稀土钡铜氧薄膜热稳定性及其应用与铁硒超导液相外延厚膜制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为工业应用和科学研究的重要基础,人们对薄膜热稳定性的研究已经持续了数十年。自YBCO薄膜的过热性质在YSNG(YBCO seeded NdBCOgrowth)生长中被发现以来,稀土钡铜氧薄膜的高热稳定性先后被报道。反常于一般纳米薄膜的热稳定性,稀土钡铜氧薄膜的这种奇异特性对于其在块体材料熔融织构生长中的应用以及对薄膜的过热机制研究有着极其重要的意义。目前,REBCO薄膜高热稳定性最直接的应用就是在REBCO晶体、液相外延厚膜以及块体材料的生长中作为籽晶诱导生长。
     近年来,铁基超导材料在全球范围内受到了普遍的关注。液相外延生长技术能够制备高结晶性,组分均匀、微结构易控制的厚膜材料,由于其快速沉积和低成本的特点,其在器件应用方面具有非常诱人的前景。作为铁基超导器件应用的前提,铁基液相外延厚膜的制备对超导物性研究以及器件应用研究方面都具有重要的科学意义。
     本论文的科学意义在于研究了熔化过程中熔化生长阶段对于REBCO薄膜热稳定性的影响,提出了包晶反应的熔化模型,对于薄膜熔化过程中熔化生长的差异导致的热稳定性不同给出了理论解释。另外,本文研究了大尺寸块体材料生长中的薄膜籽晶应用、温度程序以及生长速度改进的问题。最后,本文使用液相外延生长技术在世界上首次制备了FeTe_(1-x)Se_x超导厚膜,为铁基超导器件应用提供了研究基础。具体内容如下:
     1. REBCO薄膜热稳定性及熔融织构生长中薄膜热稳定性的影响因素
     之前对REBCO薄膜的热稳定性研究主要集中在不同微结构对于薄膜热稳定的影响。而不同气氛、不同REBCO系统下薄膜热稳定性的差异由薄膜本身的属性所决定,一定程度反映了REBCO本质对热稳定性的影响。本文在不同氧分压下比较了NdBCO薄膜热稳定性以及空气气氛下YBCO与NdBCO薄膜的热稳定性不同。结果表明拥有同样微结构薄膜的热稳定性差异主要由熔化过程中的熔化生长过程决定。而薄膜的熔化生长速度与RE211相的生长速度以及熔化前沿溶质浓度差和生长前沿溶质浓度差的比值成正比。由于包晶反应中熔化过程的相似性,该理论可以更广泛的适用于发生包晶反应的RE123材料体系的熔化过程。在REBCO薄膜的应用方面,本文发现前驱体对薄膜上杂质的吸附作用是REBCO薄膜在熔融织构生长中过热因素之一。在研究微结构对薄膜热稳定性影响时,发现薄膜中缓冲层的引入可以改善薄膜的面内取向,提高其热稳定性。另外,本文还研究了不同面内取向晶粒在MgO基板上的粗化竞争机制,发现45°晶粒在粗化竞争中占据优势。这是使用8对称薄膜籽晶诱导生长块体材料时45°取向优先生长的原因。
     2. REBCO薄膜籽晶应用及大尺寸REBCO块体材料生长
     高温超导REBCO块体材料在诸如磁悬浮,超导储能等方面具有非常广泛的应用前景。而块体材料的尺寸是制约其应用的关键因素之一。为了抑制块体材料生长降温过程中产生的过大溶质过饱和,本文研究了等温温度及保温时间对块体材料的影响,发现合理等温缓冲区间的使用可以减小降温阶段产生的过大溶质过饱和,抑制自发形核的产生。本文还介绍了使用等温缓冲区间在低氧分压下诱导生长Ag掺杂NdBCO块体材料的工作。所得样品直径为38mm,为目前国际上尺寸最大的NdBCO块体材料。为了提高YBCO块体材料的生长速度,本文使用纯氧气氛进行YBCO熔融织构生长。实验发现,纯氧气氛可以将块体生长速度提高约1.5倍以上。分析认为,导致生长速度提高的主要因素为纯氧气氛下Y元素在熔体中溶解度及扩散系数的提高。该技术可有效提高YBCO块体材料生长,用于大尺寸高性能块体材料生长。
     3. FeTe_(1-x)Se_x超导晶体生长及液相外延厚膜制备
     目前为止,在FeTe_(1-x)Se_x晶体生长与薄膜制备方面已经有许多研究组做了大量的工作。但是,FeTe_(1-x)Se_x体系的液相外延厚膜材料制备仍未见报道。本文使用熔体法制备了FeTe_(1-x)Se_x晶体,并对晶体进行了XRD成相分析,确认了相形成。PPMS测试显示,晶体的起始超导转变温度Tconset约为12.5K。另外,本文使用液相外延生长技术在铝酸镧(LAO)基板上首次得到了FeTe_(1-x)Se_x厚膜材料。光学显微镜及扫描电子显微镜图像显示厚膜的晶粒为方形且与基板成一定规则排列。膜的厚度约为20um。XRD确认了该薄膜为FeTe_(1-x)Se_x相且成(00l)取向。EDX数据显示厚膜的不同区域拥有相似的组分,且实际组分与名义组分相差很小。
     通过本论文的工作,希望能对REBCO超导薄膜的热稳定性的影响因素以及熔化机制给出一定的指导,期望在将来的工作中能够探索控制薄膜热稳定性的途径并寻找具有更高热稳定性的薄膜材料以适应其在材料生长中的应用。另外,通过摸索铁基超导材料液相外延生长技术,我们期望在以后的工作中可以通过微结构控制改善其物理性能,以满足铁基超导材料理论研究及实际应用的需要。
The thermal stability of thin films has been studied for decades as a basisfor industrial applications and for fundamental scientific research. Since thesuperheating phenomenon of YBa2Cu3O7-x(Y-123) was observed in the liquidphase epitaxial growth of Nd1+xBa2-xCu3O7-x(Nd-123) thick film, many workshave been reported on high thermal stabilities of RE1+xBa2-xCu3O7-x(RE-123)thin films. The study on this novel property of REBCO films is important forapplications and for obtaining a fundamental understanding of melting. Assuitable seeds, RE-123thin films are widely employed in the liquid phaseepitaxial (LPE) growth of RE-123thick films, growth of single crystals andmelt-textured (MT) bulks.
     On the other hand, iron based superconductors have gained a large amountof interest recently. Understanding these new superconductors requireshigh-quality epitaxial films to explore intrinsic electromagnetic properties andevaluate device applications. So far, extensive researches have been carried outto prepare iron-based crystals and thin films. However, liquid phase epitaxialfilm of these materials is rarely reported. By the liquid phase epitaxial growth(LPE), films with high crystalline quality, uniform composition and controllableorientation can be achieved. Due to the fast deposition rate as well as low cost ofLPE growth, it is a promising technique to prepare iron-based epitaxial films.
     In this thesis, the difference of thermal stability between REBCO thin filmswas investigated. Under an assumption of quasi-equilibrium, a simplified modelfor the peritectic melting of RE-123was suggested, which clarifies themechanism of different thermal stabilities between REBCO thin films. Inaddition, we have prepared FeTe_(1-x)Se_xthick film by LPE growth for the firsttime. The main progresses are listed below:
     1. The thermal stability of REBCO thin films and its superheating in MTgrowth
     So far, many studies on the thermal stability of RE-123films have beenperformed in connection with the quality and orientation of the films.Differences in thermal stabilities between REBCO thin films under variousatmospheres may directly correlated to the nature of the film. We investigatedthe thermal stabilities of NdBCO thin films under varied atmospheres and thedifference of thermal stabilities between NdBCO and YBCO thin films. Wefound that the diversity in the melting growth process of thin films dominatedthe thermal stability of these films. The melting rate of RE-123is proportional tothe growth rate of the RE-211phase and the ratio of the concentration differencebetween RE-211growth front and RE-123melting border. Owing to thesimilarity among RE-123materials, we suppose this model might be universallyapplicable for the peritectic melting of thin films beyond superconductors.During the melt textured growth process, the adsorption of Ba-Cu-O liquid bythe pellet was believed a reasonable factor for the high thermal stability forREBCO thin films. The study on the influence of thin film microstructure on itsthermal stability showed that the employment of YBCO buffer layer improvesthe in-plane alignment of NdBCO thin film and eventually enhances its thermalstability in MT process. In addition, the mechanism of epitaxial coarsening of YBCO grains with different in-plane alignments on MgO substrate was studied.It was found that the coarsening process dominated by45°grain in the MTprocess is the main reason for the difference of the preferrd in-plane orientationbetween the LPE and MT growth.
     2. Application of REBCO thin film in MT growth and large sized bulkgrowth
     REBCO superconductors are promising materials for wide applications. Thesize of the bulk material is the main restraining factor for these applications. Toovercome the problem of the over high supersaturation, a Tmax2procedure wasintroduced in the MT growth. It was found that a reasonable temperature and anappropriate holding time of Tmax2decrease the supersaturation and thereforeavoid the homogeneous nucleation. Additonally, an Ag doped NdBCO bulkmaterial with a diameter of38mm, which is a world-record size for NdBCObulk superconductor, was achieved by Oxygen Control Melt growth (OCMG)technique using an Tmax2temperature profile. The low growth rate and narrowgrowth window are main limits for large sized REBCO bulk growth. By anemployment of pure oxygen pressure as the growth atmosphere, we reported asuccess in enhanced growth rate of the melt-textured (MT) YBCO bulk. Theenhanced growth rate can be interpreted by both increased solubility anddiffusion coefficient of yttrium in the Ba–Cu–O liquid under high oxygen partialpressure. The most important advantage of this technique is that the enhancedgrowth rate of Y123gives less opportunity for self-nucleation in the liquid,which takes place beyond the growth window and the embryonic period.
     3. FeTe_(1-x)Se_xcrystal and epitaxial film growth
     We successfully prepared FeTe_(1-x)Se_xcrystal by melt growth method. Thephase formation of the crystal is determined by X-Ray differaction (XRD) measurement. The temperature and field dependence of the magnetization showthat the Tc onset value of the FeTe_(1-x)Se_xcrystal is about12.5K. Using LPEgrowth technique, we fabricated FeTe_(1-x)Se_xepitaxial thick film on (00l)-orientedLAO substrate. Optical micrographs and SEM images show that FeTe_(1-x)Se_xgrains on the substrate are in a quadrate shape and align along the same direction.The out-plane orientation of the film confirmed by XRD measurement is (00l)FeTe_(1-x)Se_x//(00l)LAO. The actual composition of the film was determined byenergy dispersive x-ray detector (EDX), the result shows that the film is uniformin the composition, and the actual composition is very close to the nominal one.
     The work presented here enables us a comprehensive understanding of thethermal stability and the melting process of REBCO thin films, further to realizethe thermal stability control to fulfill the requirement of the bulk growth. Inaddition, with the pioneering work of LPE growth of FeTe_(1-x)Se_xfilm, a preciselycontrol of film orientation and microstructure can be expected, which will meetthe needs of practical application and fundamental research.
引文
[1] Onnes H K, On the Lowest Temperature Yet Obtained Leiden Comm.,(1911)122b
    [2] Bednorz J G and Muller K A, Possible High Tc superconductivity Z Phys.B,64(1986)189
    [3] Wu M K, Ashburn J R,Tirng C J, Meng R L, Gao L, Huang Z L,Wang Y Q, Chu C W,Superconductivity at93K in a new mixed-phase Y-Ba-Cu-O compound system at ambientpressure Phys. Rev.Lett.58(1987)908
    [4] Zhao Z X, Chen L,Yang Q, et al., Chin.Sci.Bull.,32(1987)661
    [5] Maeda H,Tanaka Y, Fukutomi M, et al., A New High-Tc Oxide Superconductorwithout a Rare Earth Element Jpn.J Appl.Phys.,27(1988) L209
    [6] Sheng Z Z, Hermann A M, Ali A E, et al., Superconductivity at90K in theTl-Ba-Cu-O system Phys.Rev.Lett.,60(1988)937
    [7] Kamihara Y, Watanabe T, Hirano M, and Hosono H, Iron-Based LayeredSuperconductor La[O1-xFx] FeAs (x=0.050.12) with Tc=26K J. Am. Chem. Soc.130(2008)3296
    [8] Chen X H, T,Wu G, Liu R H, Chen H, Fang D F, Superconductivity at43K inSmFeAsO1-xFxNature,453(7196)(2008)761-762
    [9] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Zhou F, ZhaoZ X, Superconductivity at55K in Iron-Based F-Doped Layered Quaternary CompoundSm[O1-xFx] FeAs Chinese Physics Letters,25(6)(2008) pp.2215-2216
    [10] Rotter M, Tegel M, Johrendt D, Superconductivity at38K in the Iron Arsenide(Ba1-xKx)Fe2As2Phys.Rev. Lett.,101(10)(2008) art. no.107006.
    [11] Wang X C., Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y, Jin C Q, Thesuperconductivity at18K in LiFeAs system Solid State Communications,148(11-12)(2008)pp.538-540
    [12] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang YL,Chu Y Y, Yan D C, Wu M K, Superconductivity in the PbO-type structure alpha-FeSeProceedings of the National Academy of Sciences of the United States of America,105(38)(2008) pp.14262-14264
    [13] Cheng P, Shen B, Mu G, et al., High-Tc superconductivity induced by dopingrare-earth elements into CaFeAsF Europhys Lett.,85(2009)67003
    [14] File J and Mills R G, Isobar Production by910-MeV/c K+Mesons Phys.Rev.Lett.,10(1963)93–96
    [15] Meissner W, Ochsenfeld R, Ein neuer Effekt bei Eintritt der Supraleitf higkeitNaturwiss,21(1933)787
    [16] Josephson B D, Possible new effects in superconductive tunneling Phys.Lett.,1(1962)251
    [17] Deaver B S and Fairbank W M, WM Experimental evidence for quantized flux insuperconducting cylinders Phys.Rev.Lett.,7(1961)43
    [18] Maxwell E, Phys,Rev.,78(1950)447
    [19] Santora A,Miraglia B, Beech F, et al., Mater Res Bull, B36(1987)5719
    [20] Tarascon J M, Mckinnon W R, Barboux P, et al., Preparation, structure, andproperties of the superconducting compound series Bi2Sr2Can-1CunOywith n=1,2, and3Phys.Rev., B38(1988)8885
    [21] Bordet P, Capponi J J, Chaillout C, et al., A note on the symmetry and Bi Valenceofthe superconductor Bi2SrCaCu2O8Physica C,156(1988)189
    [22] Putilin S N, Antipov E V, Chmaissem O, et al., Superconductivity at94K inHgBa2CuO4+Nature,362(1993)226
    [23] Bertinotti A, Viallet V, Colson D, et al., Synthesis, crystal structure and magneticproperties of superconducting single crystals of HgBa2CuO4+δPhysica C,268(1996)257
    [24] Tretyakov Yu D,Goodilin E A, Hybrid polymer-inorganic nanocomposites RussianChemical Reviews,69(2000)1
    [25] Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F, Superconductivity at43K inSmFeAsO1-xFxNature,453(2008)761
    [26] Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W, Pottgen R,Spin-density-wave anomaly at140K in the ternary iron arsenide BaFe2As2Phys. Rev. B,78(2008)020503
    [27] Rotter M, Tegel M, Johrendt D, Superconductivity at38K in the Iron Arsenide(Ba1-xKx)Fe2As2Phys. Rev. Lett.,101(2008)107006
    [28] Chen G F, Li Z, Li G, Hu W Z, Dong J, Zhou J, Zhang X D, Zheng P, Wang N L,Luo J L, Superconductivity in Hole-Doped (Sr1xKx)Fe2As2Chin. Phys. Lett.,25(2008)3403
    [29] Sasmal K, Lv B, Lorenz B, et al., Superconducting Fe-Based Compounds(A1-xSrx)Fe2As2with A=K and Cs with Transition Temperatures up to37K Phys. Rev. Lett.,101(2008)107007
    [30] Jeevan H S, Hossain Z, Kasinathan D, et al., High-temperature superconductivity inEu0.5K0.5Fe2As2Phys. Rev. B,78(2008)092406
    [31] Wu G, Chen H, Wu T, Xie Y L, Yan Y J, Liu R H, Wang X F, Ying J J, Chen X H,Different resistivity response to spin-density wave and superconductivity at20K inCa1xNaxFe2As2Journal of Physics: Cond Matter,20(2008)422201
    [32] Ni N, Nandi S, Kreyssig A, Goldman A I, Mun E D, Bud'ko S L, Canfield P C,First-order structural phase transition in CaFe2As2Phys. Rev. B,78(2008)014523
    [33] Ronning F, Klimczuk T, Bauer E D, Volz H, Thompson J D, Journal of Physics:Cond Matter,20(2008)322201
    [34] Wang X C, Liu Q Q, Lv Y X, et al., Rapid photoresponse of single-crystallineselenium nanobelts Solid State Commun,148(2008)538
    [35] Li S L, Cruz C de la, Huang Q, Chen G F, Xia T L, Luo J L, Wang N L, Dai P C,Structural and magnetic phase transitions in Na1FeAs Phys Rev B,80,(2009)020504(R)
    [36] Hsu F C, Luo J Y, Yeh K W, et al., Superconductivity in the PbO-type structure-FeSe Proc Natl Acad Sci USA,105(2008)14262
    [37] Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T, Takano Y, FeTe as a candidatematerial for new iron-based superconductor. Physica C,469(2009)1027
    [38] Yeh K W, Huang T W, Huang Y L, et al., Tellurium substitution effect onsuperconductivity of the-phase iron selenide Europhys Lett.,84(2008)37002
    [39] Mizuguchi Y, Tomioka F, Tsuda S, et al., Superconductivity in S-substituted FeTeAppl. Phys. Lett.,94(2009)012503
    [40] Liu R H, G Wu, T Wu, D F Fang, H Chen, S Y Li, K Liu, Y L Xie, X F Wang, R LYang, L Ding, C He, D L Feng, X H Chen, Anomalous Transport Properties and PhaseDiagram of the FeAs-Based SmFeAsO1-xFxSuperconductors Phys. Rev. Lett.,101(2008)087001
    [41]周廉,甘子钊,中国高温超导材料及应用发展战略研究,化学工业出版社,2008年1月
    [42] Roy B N, Crystal Growth from Melts, New York:Wiley,1992.322
    [43] Elwell D and Scheel H J, Crystal Growth from High-Temperature Solutions, NewYork: Academic Press,1975
    [44] Rutter J W and Chalmers B, A Prismatic Sub-structure Formed During Solidificationof Metals Can.J.Phys.,31(1953)15
    [45] Flemings M C, Solidification Processing, New York: McGraw-Hill.1974:290
    [46] Cheronov A A and Nishinaga T, Morphology of Crystals, Tokyo: Terrapub1987:207.
    [47] Cima M J, Flemings M C and Figueredo A M, Semisolid solidification of hightemperature superconducting oxides J.Appl.Phys.,72(1992)179
    [48] Klemenz C and Scheel H J, Liquid phase epitaxy of high-Tc superconductorsJ.Cryst.Growth,129(1993)421
    [49] Aswal D K, Shinmura M and Hayakawa Y, In situ observation of melting/dissolution,nucleation and growth of NdBa2Cu3Ox by high temperature optical microscopyJ.Cryst.Growth,193(1998)61
    [50] Nishimura Y, Miyashita S and Durbin S D, J.Cryst.Growth,205(1999)503
    [51] Krauns Ch,Sumida M, Tagami M, Yamada Y and Shihara Y, Solubility of REelements into Ba Cu O melts and the enthalpy of dissolution Z.Phys.B,96(1994)207
    [52] Nakamura M, Kambara M, Umeda T and Shiohara Y, Effect of oxygen partialpressure on the neodymium solubility in Ba-Cu-O solvent Physica C,266(1996)178
    [53] Yao X and Shiohara Y, Large REBCO single crystals: growth processes andsuperconducting properties Supercond.Sci.Techol.,10(1997)249
    [54] Shiohara Y, Endo A, Crystal growth of bulk high-Tc superconducting oxidematerials Materials Science and Engineering, R19(1997)1
    [55] Lee B J and Lee D N, Thermodynamic evaluation for the Y2O3-BaO-CuOxsystemJ.Am.Ceram.Soc.,74(1991)78
    [55] McQueen T M, et al., Extreme sensitivity of superconductivity to stoichiometry inFe1+Se Phys. Rev. B,79(2009)014522
    [56] Yeh K W, Ke C T, Huang T K, Huang Y L, Wu P M and Wu M K, SuperconductingFeSe1xTexSingle Crystals Grown by Optical Zone-Melting Technique Cryst. Growth Des.,9(2009)4847
    [57] Wen J, Interplay between magnetism and superconductivity in high-temperaturesuperconductors La2xBaxCuO4and Fe1+yTe1xSex: crystal growth and neutron scatteringstudies PhD Thesis Stony Brook University,2010
    [58]杨树人,丁墨元,外延生长技术,国防工业出版社,1992年4月
    [59] Nelson H, Epitaxial growth from the liquid state and its application to the fabricationof tunnel and laser diodes RCA Rev.,24(1963)603
    [60] Yue A S,Yang C S, High temperature superconductors, vol. II, Reno, Nevada:MRS,(1988)85–8
    [61] Liu R S, Huang Y T, Wu P T, Chu J J, Process and Resistivity Studies of the High-TcSuperconductors in Tl-Ca-Ba-Cu-O Jpn.J Appl.Phys.Lett.,27(1988)1470
    [62] Liu R E, Huang Y T, Liang J M, Wu P T, Epitaxial Growth of High Tcsuperconducting Ta-Ga-Ba-Cu-O films by Liquid Phase Epitaxial Process Physica C,156(1988)785
    [63] Tanabe H,Tanaka I,Watauchi S, Kojima H, Comparison of Tc-depression of Pr at Y-and Ba-Sites in YBa2Cu3OyPhysica C,315(1999)154
    [64] Kakimoto K, Sugawara Y, Izumi T, et al., Initial growth mechanism of YBCO filmsin liquid phase epitaxy process Physica C,334(2000)249
    [65] Nomura K, Hoshi S, Yao X, et al., High quality YBa2Cu3O7-film prepared by liquidphase epitaxy J.Japan Inst.Metals,64(2000)323
    [66] Yamada Y, Liquid-phase epitaxy processing of RBa2Cu3O7Supercond. Sci.Technol.,13(2000)82
    [67] Takagi A, Wen J-G, Hirabayashi I, et al., Growth mode dependence ofmicrostructures and superconducting properties of Nd1+xBa2xCu3Oythick films prepared byliquid-phase epitaxy J.Cry.Growth,193(1998)71
    [68] Miura S, Hashimoto K, Wang F, et al., Structural and electrical properties of liquidphase epitaxially grown Y1Ba2Cu3Ox films Physica C,278(1997)201
    [69] Gornert P, crystal growth and crystalline layers of high temperature superconductorscharacterization and application Cryst.Res.Technol.,32(1997)7
    [70] Belt R F, Ings J, Diercks G, Superconductor film growth on LaGaO3substrates byliquid phase epitaxy Appl.Phys.Lett.,56(1990)1805
    [71] Dubs C, Fischer K, Gurnert P, Liquid phase epitaxy of YBa2Cu3O7x on NdGaO3and LaGaO3substrates J.Crys.Growth,123(1992)611
    [72] Miura S, Hashimoto K, Wang F, et al., Structural and electrical properties of liquidphase epitaxially grown Y1Ba2Cu3Ox films Physica C,278(1997)201
    [73] Kitamura T, Tanigachi S, Hirabayashi I and Tanaka S, Introduction of pinningcentres in superconducting YBCO thick films prepared by liquid phase epitaxy IEEE Trans.Appl. Superconduct.,7(1997)1392
    [74] Cai Y Q, Tang C Y, Yao X and Li W, Dominant Effect of Oxygen Enhancement onthe Crystalline Orientation of YBa2Cu3OxFilm Prepared by Liquid-Phase Epitaxial GrowthCryst. Growth Des.,7(2007)1469
    [75] Cai Y Q, Yao X and Lai Y J, Mechanism of transition between a-axis and c-axisgrowth of YBa2Cu3Ox thick films grown on NdGaO3substrate J. Appl. Phys.,99(2006)113909
    [76] Tang C Y, Cai Y Q, Li W, Sun L J, Yao X and Jirsa M, Crystallographic AxisTransition of Sm1+xBa2xCu3O7Film Prepared by Liquid Phase Epitaxy (LPE) Cryst.Growth Des.,9(2009)1339–1343
    [77] Tang C Y, Chen Y Y, Li W, Sun L J, Yao X and Jirsa M, Supersaturation-ControlledGrowth Orientation and Grain Boundary Transition in REBa2Cu3O7(RE=Sm, Sm1xYx)Liquid-Phase Epitaxial Films Cryst. Growth Des.,10(2010)575-579
    [78] Backen E, Haindl S, Niemeier T, Huhne R, Freudenberg T, Werner J, Behr G,Schultz L and Holzapfel B, Growth and anisotropy of La(O, F)FeAs thin films deposited bypulsed laser deposition Supercond. Sci. Technol.,21(2008)122001
    [79] Choi E M, Jung S G, Lee N H, Kwon Y S, Kang W N, Kim D H, Jung M H, Lee S Iand Sun L L, In situ fabrication of cobalt-doped SrFe2As2thin films by using pulsed laserdeposition with excimer laser Appl. Phys. Lett.,95(2009)062507
    [80] Nie Y F, Brahimi E, Budnick J I, Hines W A, Jain M and Wells B O, Suppression ofsuperconductivity in FeSe films under tensile strain Appl. Phys. Lett.,94(2009)242505
    [81] Wang M J, Luo J Y, Huang T W, Chang H H, Chen T K, Hsu F C, Wu C T, Wu P M,Chang A M and Wu M K, Crystal Orientation and Thickness Dependence of theSuperconducting Transition Temperature of Tetragonal FeSe1-x Thin Films Phys. Rev. Lett.,103(2009)117002
    [82] Si W, Zhou J, Jie Q, Dimitrov I, Solovyov V, Johnson P D, Matias V, Sheehan C andLi Q, Iron-chalcogenide FeSe0.5Te0.5coated superconducting tapes for high fieldapplications Appl. Phys. Lett.,98(2011)262509
    [83] Yao X, Izumi T, Shiohara Y, Development and problems in liquid phase epitaxy ofhigh temperature superconductor Physica C,386(2003)374
    [84] Nomura K, Hoshi S, Yao X, Nakamura Y, Izumi T, Shiohara Y, High qualityYBa2Cu3O7-film prepared by liquid phase epitaxy J. Jpn. Inst. Metals,64(2000)323
    [85] Zama H, Miyakoshi M, Yamamoto H, Morishita T, Atomically Flat MgOSingle-Crystal Surface Prepared by Oxygen Thermal Annealing J. Jpn. Appl. Phys.,38(1999)L1225
    [86] Tanaka N, Hashimoto K, Zama H, Miura S, Morishita T, Yamamoto H,Characterization of liquid phase epitaxy grown YBa2Cu3O7-xthick films as superconductivesubstrates IEEE Trans. Appl. Supercond.,9(1999)1634
    [87]周午纵,梁维耀,高温超导基础研究,上海科学技术出版社,1999年12月
    [88]常铁军,祁欣,材料近代分析测试方法,哈尔滨工业大学出版社,1999年8月
    [89] Binning G, Quate C F and Gerber C, et al., Atomic Force Microscope Phys.Rev.Lett.,56(1986)930
    [90] Lindemann F, Z Phys.,11(1910)609
    [91] Gorecki T, Vacancies and changes of physical properties of metals at the meltingpoint Z Metall,65(1974)426
    [92] Tallon J, Crystal Instability and Melting Nature,299(1982)188
    [93] Dash J, Cosmic microwave background radiation Rev.Mod.Phys.,71(1999)173
    [94] Cahn R W, Materials science: Melting and the surface Nature,323(1986)668
    [95]卢柯,生红卫,金朝晖,晶体的熔化和过热.材料研究学报,11(1997)658
    [96] Daeges J, Gleiter H and Perepezko J H, Superheating of metal crystals Phys.Lett.A,119(1986)79
    [97] Gorbenko O Yu, Samoilenkov S V, Graboy I E and Kaul A R, Epitaxial Stabilizationof Oxides in Thin Films Chem.Mater.,14(2002)4026
    [99] Zhang L, Jin Z H, Zhang L H, Sui M L and Lu K, Superheating of confined Pb thinfi98lms Phys.Rev.Lett.,85(2000)1484
    [100] Zhang L, Zhang L H, Sui M L, Tan J, Lu K, Superheating and melting kinetics ofconfined thin films Acta Materialia,54(2006)3553
    [101] Metois J J and Heyraud J C, J.Phys.France,50(1983)3175
    [102] Yao X, Nomura K, Huang D X, Izumi T, Hobara N, Nakamura Y, Izumi T andShiohara Y, YBa2Cu307-d thin-film-seeded Nd1+xBa2-xCu3O7-dthick-film grown by liquiedphase epitaxy Physica C,378-381(2002)1209
    [103] Huang D X, Yao X, Nomura K, Wu Y, Nakamura Y, Izumi T, Shiohara Y,Mechanism of NdBCO film growth on YBCO-seeded MgO substrate using liquid phaseepitaxy Physica C,378–381(2002)980
    [104] Hu J, Yao X and Rao Q L, Real-time observation of the melting process of YBCOthin film on MgO substrate J. Phys.:Condens.Matter,15(2003)7149
    [105] Sun L J, Tang C Y, Yao X and Jiang Y, Melting growth of NdBCO bulk seeded bysuperheating NdBCO thin film Physica C,460-462II (2007)1339
    [106] Murakami M, Sakai N, Higuchi T andYoo S I, Melt-processed light rare earthelement-Ba-Cu–O Supercond. Sci. Technol.,9(1996)1015
    [107] Yoo S I, Sakai N, Takaichi H, Higuchi T and Murakami M, Melt processing forobtaining NdBa2Cu3Oysuperconductors with high Tc and large Jc Appl. Phys. Lett.,65(1994)633
    [108] X Yao and Shiohara Y, Process for high growth rate and high superconductingproperties of REBCO single crystals Mater. Sci. Eng. B,53(1/2)(1998)11–17
    [109] Yan S B, Chen Y Y, Ikuta H, and Yao X, Enhanced Growth Rate of a YBCO Bulkin the Melt-Textured Process Under1atm Oxygen Pressure IEEE Transactions on AppliedSuperconductivity,20(2)(2010)
    [110] Aswal D K, Shinmura M and Hayakawa Y, In situ measurement of the growth rateof YBa2Cu3Oxsingle crystals J.Cryst.Growth,197(1999)379
    [111] Nishimura Y, Yasuhara Y, Miyashita S and Komatsu H, In situ observation ofcrystallization of YBCO via the peritectic reaction J.Cry.Growth,158(1996)255
    [112] Wang X, Cai Y Q, Yao X, Wan W, Li F H, Xiong J and Tao B W, Intrinsicstructure and thermal stability of YBCO thin film J. Phys. D: Appl. Phys.,41(2008)165405
    [113] Cheng L, Tang C Y, Xu X Q, Sun L J, Li W, Yao X,Yoshida Y and Ikuta H, Thequalitative change in decomposition of c-oriented Sm-123films due to a minor change insubstitution of a-oriented grains J. Phys. D: Appl. Phys.,42(2009)175303
    [114] Zhu D M and Dash J G, Phys. Rev. Lett.,57(1986)2959
    [115] Pettersen M S, Lysek M J and Goodstein D L, Melting in multilayer adsorbed filmsPhys. Rev. B,40(1989)4938
    [116] Alsayed A M, Islam M F, Zhang J, Collongs P J and Yodh A G, Premelting atdefects within bulk colloidal crystals Science,309(2005)1207
    [117] Pusey P N, Freezing and Melting: Action at Grain Boundaries Science,309(2005)1198
    [118] Babu N H, Shi Y, Iida K and Cardwell D A, A practical route for the fabrication oflarge single-crystal (RE)–Ba–Cu–O superconductors Nature Mater.,4(2005)476
    [119] Krauns C, Sumida M, Tagami M, Yamada Y and Shiohara Y, Solubility of REelements into Ba Cu O melts and the enthalpy of dissolution Phys. B,96(1994)207
    [120] Nakamura M, Kambara M, Umeda T and Shiohara Y, Effect of Oxygen partialpressure on the neodymium solubility in Ba-Cu-O solvent Physica C,266(1996)178
    [121] Tretyakov Yu D, Goodilin E A, Chemical principles of preparation of metal-oxidesuperconductors Russian Chemical Reviews,69(2000)1
    [122] Cai C., Tachibana K., Fujimoto H. Study on single-domain growth ofY1.8Ba2.4Cu3.4Oy/Ag system by using Nd123/MgO thin film as seed supercond. Sci. andTech.,13,(2000) pp.698-702
    [123] Huang D M et al. Application of a near coincidence site lattice theory to theorientations of YBa2Cu3O7x grains on (001) MgO substrates Appl. Phys. Lett.57,(1990)1690
    [124] Ramesh R et al. Epitaxy of Y‐Ba‐Cu‐O thin films grown on single‐crystalMgO Appl. Phys. Lett.56,(1990)2243
    [125] Matsuda J S et al. Interfacial structures of Y123and Nd123films formed onMgO(001) substrates by liquid phase epitaxy J. Mater. Res.19,(2004)2674
    [126] Lifshitz I M. and Slyozov V V., The Kinetics of Precipitation from Supersat-uratedSolid Solution, J. Phys. Chem. Solids,19,(1961)35–50
    [127] Wagner C., Theory of Precipitates Change by Redissolution, Z. Electrochem.,65,(1961)581–91
    [128] Yang W M, Zhou L, Feng Y, Zhang P X, Wu M Z, Wende Ch, Wu X Z, GawalekW, Gornert P, The effect of excess barium oxide addition on the properties of Nd1Ba2Cu3Oyby the melt-growth process Physica C,337(1-4)(2000) pp.115-120
    [129] Shiohara Y and Endo A, Crystal growth of bulk high-Tc superconducting oxidematerials Mater. Sci. Eng. R,19(1-2)(1997)1-86
    [130] Li G Z, Yang W M, Cheng X F, Fan J, Guo X D, A modified TSIG technique forsimplifying the fabrication process of single-domain GdBCO bulks with a new kind of liquidsource Journal of Materials Science,44(23)(2009)6423-6426
    [131] Babu N H, Lo W, Cardwell D A and Campbell A M, The irreversibility behavior ofNdBaCuO fabricated by top-seeded melt processing Appl. Phys. Lett.,75(19)(1999)2981-2983
    [132] Ma X H, Su X T, Yan Q Z, Jiao Y L, Xiao L, Ge C C, Performance of Gd-Ba-Cu-OSuperconductor Bulks with Ultrafine Gd2BaCuO5Powders Prepared by Low-TemperatureCombustion Synthesis Materials Science Forum,546-549(PART4)(2007)2111-2114
    [133] Muralidhar M, Sakai N, Chikumoto N, Jirsa M, Machi T, Nishiyama M, Wu Y andMurakami M, New Type of Vortex Pinning Structure Effective at Very High Magnetic FieldsPhys. Rev. Lett.,89(23)(2002)237001/1-237001/4
    [134] Jin S, Tiefel T H, Sherwood R C, Van Dover R B, Davis M E, Kammlott G W andFasnacht R A, Melt-textured growth of polycrys-talline YBa2Cu3O7with high transport Jcat77K Phys. Rev. B,37(13)(1988)7850–7853
    [135] Wang J, Monot I, Marinel S and Desgardin G, Controlled growth of single-grainYBa2Cu3O7by top-seeding melt-texturing Mater. Lett.,33(3/4)(1997)215–219
    [136] Cai C, Tachibana K and Fujimoto H, Study on single-domain growth ofY1.8Ba2.4Cu3.4Oy/Ag system by using Nd123/MgO thin film as Seed Supercond. Sci.Technol.,13(6)(2000)698–702
    [137] Kuznetsov M, Krauns C, Nakamura Y, Izumi T and Shiohara Y, Ternary phasediagram of SmO1.5BaO CuO y system for meltprocessing Phys. C,357–360(2001)1068–1072
    [138] Kambara M, Tagami M, Yao X, Goodilin A, Umeda T and Shiohara Y,Construction of the quasi-ternary phase diagram in the NdO1.5BaO CuO x system in anair atmosphere: Part I, equilibrium tie lines in the Nd1+xBa2xCu3O6+solid solution andliquid region J. Amer. Ceram. Soc.,81(8)(1998)2116–2124
    [139] Yoo S I, Sakai N, Takaichi H and Murakami M, Melt processing for obtainingNdBa2Cu3O y superconductors with high Tc and large Jc Appl. Phys. Lett.,65(5)(1994)633–635
    [140] Zeng X H, Yao X, Hu J, Zhang Y L and Li G, Study on theNdBCO LPE thick filmseed for the melt-textured growth of YBCO and (Y,Sm)BCO Phys. C,412–414(2004)103–106
    [141] Jee Y A, Kim C J, Sung T H and Hong G W, Top-seeded meltgrowth ofY–Ba–Cu–O superconductor with multiseeding Supercond.Sci. Technol.,13(2)(2000)195–201
    [142] Xu X Q, Cai Y Q, Yang C X, Yao X, Xu S, Kortyka A and Puzniak R, Effect of Prdoping on the growth and superconducting prop-erties of (Y1xPrx) Ba2Cu3O7Supercond.Sci. Technol.,22(1)(2009)015001
    [143] Yao X and Shiohara Y, Process for high growth rate and high supercon-ductingproperties of REBCO single crystals Mater. Sci. Eng. B,53(1/2)(1998)11–17
    [144] Marinel S, Wang J, Monot I, Delamare M P, Provost J and Desgardin G,Top-seeding melt texture growth of single-domain super-conducting YBa2Cu3O7PelletsSupercond. Sci. Technol.,10(3)(1997)147–155
    [145] Wu X D, Xu K X, Qiu J H, Pan P J and Zhou K, Phys. C,468(6)(2008)435–441
    [146] Ikuta H, Ikeda S, Mase A, Yoshikawa M, Yanagi Y, Itoh Y, Oka T and Mizutani U,Melt-processing of Ag-added LRE–Ba–Cu–O (LRE=Nd, Sm) Appl. Supercond.,6(2–5)(1998)109–117
    [147] Nariki S, Sakai N, Murakami M and Hirabayashi I, Fabrication and superconductingproperties of Gd–Ba–Cu–O single-grain bulk with bar-ium cerate addition Phys. C,445–448(2006)291–294
    [148] Nariki S., Sakai N, Murakami M and Hirabayshi I, High critical current density inY–Ba–Cu–O bulk superconductors with very fine Y211particles Supercond. Sci. Technol.,17(2)(2004) S30–S35
    [149] Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L and Mao Z Q,Superconductivity close to magnetic instability in Fe(Se1xTex)0.82Phys. Rev. B,78(2008)224503
    [150] Sales B C, Sefat A S, McGuire M A, Jin R Y, Mandrus Y D and Mozharivskyj Y,Charge-carrier localization induced by excess Fe in the superconductor Fe1+yTe1xSexPhys.Rev. B,79(2009)094521
    [151] Liu T J, et al., From (π,0) magnetic order to superconductivity with (π,π) magneticresonance in Fe1.02Te1xSexNature Mater.,9(2010)718
    [152] Medvedev S, et al., Electronic and magnetic phase diagram of-Fe1.01Se withsuperconductivity at36.7K under pressure Nature Mater.,8(2009)630
    [153] Horigane K, Takeshita N, Lee C-H, Hiraka H and Yamada K, First Investigation ofPressure Effects on Transition from Superconductive to Metallic Phase in FeSe0.5Te0.5J.Phys. Soc. Japan,78(2009)063705
    [154] Subedia A, Zhang L, Singh D J and Du M H, Density functional study of FeS, FeSe,and FeTe: Electronic structure, magnetism, phonons, and superconductivity Phys. Rev. B78(2008)134514
    [155] H. Okamoto: The Fe-Se (Iron-Selenium) System, J. Phase Equilibria,12(3)(1991)pp.383-89
    [156] MaQueen T M, Huang Q., Ksenofontov V., Felser C., et al., Extreme sensitivityof superconductivity to stoichiometry in Fe1+Se Phys. Rev. B,79(2009)014522
    [157] Zhang S B et al., Crystal growth and superconductivity of FeSexSupercond. Sci.Technol.,22(2009)015020
    [158] Hu R, Lei H, Abeykoon M, Bozin E S, Billinge S J L, Warren J B, Siegrist T andPetrovic C, The superconducting transition temperatures of Fe1+xSe1y, Fe1+xSe1yTeyand(K/Rb/Cs)zFe2xSe2Phys. Rev. B,83(2009)224502
    [159] Mok B H, et al., Growth and investigation of crystals of the new superconductora-FeSe from KCl solutions Cryst.Growth Des.,9(2009)3260
    [160] Yeh K W, Ke C T, Huang T W, Chen T K, Huang Y L, Wu P M and Wu M K,Superconducting FeSe1xTexSingle Crystals Grown by Optical Zone-Melting TechniqueCryst. Growth Des.,9(2009)4847
    [161] Sales B C, Sefat A S, McGuire M A, Jin R Y, Mandrus D and Mozharivskyj Y,Bulk superconductivity at14K in single crystals of Fe1+yTexSe1xPhys. Rev. B,79(2009)094521
    [162] Chen G F, Chen Z G, Dong J, Hu W Z, Li G, Zhang X D, Zheng P, Luo J L andWang N L, Electronic properties of single-crystalline Fe1.05Te and Fe1.03Se0.30Te0.70Phys. Rev.B,79(2009)140509(R)
    [163] Katayama N, Ji S, Louca D, Lee S, Fujita M, Sato T, Wen J, Xu Z, Gu G, Xu G,Lin Z, Enoki M, Chang S, Yamada K, and Tranquada J M. Investigation of the Spin-GlassRegime between the Antiferromagnetic and Superconducting Phases in Fe1+ySexTe1-xJ. Phys.Soc.Japan,79(2010)113702

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700