小型化双频微波无源器件关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着射频通信系统突飞猛进的发展,无线设备越来越向小型化,便携性的方向进步。同时通讯标准的多元化,促进了双频或多频射频系统的诞生。如何将组成单频系统的微波器件扩展到双频以及如何实现双频微波器件的小型化成为了具有重要意义的研究课题。为了实现这一目标,本论文针对几种微波无源器件的小型化和双频设计展开了一系列的研究。
     本论文创新性研究成果包括:
     1.研究了频率依赖性复数阻抗变换理论,提出了三种由一段传输线和一个并联枝节构成的新型双频阻抗变换器结构。它们可以在两个频段内同时满足将频率依赖性复数负载阻抗匹配至50欧标准源阻抗或频率依赖性复数源阻抗。论文推导出实现该结构的数学表达式,并对其进行了仿真和实验验证。这部分成果以学术论文形式发表在国际著名微波会议:Asia Pacific Microwave Conference2012上。
     2.提出了一种改进的小型化双频不等分威尔金森功分器。通过利用慢波结构替代原有的微带线,将双频不等分威尔金森功分器的尺寸减小为原来的71.6%。通过仿真和实物测试对比,进一步验证了该设计的有效性。这部分成果以学术论文形式发表在国际著名微波会议:Asia Pacific Microwave Conference2012上。
     3.提出了一种不附加任何枝节线的小型化环形混合网络结构。通过ABCD矩阵和偶奇模分析,得到轴对称结构下等分环形混合网络的小型化设计,解决了环形混合网络占用电路面积过大的难题。在此基础上,进一步提出了不等分环形混合网络的小型化结构。该结构具有两个自由变量,可实现极大的功分比而不受传输线特征阻抗的限制。通过仿真和实物测试验证了该方法的有效性。这部分成果以多篇论文的形式发表在期刊:Journal of Electromagnetic Waves and Applications和Journal of Convergence Information Technology上。
     4.提出了具有一个附加枝节的双频环形混合网络结构。通过在传统环形混合网络结构上添加一段开路或短路枝节,可实现同时工作于两个频率的环形混合网络。论文推导出实现该结构的闭式解析公式,通过电路仿真证明了结构的可行性。在此基础上进一步提出了一种双频不等分环形混合网络。讨论了该结构的几种特例。通过仿真和实物测试对该方法进行了验证。
With the rapid development of wireless communications, the wireless devices are gradually improved towards miniaturization and portablity. At the same time, the diversity of communication protocol promotes RF system to dual-band and even multi-band system. How to extend the single band microwave components, which make up traditional single band system, to dual-band ones and how to realize the miniaturization of the dual-band microwave components are of great significance. For this goal, this thesis investigates the miniaturization and dual-band design of microwave passive components.
     The contributions of this thesis are as follows:
     1. By analyzing the principle of frequency-dependent complex impedance transformer, I propose three novel miniaturization dual-band transformers. They are composed of one transmission line and a shunt stub. They can transform a frequency-dependent complex load to a standard50Ω or to a frequency-dependent complex source at two frequencies simultaneously. This thesis derives the design formulas of these structures and verifies them by simulation and measurement. This part, as the academic paper, has been published in Asia Pacific Microwave Conference2012. And one patent is applied.
     2. A compact dual-band unequal Wilkinson power divider is proposed. By theory analyzing and formulas deducing, the miniaturization of dual-band unequal Wilkinson power divider is realized using slow wave structure. A prototype is fabricated and the size is reduced by71.6%. By comparing the simulation and measurement, the exactness of this method is further proved. This part, as the academic paper, has been published in Asia Pacific Microwave Conference2012.
     3. A compact180°rat race hybrid without any additional stub is proposed. By ABCD matrixes and even-odd mode analyzing, the minimum of rat race hybrid for axial symmetry is obtained, which solves the area problem of rat race hybrid. On its basis, the miniaturization of unequal rat race hybrid is investigated deeply. The design equations are concluded based on the theory of transmission line. By adjusting two variables, this structure can realize maximum power division without the limit of the impedance value of transmission line. The design is confirmed by simulation and measurement. This part, as the academic papers, has been published in Journal of Electromagnetic Waves and Applications and Journal of Convergence Information Technology.
     4. The dual-band rat race hybrids with single additional stub are established. By adding an open or shorted stub to the traditional rat race hybrid, the rat race hybrid can work at two different frequencies. The closed-form design equations of this structure are derived mathematically and the validity is proved by circuit simulation. Furthermore, a dual-band unequal rat race hybrid with similar structure is proposed. Moreover, special cases are discussed. Simulations and measurements are performed to validate the approach.
引文
[1]He Q, Liu Y, Li S-L, et al. The Concurrent Dual-Band Receiver Architecture with One Mixer [C]. Circuits, Communications and System (PACCS),2011 Third Pacific-Asia Conference on.2011:1-4.
    [2]Vasil'Chenko V. V., Golik A. V., Korolyuk A. P.et al. Matching of loads using capacitive and inductive impedance transformers [J]. Telecommunications and Radio Engineering,1982,36-37(8):129-131.
    [3]Liu Y., Zhao Y. J., Zhou Y. G. Lumped dual-frequency impedance transformers for frequency-dependent complex loads [J]. Progress in Electromagnetics Research,2012, 126:121-138.
    [4]Rosenberg U., Bornemann J., Amari S. Design of dual-band waveguide transformers [C]. Microwave Symposium Digest,2005 IEEE MTT-S International.2005: 1215-1218.
    [5]Day P. I. Transmission Line Transformation Between Arbitrary Impedances Using the Smith Chart (Letters) [J]. Microwave Theory and Techniques, IEEE Transactions on, 1975,23(9):772-773.
    [6]Potok N. H. N. Comments on "Transmission-Line Transformation Between Arbitrary Impedances" [Letters] [J]. Microwave Theory and Techniques, IEEE Transactions on, 1977,25(1):77.
    [7]Milligan T. A. Transmission-Line Transformation Between Arbitrary Impedances (Letters) [J]. Microwave Theory and Techniques, IEEE Transactions on,1976,24(3): 159.
    [8]Riblet H. J. General Synthesis of Quarter-Wave Impedance Transformers [J]. Microwave Theory and Techniques, IRE Transactions on,1957,5(1):36-43.
    [9]Chramiec J., Kitlinski M. Design of quarter-wave compact impedance transformers using coupled transmission lines [J]. Electronics Letters,2002,38(25):1683-1685.
    [10]Drozd J. M., Joines W. T. Using parallel resonators to create improved maximally flat quarter-wavelength transformer impedance-matching networks [J]. Microwave Theory and Techniques, IEEE Transactions on,1999,47(2):132-141.
    [11]Rotholz Ersch. Transmission-Line Transformers [J]. Microwave Theory and Techniques, IEEE Transactions on,1981,29(4):327-331.
    [12]Ding Yao, Guo Yong-Xin, Liu Falin. A new method to design high efficiency power amplifier using dual-band transformer [C]. Microwave Conference Proceedings (APMC),2011 Asia-Pacific.2011:1654-1657.
    [13]Chow Y. L., Wan K. L. A transformer of one-third wavelength in two sections-for a frequency and its first harmonic [J]. Microwave and Wireless Components Letters, IEEE,2002.12(1):22-23.
    [14]Monzon C. Analytical derivation of a two-section impedance transformer for a frequency and its first harmonic [J]. Microwave and Wireless Components Letters, IEEE,2002,12(10):381-382.
    [15]Orfanidis S. J. A two-section dual-band Chebyshev impedance transformer [J]. Microwave and Wireless Components Letters, IEEE,2003,13(9):382-384.
    [16]Monzon C. A small dual-frequency transformer in two sections [J]. Microwave Theory and Techniques, IEEE Transactions on,2003,51(4):1157-1161.
    [17]Khodier M., Dib N. Design of Multi-Band Transmission Line Transformer using Particle Swarm Optimization [C]. Antennas and Propagation Society International Symposium 2006, IEEE.2006:3305-3308.
    [18]Chen Ming. Novel design method of a multi-section transmission-line transformer using genetic algorithm techniques [C]. Electrical Machines and Systems,2008. ICEMS 2008. International Conference on.2008:3793-3796.
    [19]Park Myun-Joo, Lee Byungje. Dual-band design of single-stub impedance matching networks with application to dual-band stubbed T-junctions [J]. Microwave and Optical Technology Letters,2010,52(6):1359-1362.
    [20]Liu Y., Chen Y., Zhao Y. J. Lumped triple-frequency impedance transformers [J]. Electronics Letters,2012,48(19):1193-1194.
    [21]Chongcheawchamnan M., Patisang S., Srisathit S.et al. Analysis and design of a three-section transmission-line transformer [J]. Microwave Theory and Techniques, IEEE Transactions on,2005,53(7):2458-2462.
    [22]Wu Y., Liu Y., Li S. A compact Pi-structure dual band transformer [J]. Progress in Electromagnetics Research,2008,88:121-134.
    [23]Colantonio P., Giannini F., Scucchia L. A new approach to design matching networks with distributed elements [C]. Microwaves, Radar and Wireless Communications, 2004. MIKON-2004.15th International Conference on.2004:811-814.
    [24]Wu Yongle, Liu Yuanan, Li Shulan. A Dual-Frequency Transformer for Complex Impedances With Two Unequal Sections [J]. Microwave and Wireless Components Letters. IEEE,2009,19(2):77-79.
    [25]Liu Xin, Liu Yuanan, Li Shulan, et al. A Three-Section Dual-Band Transformer for Frequency-Dependent Complex Load Impedance [J]. Microwave and Wireless Components Letters, IEEE,2009,19(10):611-613.
    [26]Nikravan M. A., Atlasbaf Z. T-section dual-band impedance transformer for frequency-dependent complex impedance loads [J]. Electronics Letters.2011.47(9): 551-553.
    [27]Chuang Ming-Lin. Dual-Band Impedance Transformer Using Two-Section Shunt Stubs [J]. Microwave Theory and Techniques, IEEE Transactions on.2010,58(5): 1257-1263.
    [28]Wu Yongle, Sun Weinong, Leung Sai-Wing, et al. A novel compact dual-frequency coupledline transformer with simple analytical design equations for frequency-dependent complex load impedance [J]. Progress in Electromagnetics Research,2012,134:47-62.
    [29]Liu Xin, Liu Yuanan, Li Shulan, et al. Design of dual-band amplifier using three-section dual-frequency matching structure [C]. Communications Technology and Applications,2009. ICCTA'09. IEEE International Conference on.2009: 775-779.
    [30]Wu Yongle, Liu Yuanan, Li Shulan, et al. A Generalized Dual-Frequency Transformer for Two Arbitrary Complex Frequency-Dependent Impedances [J]. Microwave and Wireless Components Letters, IEEE,2009,19(12):792-794.
    [31]Goodman P. C. A Wideband Stripline Matched Power Divider [C]. Microwave Symposium,1968 G-MTT International.1968:16-20.
    [32]Kagan H. N-Way Power Divider [J]. Microwave Theory and Techniques, IRE Transactions on,1961,9(2):198-199.
    [33]Fonseca N. J. G., Rinous P. Compact orthomode power divider for high-efficiency dual-polarisation rectangular horn antennas [C]. Antennas and Propagation (EUCAP), 2012 6th European Conference on.2012:1024-1027.
    [34]Slomian I., Piekarz I., Wincza K.et al. Microstrip Antenna Array With Series Feeding Network Designed With the Use of Slot-Coupled Three-Way Power Divider [J]. Antennas and Wireless Propagation Letters, IEEE,2012,11:667-670.
    [35]Chung H. H., Foy W., Peng S. Y. Printed crossed slot phased array antenna system for mobile satellite communication [C]. Antennas and Propagation Society International Symposium,1988. AP-S. Digest.1988:204-207.
    [36]Gruszczynski S., Wincza K., Sachse K. Reduced Sidelobe Four-Beam N-Element Antenna Arrays Fed by 4 times N Butler Matrices [J]. Antennas and Wireless Propagation Letters, IEEE,2006,5(1):430-434.
    [37]Fakoukakis F. E., Kyriacou G. A., Sahalos J. N. On the design of Butler-like type matrices for low SLL multibeam antennas [C]. Antennas and Propagation (EUCAP), 2012 6th European Conference on.2012:2604-2608.
    [38]Jang Dong-Hee, Choi Jae-Hyoung, Kim Jong-Heon. Asymmetric Doherty power amplifier with optimized characteristics in output power back-off range between 6 dB and 10 dB [C]. Microwave Conference (EuMC),2010 European.2010:870-873.
    [39]Gysel Ulrich H. A New N-Way Power Divider/Combiner Suitable for High-Power Applications [C]. Microwave Symposium,1975 IEEE-MTT-S International.1975: 116-118.
    [40]Oraizi H., Sharifi A. R. Optimum Design of a Wideband Two-Way Gysel Power Divider With Source to Load Impedance Matching [J]. Microwave Theory and Techniques, IEEE Transactions on,2009,57(9):2238-2248.
    [41]Wuren T., Taniya K., Sakagami I., et al. Miniaturization of 3-and 5-way Bagley polygon power dividers [C]. Microwave Conference Proceedings,2005. APMC 2005. Asia-Pacific Conference Proceedings.2005:4.
    [42]Sakagami I., Wuren T., Fujii M., et al. A new type of multi-way microwave power divider based on Bagley Polygon power divider [C]. Microwave Conference,2006. APMC 2006. Asia-Pacific.2006:1353-1356.
    [43]Sakagami I., Wuren T., Fujii M.et al. Compact Multi-Way Power Dividers Similar to the Bagley Polygon [C]. Microwave Symposium,2007. IEEE/MTT-S International. 2007:419-422.
    [44]Elles D. S., Yong-Kyu Yoon. Compact dual band three way bagley polygon power divider using composite right/left handed (CRLH) transmission lines [C]. Microwave Symposium Digest,2009. MTT'09. IEEE MTT-S International.2009:485-488.
    [45]Gomez-Garcia R., Sanchez-Renedo M. Application of generalized Bagley-polygon four-port power dividers to designing microwave dual-band bandpass planar filters [C]. Microwave Symposium Digest (MTT),2010 IEEE MTT-S International.2010: 1-4.
    [46]Liu Xin, Yu Cuiping, Liu Yuanan, et al. Design of planar dual-band multi-way power dividers [C]. Microwave Conference Proceedings (APMC),2010 Asia-Pacific.2010: 722-725.
    [47]Go X., Mez-Garci X., A R., et al. Application of generalized Bagley-polygon four-port power dividers to designing microwave dual-band bandpass planar filters [C]. Microwave Symposium Digest (MTT),2010 IEEE MTT-S International.2010: 580-583.
    [48]Oraizi H., Ayati S. Optimum design of a modified 3-way Bagley rectangular power divider [C]. Microwave Symposium (MMS),2010 Mediterranean.2010:25-28.
    [49]Shamaileh K., Qaroot A., Dib N. Design of miniaturized 3-way Bagley polygon power divider using non-uniform transmission lines [C]. Antennas and Propagation (APSURSI),2011 IEEE International Symposium on.2011:29-32.
    [50]Abu-Alnadi O., Dib N. Design and analysis of dual-frequency unequal-split Bagley power dividers [C]. Antennas and Propagation Society International Symposium (APSURSI),2012 IEEE.2012:1-2.
    [51]Gomez-Garcia Roberto, Sanchez-Renedo Manuel. Microwave single/multi-band planar filters with Bagley-polygon-type four-port power dividers [C]. Microwave Symposium Digest (MTT),2012 IEEE MTT-S International.2012:1-3.
    [52]Wilkinson E. J. An N-Way Hybrid Power Divider [J]. Microwave Theory and Techniques, IRE Transactions on,1960,8(1):116-118.
    [53]Parad L. I., Moynihan R. L. Split-Tee Power Divider [J]. Microwave Theory and Techniques, IEEE Transactions on,1965,13(1):91-95.
    [54]Lim Jong-Sik, Lee Sung-Won, Kim Chul-Soo. et al. A 4.1 unequal Wilkinson power divider [J]. Microwave and Wireless Components Letters, IEEE,2001,11(3): 124-126.
    [55]Lim Jong-Sik, Lee Gil-Young, Jeong Yong-Chae, et al. A 1:6 Unequal Wilkinson Power Divider [C]. Microwave Conference,2006.36th European.2006:200-203.
    [56]Chen Jian-Xin, Xue Quan. Novel 5:1 Unequal Wilkinson Power Divider Using Offset Double-Sided Parallel-Strip Lines [J]. Microwave and Wireless Components Letters, IEEE,2007,17(3):175-177.
    [57]Li Bo, Wu Xidong, Wu Wen. A 10:1 Unequal Wilkinson Power Divider Using Coupled Lines With Two Shorts [J]. Microwave and Wireless Components Letters, IEEE,2009,19(12):789-791.
    [58]Seongmin Oh, Jae Jin Koo, Mun Su Hwang, et al. An Unequal Wilkinson Power Divider with Variable Dividing Ratio [C]. Microwave Symposium,2007. IEEE/MTT-S International.2007:411-414.
    [59]Schlieter D. B., Henderson R. M. An etched ground GCPW 7:1 unequal Wilkinson power divider [C]. Radio and Wireless Symposium,2009. RWS'09. IEEE.2009: 256-259.
    [60]Sung-hwan Ahn, Lee J. W., Choon-Sik Cho, et al. A Dual-Band Unequal Wilkinson Power Divider With Arbitrary Frequency Ratios [J]. Microwave and Wireless Components Letters, IEEE,2009,19(12):783-785.
    [61]Wu Yongle, Liu Yuanan, Xue Quan, et al. Analytical Design Method of Multiway Dual-Band Planar Power Dividers With Arbitrary Power Division [J]. Microwave Theory and Techniques, IEEE Transactions on,2010,58(12):3832-3841.
    [62]Wu Y., Liu Y., Li S.et al. Extremely unequal Wilkinson power divider with dual transmission lines [J]. Electronics Letters,2010,46(1):90-91.
    [63]Kang Myung-Seok, Kim Young, Yoon Young-Chul. An unequal wilkinson power divider with a high dividing ratio [C]. Microwave Conference (EuMC),2012 42nd European.2012:1127-1129.
    [64]Gao Bin, Liu Yongchao. Novel design of dual-band unequal Wilkinson power divider with wide band-ratios and simple layout [C]. Antennas, Propagation & EM Theory (ISAPE),2012 10th International Symposium on.2012:121-123.
    [65]Cohn Seymour B. A Class of Broadband Three-Port TEM-Mode Hybrids [J]. Microwave Theory and Techniques, IEEE Transactions on,1968,16(2):110-116.
    [66]Ekinge R. B. A New Method of Synthesizing Matched Broad-Band TEM-Mode Three-Ports [J]. Microwave Theory and Techniques, IEEE Transactions on,1971, 19(1):81-88.
    [67]Wu Lei, Sun Zengguang, Yilmaz H., et al. A dual-frequency wilkinson power divider [J]. Microwave Theory and Techniques, IEEE Transactions on,2006,54(1):278-284.
    [68]Mohra A. S. S. Compact dual band Wilkinson power divider [C]. Radio Science Conference,2008. NRSC 2008. National.2008:1-7.
    [69]Alkanhal M. A. S. Reduced-size dual band Wilkinson power dividers [C]. Computer and Communication Engineering,2008. ICCCE 2008. International Conference on. 2008:1294-1298.
    [70]Hedayati M. K., Moradi G., Abdipour A., et al. A miniaturized dual-frequency Wilkinson power divider using defected ground structure [C]. Applied Electromagnetics (APACE),2010 IEEE Asia-Pacific Conference on.2010:1-5.
    [71]Zhang Hong-Lin, Hu Bin-Jie, Zhang Xiu-Yin. Compact Equal and Unequal Dual-Frequency Power Dividers Based on Composite Right-/Left-Handed Transmission Lines [J]. Industrial Electronics, IEEE Transactions on,2012,59(9): 3464-3472.
    [72]Wu Y., Liu Y., Liu X. Dual-frequency power divider with isolation stubs [J]. Electronics Letters,2008,44(24):1407-1408.
    [73]Wu Yong-le, Zhou Hui, ZhangYa-Xing, et al. An Unequal Wilkinson Power Divider for a Frequency and Its First Harmonic [J]. Microwave and Wireless Components Letters, IEEE,2008,18(11):737-739.
    [74]Chen Li-Na, Xie Huan-Huan, Jiao Yong-chang, et al. A novel 4:1 unequal dual-frequency Wilkinson power divider [C]. Microwave and Millimeter Wave Technology (ICMMT),2010 International Conference on.2010:1290-1293.
    [75]Wu Y., Liu Y., Li S. An unequal dual-frequency Wilkinson power divider with optional isolation structure [J]. Progress in Electromagnetics Research,2009,91: 393-411.
    [76]Lee Young-Soon, Park Ikmo, Shin Chull-Chai, et al. A miniaturized Wilkinson power divider [C]. Microwave Conference,2001. APMC 2001.2001 Asia-Pacific.2001: 37-40.
    [77]Li Bo, Wu Xidong, Li Yun, et al. A dual-band Wilkinson power divider with 6:1 power dividing ratio using coupled lines [C]. Antennas and Propagation Society International Symposium (APSURSI),2010 IEEE.2010:1-4.
    [78]Tang Xinyi, Mouthaan K. Analysis and design of compact two-way Wilkinson power dividers using coupled lines [C]. Microwave Conference,2009. APMC 2009. Asia Pacific.2009:1319-1322.
    [79]Singh P. K., Basu S., Wang Y. H. Coupled line power divider with compact size and bandpass response [J]. Electronics Letters,2009,45(17):892-894.
    [80]Wu Yongle. Liu Yuanan, Zhang Yaxing, et al. A Dual Band Unequal Wilkinson Power Divider Without Reactive Components [J]. Microwave Theory and Techniques, IEEE Transactions on,2009,57(1):216-222.
    [81]Wu Yongle, Liu Yuanan, Li Shulan, et al. Miniaturized unequal dual-frequency wilkinson power divider using pi-structure impedance transformers [J]. Electromagnetics,2010,30(8):671-682.
    [82]He Qing. Liu Yuanan, Wu Yongle, et al. An unequal dual-band Wilkinson power divider with slow wave structure [C]. Microwave Conference Proceedings (APMC), 2012 Asia-Pacific.2012:968-970.
    [83]Tyrrell W. A. Hybrid Circuits for Microwaves [J]. Proceedings of the IRE,1947, 35(11):1294-1306.
    [84]Reed J., Wheeler G. J. A Method of Analysis of Symmetrical Four-Port Networks [J]. Microwave Theory and Techniques, IRE Transactions on,1956,4(4):246-252.
    [85]Pon C. Y. Hybrid-Ring Directional Coupler for Arbitrary Power Divisions [J]. Microwave Theory and Techniques, IRE Transactions on,1961,9(6):529-535.
    [86]Dumanli S., Railton C. J., Paul D. L. Decorrelation of a Closely Spaced Antenna Array and Its Influence on MIMO Channel Capacity [C]. Antennas and Propagation, 2007. EuCAP 2007. The Second European Conference on.2007:1-6.
    [87]Kim-Lien Ngo-Wah, Goel J., Yeong-Chang Chou, et al. A V-band eight-way combined solid-state power amplifier with 12.8 Watt output power [C]. Microwave Symposium Digest,2005 IEEE MTT-S International.2005:4.
    [88]Yeh Mei-Ling, Kuo Sheng-Hing, Liou Wan-Rone. A Low-Voltage 5-GHz Quadrature Up-Conversion Mixer for Wireless Transmitter [C]. Communications, Circuits and Systems Proceedings,2006 International Conference on.2006:2618-2622.
    [89]Wang Chuang, Sun Xiao-Wei, Qian Rong. Low cost K-band CPW rat-race mixer [C]. Solid-State and Integrated Circuits Technology,2004. Proceedings.7th International Conference on.2004:1307-1310.
    [90]Lee Myeong-Gil, Yun Tae-Soon, Nam Hee, et al. A broadband single balanced diode mixer using a wideband rat-race hybrid with vertical coupling structure [C]. Microwave Conference Proceedings,2005. APMC 2005. Asia-Pacific Conference Proceedings.2005:1-4.
    [91]Lien Chun-Hsien, Wang Chi-Hsueh, Lin Chin-Shen, et al. Analysis and Design of Reduced-Size Marchand Rat-Race Hybrid for Millimeter-Wave Compact Balanced Mixers in 130-nm CMOS Process [J]. Microwave Theory and Techniques, IEEE Transactions on,2009,57(8):1966-1977.
    [92]Wang T. N. C., Zhou N. S., Wang P. D. H. On microwave measurement of S-parameter using ring hybrid rat-race circuit [C]. Microwave Conference,1999 Asia Pacific.1999:896-899.
    [93]Agrawal Ashok K., Mikucki G. F. A Printed-Circuit Hybrid-Ring Directional Coupler for Arbitrary Power Divisions [J]. Microwave Theory and Techniques, IEEE Transactions on,1986,34(12):1401-1407.
    [94]Chiou Yi-Chyun, Wu Juo-Shiuan, Kuo Jen-Tsai. Periodic stepped-impedance rat race coupler with arbitrary power division [C]. Microwave Conference,2006. APMC 2006. Asia-Pacific.2006:663-666.
    [95]Luzzatto G. A General 180-Degree Hybrid Ring [J]. Broadcasting, IEEE Transactions on,1968, BC-14(1):41-43.
    [96]Kim Dong H. Yang Gyu-Sik. Design of new hybrid-ring directional coupler using λ/8 or λ/6 sections [J]. Microwave Theory and Techniques. IEEE Transactions on,1991. 39(10):1779-1784.
    [97]Rathore J., Aditya S., Roy S. C. Dutta. A general analysis and new designs for the hybrid-ring directional coupler [J]. Indian J. Technol.,1993,31:827-830.
    [98]Mandal M. K., Sanyal S. Reduced-Length Rat-Race Couplers [J]. Microwave Theory and Techniques, IEEE Transactions on,2007,55(12):2593-2598.
    [99]Chiou Yi-Chyun, Kuo Jen-Tsai, Chan Chi-Hung. New miniaturized dual-band rat-race coupler with microwave C-sections [C]. Microwave Symposium Digest,2009. MTT '09. IEEE MTT-S International.2009:701-704.
    [100]Liu Yucheng, Chen Wenhua, Feng Zhenghe. Compact dual-band branch-line and rat-race couplers with stepped coupled-line [C]. Microwave Conference Proceedings (CJM W),2011 China-Japan Joint.2011:1-4.
    [101]Settaluri R. K., Sundberg G., Weisshaar A.et al. Compact folded line rat-race hybrid couplers [J]. Microwave and Guided Wave Letters, IEEE,2000,10(2):61-63.
    [102]Takao Fujii, Kokubo Y., Ohta I. Compact CPW rat-race and branch-line hybrids utilizing slow-wave structure [C]. Microwave Conference,2006. APMC 2006. Asia-Pacific.2006:1349-1352.
    [103]Kim T. G., Lee B. Metamaterial-based wideband rat-race hybrid coupler using slow wave lines [J]. Microwaves, Antennas & Propagation, IET,2010,4(6):717-721.
    [104]Chiou Yi-Chyun, Tsai Cheng-Hsiu, Wu Juo-Shiuan, et al. Miniaturization Design for Planar Hybrid Ring Couplers [C]. Art of Miniaturizing RF and Microwave Passive Components,2008. IMWS 2008. IEEE MTT-S International Microwave Workshop Series on.2008:19-22.
    [105]Giannini Franco, Scucchia Lucio. A dual-band MMIC 180 lumped-element hybrid: Mixer application [J]. International Journal of RF and Microwave Computer-Aided Engineering,2004,14(5):483-489.
    [106]Cheng K. K. M., Fai-Leung Wong. A novel rat race coupler design for dual-band applications [J]. Microwave and Wireless Components Letters, IEEE,2005,15(8): 521-523.
    [107]Wong Fai-Leung, Cheng K. K. M. A compact rat race coupler design for dual-band applications [C]. Microwave Conference,2006. APMC 2006. Asia-Pacific.2006: 667-670.
    [108]Kong C. P., Cheng K. K. M. Dual-band Rat-Race Coupler with Bandwidth Enhancement [C]. Microwave Symposium Digest,2006. IEEE MTT-S International. 2006:1559-1562.
    [109]Cheng K. K. M., Wong F. L. Dual-band rat-race coupler design using tri-section branch-line [J]. Electronics Letters,2007,43(6):41-42.
    [110]Mocanu I. A.,Petrescu T. Novel dual band hybrid rat-race coupler with CRLH and D-CRLH transmission lines [C]. Microwave Conference Proceedings (APMC),2011 Asia-Pacific.2011:888-891.
    [111]Dong Yuandan, Itoh T. Application of composite right/left-handed half-mode substrate integrated waveguide to the design of a dual-band rat-race coupler [C]. Microwave Symposium Digest (MTT),2010 IEEE MTT-S International,2010: 712-715.
    [112]Kawai T., Tanabe Y., Enokihara A., et al. Compact dual-band rat-race hybrid utilizing composite right/left-handed transmission lines [C]. Microwave Conference (EuMC),201141 st European.2011:285-288.
    [113]Zhang H., Chen K. J. Design of dual-band rat-race couplers [J]. Microwaves, Antennas & Propagation, IET,2009,3(3):514-521.
    [114]Hsu Ching-Luh, Kuo Jen-Tsai, Chang Chin-Wei. Miniaturized Dual-Band Hybrid Couplers With Arbitrary Power Division Ratios [J]. Microwave Theory and Techniques, IEEE Transactions on,2009,57(1):149-156.
    [115]Sun Z. Y., Zhang L. J., Yan Y. P.et al. Unequal dual-band rat-race coupler based on dual-frequency 180 degree phase shifter [J]. Journal of Electromagnetic Waves and Applications,2011,25(13):1840-1850.
    [116]Clarricoats P. J. B. Foundations for Microwave Engineering [J]. Electronics and Power,1967,13(1):29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700