2004,20(2):28-29.
    [4]武瑛,严陆光,黄常纲等.新型无接触电能传输系统的性能分析[J].电工电能新技术,2003,4(22):10-13.
    [5] Chan Yawen,Meng, Wang Xiaona. A prototype design of wireless capsule endoscope[C]. IEEE International Conferenceon Mechatronics and Automation, 2005:400-403.
    [6] Buchegger T, Ossberger G, Hochmair E, et al. An ultra low power transcutaneous impulse radio link for cochlea implants.2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies[C], 004:356-360.
    [7] Heller J W, Kuzma J. Cochlear implant technology[C]. Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1997,5: 2180-2181.
    [8] Mohamad S,Yamu H, jonathan C. Wireless smart implants dedicated to multichannel monitoring and microstimulation[J]. IEEE Circuits and Systems Magazine,2005,5:21-39.
    [9] Fernandez C, Garcia O, Cobos J A, et al. A simple dc-dc converterfor the power supply of a cochlear implant[C]. 34th Annual Power Electronics Specialists Conference.,2003,4:1965-70.
    [10] Goto K, Nakagawa T, Nakamura O,et al. An implantable power supply with an optically rechargeable lithium battery[J]. IEEE Transactions on Biomedical Engineering,2001,48: 830-833.
    [11] Schubert M B, Stelzle M, Craf M, et al. Subretinal implant for the recovery of vision[C].IEEE SMC’99 conference proceedings,Tokyo,Japan,1999,4:376-381.
    [12] Uehara A, Pan Y L, Kagawa K, et al. Microsized photo-detecting stimulator array for retinal prosthesis by distributed sensor network approach[J]. Sensors and Actuators,2005,120:78-87.
    [13] Zrenner. Will retinal implants restore vision[J]. Science, 2002,295:1022-1025.
    [14]世界卫生组织(WTO).预防可避免盲症和视力损伤[E].第五十九届世界卫生大会,2006,http://www.who.int/gb/ebwha/pdf_files/WHA59/A59_R25-ch.pdf.
    [15]赵南明,周海梦.生物物理学[M].北京:高等教育出版社,2000:170-184.
    [16] Lee S G, Neiman A, Kim S. Coherence resonance in a Hodgkin-Huxley neuron[J].PhysicalReview,1998,57(3):3292-3297.
    [17] Olmi R, Andreoli S, Bini M, et al. An electrical model of biological tissues undergoing hyperaemia[J]. Physics Medical Biology,1998,(43):3405-3418.
    [18] Walford M E R. The body electric[J]. Physics education,1996,31(4):211-215.
    [19]李相银,姚安居,杨庆.大学物理实验[M].南京:东南大学出版社,2000:60-95.
    [20]曹玉珍,刘洪涛,陈敏.可充电的植入式脑深部刺激器及其低功耗设计[J].电子技术应用,2005(2):37-39.
    [21] Nishimura ,Eguchi T H, Hirachi T,et a1.An advanced transcutaneous energy transformer for a rechargeable cardiac pacemaker battery by using a resonant DC to DC converter [C].Industrial Elect ronics Control and Instrumentation,Taipei,Taiwan,1996,1:524-529.
    [22] Akin T, Najafi K. A wireless implantable multichannel digital neural recording system for a micromachined sieveelectrode[J]. IEEE Trans.Solid-State Circuits, 1998,(33):109-118.
    [23] Dudenbostel D, Krieger K L, Candler C, et al. A new passive CMOS telemetry chip to receive power and transmitdata for a wide range of sensor applications[C].Solid State Sensors and Actuators,Chicago,USA,1997,2:995-998.
    [24] Takeuchi S, Shimoyama I. A radio-telemetry system with a shape memory alloy microelectrode for neural recording of freely moving insects[J]. IEEE Transaction Biomedical Engineering, 2004,15(1):133–137.
    [25] Huang Q, Oberle M. A 0.5-mW passive telemetry IC for biomedical applications[J]. IEEE Solid-State Circuits,1998,33(7):937-946.
    [26] Min M,Parve T, Kukk V ,Kuhlberg A. An implantable analyzer of bioimpedance dynamics-mixed signal approach[C].Instrumentation and Measurement Technology Conference Proceedings,Budapest ,Hungary,2001,18(1):38 - 43.
    [27] Karube I ,Nakanishi K. Microbial biosensors for process and environmental control[J]. IEEE Engineering in Medicine and Biology Magazine,1994,13(3):364 - 374.
    [28] Rutten WL C, Smit J P A , Frieswijk TA, et al. Neuroelectronic interfacing with multielectrode arrays[J] . IEEE Engineering in Medicine and BiologyMagazine,1999,18(3):47 - 55.
    [29] Ziegler D, Linderholm P,Mazza M, et al. An active mierophotodiode array of oscillating pixels for retinal stimulation[J]. Sens Actuator A-Physics,2004,l10(1):l1-17.
    [30] Dokos S,Suaning GJ, Lovell NH.A Bidomain Model of Epiretinal Stimulation[J].IEEE Trans Neural Svst Rehabil Eng,2005,13(2):137—146.
    [31] Laizou P C. Signal processing techniques for cochlear implants[J]. IEEE Engineering in Medicine and Biology Magazine,1999,18(3):34- 46.
    [32] Mayr W, Bijak M, Rafolt D, et al. Basic design and construction of the Vienna FESimplants :Existing solutions and prospects for new generations of implants[J]. Medical Engineering and Physics,2001,23(1):53 - 60.
    [33] Kanda H, Morimoto T, Fujikado T. Electrophysiological Studies of the Feasibility of Suprachoroidal Transretinal Stimulation for Artificial Vision in Normal and RCS Rats[J]. Science, Investment ophthalmology and Visual 2004,45:560-566.
    [34] Hornig T,Laube T,Walter P,et al. A method and technical equipment for an acute human trial to evaluate retinal implant technology[J]. Neural Engineering,2005,2(1):129-134.
    [35] Gallego S, Garnier S, Micheyl C,et al. Loudness growth funtions and EABR characteristics in digisonic cochlear implantees[J]. Acta Otolaryngol,1999,119: 234-238.
    [36] Piyathaisere D V, Margalit El. Invest Ophthalmol Visual[J].Science,2001,42 :814-817.
    [37] Liu W, Humayun M S. Retinal Prosthesis[J].IEEE Int'l Solid-State Circuits Conf Dig. Technical Papers, 2004:218-219.
    [38] Ziaie B, Nardin M D. IEEE Trans Biomed Eng ,1997,44 :909-913.
    [39]梁俊睿,赵春宇.一种经皮能量传输电路的设计方法[J].电子技术应用,2007,33(4):87-89.
    [40]田颖,陈培红,聂圣芳等.功率MOSFET驱动保护电路设计与应用[J].电力电子技术,2005,39(1):73-74,80.
    [41]胡长阳. D类E类开关模式功率放大器[M].北京:高等教育出版社,1985:69-100.
    [42]李慧芳,郭庆新,居继龙.一种实用的阻抗匹配方法[J].中国传媒大学学报自然科学版,2007,14(1):50-54.
    [43] Wilcox D J, Hurley W G, Conlon M. Calculation of Self and Mutual Impedances between sections of transformer Windings[J ]. IEEE Proceedings , 1989 ,136 (5) :308-314.
    [44]曲明,沈红宇,王豪行.E类调谐功率放大器的计算机辅助分析[J].上海交通大学学报,1994,28(1):71-81.
    [45] Mao Yizhi. The numerical analysis of impulse voltage distribution in large power transformer windings[J]. Journal of Hebei University of Technology ,1998 ,27 (4) :80-86.
    [46] Yang Xuechang, Wang Yongping, Qi Qingcheng, et al . Calculations of transient voltage distribution and Field strength in transformer windings taken account of Losses. Transformer ,1998 ,35 (5):7 -10.
    [47]王志兴,张晓,冯波,李相银.无线装定发射线圈原理应用研究[J].弹箭与制导学报,2005,24(3):93-94.
    [48] Jeffrey A, Von Arx, Khalil Najafi. On-chip coils with integrated cores for remote inductive powering of integrated Microsystems[C].TRANSDUCERS’97 Int’l Conf. Solid-State Sensors and Actuators, Chicago,1997:999-1002.
    [49] Ghovanloo M, Najafi K. Fully integrated wideband high-current rectifiers for inductivelypowered devices[J]. IEEE Solid-State Circuits, 2004,39(11):1976–1984.
    [50] Soma M, Galbraith D C. Radio-frequency coils in implantable devices: Misalignment analysis and design procedure[J]. IEEE Transactjons Biomedical Engineering,1987,34(4):276–282.
    [51] Sullivan C R. Optimal choice for number of strands in a Litz-wire transformer winding[J]. IEEE Transaction. Power Electron, 1999;14(2):283-286.
    [52] GhaharyA, Cho,B H.Design of a transcutaneous energy transmission system using a series resonant converter.[C].IEEE Power Electronics Specialists Conference,1990:1–8.
    [53] Kendir G, Liu A, Bashirullah R, et al. An optimal design methodology for inductive power link with Class-E amplifier[J].IEEE Transactions Circuits System,2005,52(5):857–866.
    [54]刘丹,李晓莹,常洪龙等.一种MEMS工艺编辑软件的设计与实现[J].机械设计与制造,2007,2:144-146.
    [55] Suaning G J,Lovell N H.CMOS neurostimulation ASIC with 100 channels, scaleable output, and bidirectional radio-frequency telemetry[J].IEEE Transaction Biomedical Engineering, 2001,48(2):248-260.
    [56] Tokuda T, Pan Y L, Uehara A, et al. Flexible and extendible neural interface device based on cooperativemulti-chip CMOS LSI architecture[J]. Sensor and Actuators A, 2005,122(3):88–98.
    [57] David C Ng, Tetsuo Furumiya, Koutaro Yasuoka, et al. Pulse Frequency Modulation Based CMOS Image Sensor for Subretinal Stimulation[J]. IEEE Transaction on circuits and systems, 2006,53(6):487-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700