氧化锌薄膜及其与钙钛矿氧化物异质结特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种直接宽带隙半导体,在蓝紫外发光器件、光电转换器件、稀磁半导体、气敏传感器、透明导电材料、透明薄膜晶体管等方面都有着广阔的应用前景。纤锌矿结构的ZnO晶体沿着c轴方向具有极性,自发极化对ZnO的光电性能、化学性质等都有重要影响。本文成功制备了ZnO外延膜及其与钙钛矿氧化物的外延异质结,重点研究了极性对ZnO薄膜及其异质结性质的影响。我们的研究对新型多功能ZnO器件的未来应用具有重要的指导意义。
     利用脉冲激光沉积的方法,选用不同取向的SrTiO3(STO)单晶衬底,通过控制生长条件,我们能够能同时制备出表面为非极性面的Zn(110)(称为a取向)和表面为极性面的ZnO(001)(称为c取向)两种取向的外延薄膜。尽管两者的生长温度、氧气压强、激光能量等镀膜条件完全一样,但是我们发现a取向ZnO(110)薄膜的电阻率要远远大于c取向ZnO(001)薄膜的电阻率。通过深入分析,我们提出a取向ZnO(110)薄膜由于面内的自发极化在晶粒界面形成势垒,增加了对电子的散射,从而会导致很高的电阻率。实验结果与理论模型符合的非常好,通过计算得到室温下自发极化引起的能带弯曲大小约为0.22eV。
     Nb掺杂的SrTiO3(NSTO)衬底具有良好的导电性,我们在NSTO衬底上成功制备了具有良好整流特性的ZnO/NSTO外延异质结。不同极性取向的ZnO异质结的I-V特性差别很明显。ZnO(110)/NSTO(001)异质结的电流要明显大于ZnO(001)/NSTO(110)异质结的电流。我们认为,由于NSTO具有很强的热电效应,c取向的ZnO薄膜在沉积的过程中带正电的Zn离子会优先沉积到基片上面,所以制备的ZnO是以O离子为表面的面。由于ZnO的极性效应,ZnO(001)/NSTO(110)异质结界面处ZnO一侧的能带会向上弯曲,抬高了界面处的势垒高度,从而增加了结电阻。将ZnO与p型材料LSMO、LCMO制备成异质结,也能得到良好的整流特性。在相同的温度和电压下,ZnO/LCMO/NSTO(001)异质结的电阻要小于ZnO/LCMO/NSTO(110)异质结的电阻。
     另外,我们还制备了LCMO/NSTO异质结。在ZnO/LCMO/NSTO(001)和LCMO/NSTO异质结中,都观察到了良好的整流特性和显著的负磁阻现象。而且,LCMO/NSTO(110)异质结的磁阻数值要明显大于LCMO/NSTO(001)异质结。
Wurtize ZnO is a direct wide-band gap semiconductor. It is attractive because of itspotential applications in many fields including blue-ultraviolet light emitting diodes,optoelectronic devices, diluted magnetic semiconductors, gas sensors, transparentconducting oxides as well as transparent thin film transistors. Due to its lack ofinversion symmetry, wurtzite ZnO is a polar oxide with a polar direction along the caxis. The spontaneous polarization along the c-axis will affect the structural, optical,electrical, and chemical properties of ZnO thin films and nano-structures. In this thesis,we succeeded in fabricating the epitaxial ZnO thin films and heterojunctions withperovskite oxides. Our focus is mainly on the influence of polarity on the properties ofthe ZnO thin film and heterostructures. Our investigations are of importance fordeveloping new functional ZnO related devices.
     With the method of pulsed laser deposition, nonpolar (110)(a plane) and polar(001)(c-plane) oriented ZnO epitaxial thin films can be grown simultaneously on the(001) and (110) oriented SrTiO3substrates, respectively. Although all the growthparameters are the same, the resistivity of the a-plane ZnO film is much higher than thatof the c-plane film. We attribute the larger resistivity of a-plane ZnO thin films to thebarrier height at the grain boundaries induced by the in-plane spontaneous polarization,which enhances the scattering of electrons passing through the grain boundaries. Ourexperiment data can be well fitted by the theoretical model, yielding a barrier height ofabout0.22eV at room temperature.
     Nb-doped SrTiO3(NSTO) is conductive. Both nonpolar ZnO(110)/NSTO(001) andpolar ZnO(001)/NSTO(110) epitaxial heterostructures with good rectifyingcharacteristics are fabricated. We found that at the same voltage bias, the current ofnonpolar ZnO(110)/NSTO(001) heterostructure is larger than that of the polarZnO(001)/NSTO(110) heterostructure. We proposed that during the growth of the polarZnO thin films on the NSTO substrates, the inevitable temperature gradient across theNSTO substrate generates a layer of excess negative charges on the substrate surfacedue to the significant pyroelectric effect of NSTO. Consequently, the positively chargedZn ions should be deposited first on the NSTO substrate. The as-prepared ZnO film is terminated by O layer on the free surface with the spontaneous polarization pointing tothe surface. The negative bound polarization charges at the interface would bend theenergy band upward, and increase the barrier height of the heterostructure. So thec-ZnO/NSTO(110) heterostructure showed larger resistance than the other. Theheterostructures of ZnO with p-type perovskite oxides, LSMO and LCMO, also showgood rectifying property. The current of ZnO/LCMO/NSTO(001) heterostructure islarger than that of the ZnO/LCMO/NSTO(110) heterostructure, which can be explainedby the influence of polarity of ZnO as well.
     Giant negative magnetoresistance was observed in the heterostructure of ZnO(110)/LCMO/NSTO(001). In order to investigate the mechanism of magetoresistance,we also made LCMO/NSTO heterostructures with different orientations. Both LCMO/NSTO(001) and LCMO/NSTO(110) heterostructure showed good rectifying propertiesand significant magnetoresistance. We also find that the magnetoresisatnce of theformer heterostructure is much larger than that of the latter. The underlying mechanismneeds further investigations.
引文
[1]叶志镇,吕建国,张银珠,等.氧化锌半导体材料掺杂技术与应用.1版.杭州:浙江大学出版社,2009.
    [2] Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices.Journal of Applied Physics,2005,98:0413014.
    [3] Landolt-Bornstein. New Series, Group III,41B. Heidelberg: Springer,1999.
    [4] Yang Y, Sun X W, Tay B K, et al. A p-n homojunction ZnO nanorod light-emitting diodeformed by As ion implantation. Applied Physics Letters,2008,93:25310725.
    [5] Karzel H, Potzel W, Kofferlein M, et al. Lattice dynamics and hyperfine interactions in ZnOand ZnSe at high external pressures. Physical Review B,1996,53(17):11425-11438.
    [6] Kisi E H, Elcombe M M. Upsilon-parameters for the wurtzite structure of ZnS and ZnO usingpowder neutron-diffraction. Acta Crystallographica Section C-crystal StructureCommunications,1989,45(Part12):1867-1870.
    [7] Catti M, Noel Y, Dovesi R. Full piezoelectric tensors of wurtzite and zinc blende ZnO andZnS by first-principles calculations. Journal of Physics and Chemistry of Solids,2003,64(11):2183-2190.
    [8] Desgreniers S. High-density phases of ZnO: Structural and compressive parameters. PhysicalReview B,1998,58(21):14102-14105.
    [9] Gerward L, Olsen J S. The high-pressure phase of zincite. Journal of Synchrotron Radiation,1995,2(Part5):233-235.
    [10] Reeber R R. Lattice parameters of ZnO from4.2degrees to296degrees k. Journal of AppliedPhysics,1970,41(13):5063.
    [11] Jaffe J E, Hess A C. Hartree-fock study of phase-changes in ZnO at high-pressure. PhysicalReview B,1993,48(11):7903-7909.
    [12] Noel Y, Zicovich-Wilson C M, Civalleri B, et al. Polarization properties of ZnO and BeO: Anab initio study through the Berry phase and Wannier functions approaches. Physical ReviewB,2002,65:0141111.
    [13] Heiland G, Kunstman. P. Polar surfaces of zinc oxide crystals. Surface Science,1969,13(1):72.
    [14] Long H, Fang G J, Li S Z, et al. A ZnO/ZnMgO Multiple-Quantum-Well Ultraviolet RandomLaser Diode. IEEE Electron Device Letters,2011,32(1):54-56.
    [15] Chu S, Olmedo M, Yang Z, et al. Electrically pumped ultraviolet ZnO diode lasers on Si.Applied Physics Letters,2008,93:18110618.
    [16] Ma X Y, Chen P L, Li D S, et al. Electrically pumped ZnO film ultraviolet random lasers onsilicon substrate. Applied Physics Letters,2007,91:25110925.
    [17] Zhu H, Shan C X, Zhang J Y, et al. Low-Threshold Electrically Pumped Random Lasers.Advanced Materials,2010,22(16):1877.
    [18] Look D C, Claflin B, Alivov Y I, et al. The future of ZnO light emitters. Physica Status SolidiA-Applied Research,2004,201(10):2203-2212.
    [19] Long H, Fang G J, Huang H H, et al. Ultraviolet electroluminescence from ZnO/NiO-basedheterojunction light-emitting diodes. Applied Physics Letters,2009,95:0135091.
    [20] Liu H Y, Avrutin V, Izyumskaya N, et al. Transparent conducting oxides for electrodeapplications in light emitting and absorbing devices. Superlattices and Microstructures,2010,48(5):458-484.
    [21] Agura H, Suzuki A, Matsushita T, et al. Low resistivity transparent conducting Al-doped ZnOfilms prepared by pulsed laser deposition. Thin Solid Films,2003,445(2):263-267.
    [22] Park S M, Ikegami T, Ebihara K. Effects of substrate temperature on the properties ofGa-doped ZnO by pulsed laser deposition. Thin Solid Films,2006,513(1-2):90-94.
    [23] Ruske F, Roczen M, Lee K, et al. Improved electrical transport in Al-doped zinc oxide bythermal treatment. Journal of Applied Physics,2010,107(0137081).
    [24] Suzuki A, Matsushita T, Sakamoto Y, et al. Surface flatness of transparent conductingZnO:Ga thin films grown by pulsed laser deposition. Japanese Journal of Applied PhysicsPart1-Regular Papers Short Notes&Review Papers,1996,35(10):5457-5461.
    [25] Nakahara K, Tamura K, Sakai M, et al. Improved external efficiency InGaN-basedlight-emitting diodes with transparent conductive Ga-doped ZnO as p-electrodes. JapaneseJournal of Applied Physics Part2-Letters,2004,43(2A):L180-L182.
    [26] Ataev B M, Bagamadova A M, Mamedov V V, et al. Highly conductive and transparent thinZnO films prepared in situ in a low pressure system. Journal of Crystal Growth,1999,198(Part2):1222-1225.
    [27] Shi J, Starr M B, Xiang H, et al. Interface Engineering by Piezoelectric Potential inZnO-Based Photoelectrochemical Anode. Nano Letters,2011,11(12):5587-5593.
    [28] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays.Science,2006,312(5771):242-246.
    [29] Wang Z L. Ten years' venturing in ZnO nanostructures: from discovery to scientificunderstanding and to technology applications. Chinese Science Bulletin,2009,54(22):4021-4034.
    [30] Gu H, Jiang Y Z, Xu Y B, et al. Evidence of the defect-induced ferromagnetism in Na and Cocodoped ZnO. Applied Physics Letters,2011,98:0125021.
    [31] Snure M, Kumar D, Tiwari A. Progress in Zno-based diluted magnetic semiconductors. JOM,2009,61(6):72-75.
    [32] Kolesnik S, Dabrowski B, Mais J. Structural and magnetic properties of transition metalsubstituted ZnO. Journal of Applied Physics,2004,95(5):2582-2586.
    [33] Venkatesan M, Fitzgerald C B, Lunney J G, et al. Anisotropic ferromagnetism in substitutedzinc oxide. Physical Review Letters,2004,93:17720617.
    [34] Hong N H, Brize V, Sakai J. Mn-doped ZnO and (Mn,Cu)-doped ZnO thin films: Does the Cudoping indeed play a key role in tuning the ferromagnetism? Applied Physics Letters,2005,86:0825058.
    [35] Liu X, Lin F, Sun L, et al. Doping concentration dependence of room-temperatureferromagnetism for Ni-doped ZnO thin films prepared by pulsed-laser deposition. AppliedPhysics Letters,2006,88:0625086.
    [36] Pawar R C, Shaikh J S, Suryavanshi S S, et al. Growth of ZnO nanodisk, nanospindles andnanoflowers for gas sensor: pH dependency. Current Applied Physics,2012,12(3):778-783.
    [37] Su X T, Zhao H, Xiao F, et al. Synthesis of flower-like3D ZnO microstructures and theirsize-dependent ethanol sensing properties. Ceramics International,2012,38(2):1643-1647.
    [38] Lo C F, Chu B H, Pearton S J, et al. Effect of temperature on CO detection sensitivity of ZnOnanorod-gated AlGaN/GaN high electron mobility transistors. Applied Physics Letters,2011,99:14210714.
    [39] Lee H U, Ahn K, Lee S J, et al. ZnO nanobarbed fibers: Fabrication, sensing NO(2) gas, andtheir sensing mechanism. Applied Physics Letters,2011,98:19311419.
    [40] Clarke D R. Varistor ceramics D-2616-2009. Journal of the American Ceramic Society,1999,82(3):485-502.
    [41] Asokan T, Freer R. Dependence of ZnO varistor grain-boundary resistance on sinteringtemperature. Journal of Materials Science Letters,1994,13(13):925-926.
    [42] Bueno P R, Varela J A, Longo E. SnO2, ZnO and related polycrystalline compoundsemiconductors: An overview and review on the voltage-dependent resistance (non-ohmic)feature H-1692-2011. Journal of the European Ceramic Society,2008,28(3):505-529.
    [43] Rackauskas S, Mustonen K, Jarvinen T, et al. Synthesis of ZnO tetrapods for flexible andtransparent UV sensors. Nanotechnology,2012,23:0955029.
    [44] Han J H, Yoshimizu N, Jiang C, et al. Electroluminescence from a suspended tip-synthesizednano ZnO dot. Applied Physics Letters,2011,98:12111312.
    [45] Joshi A G, Sahai S, Gandhi N, et al. Valence band and core-level analysis of highlyluminescent ZnO nanocrystals for designing ultrafast optical sensors C-4908-2009. AppliedPhysics Letters,2010,96:12310212.
    [46] Yang Y, Qi J J, Zhang Y, et al. Controllable fabrication and electromechanicalcharacterization of single crystalline Sb-doped ZnO nanobelts G-8619-2011. AppliedPhysics Letters,2008,92:18311718.
    [47] Osinsky A V, Dong J W, Xie J Q, et al. ZnCdO/ZnMgO and ZnO/AlGaN heterostructures forUV and visible light emitters//GaN, AIN, InN and Related Materials. Warrendale: MaterialsResearch Society,2006:429-437.
    [48] Goniakowski J, Finocchi F, Noguera C. Polarity of oxide surfaces and nanostructures. Reportson Progress in Physics,2008,71:0165011.
    [49] Noguera C. Polar oxide surfaces. Journal of Physics-Condensed Matter,2000,12(31):R367-R410.
    [50] Bernardini F, Fiorentini V, Vanderbilt D. Spontaneous polarization and piezoelectricconstants of III-V nitrides. Physical Review B,1997,56(16):10024-10027.
    [51] Dulub O, Diebold U, Kresse G. Novel stabilization mechanism on polar surfaces:ZnO(0001)-Zn. Physical Review Letters,2003,90:0161021.
    [52] Dulub O, Boatner L A, Diebold U. STM study of the geometric and electronic structure ofZnO(0001)-Zn,(000(1)over-bar)-O,(10(1)over-bar0), and (11(2)over-bar0) surfaces. SurfaceScience,2002,519(3):201-217.
    [53] Tsukazaki A, Ohtomo A, Kita T, et al. Quantum Hall effect in polar oxide heterostructures.Science,2007,315(5817):1388-1391.
    [54] Makino T, Segawa Y, Tsukazaki A, et al. Photoexcitation screening of the built-in electricfield in ZnO single quantum wells. Applied Physics Letters,2008,93:12190712.
    [55] Allen M W, Miller P, Reeves R J, et al. Influence of spontaneous polarization on the electricaland optical properties of bulk, single crystal ZnO. Applied Physics Letters,2007,90:0621046.
    [56] Yang A L, Song H P, Wei H Y, et al. Measurement of polar C-plane and nonpolar A-planeInN/ZnO heterojunctions band offsets by x-ray photoelectron spectroscopy. Applied PhysicsLetters,2009,94:16330116.
    [57]黄明强,陈烈,吴培均,等. YBCO薄膜双晶结DCSQUID的研制.低温物理学报,1996(4):288-293.
    [58] Wu Y L, Zhang L W, Xie G L, et al. Fabrication and transport properties of ZnO/Nb-1wt.%-doped SrTiO3epitaxial heterojunctions. Applied Physics Letters,2008,92:0121151.
    [59] Xie G L, Wang Y H, Ren T L, et al. Evolution of resistive switching polarity in Au/Ar+bombarded SrTi0.993Nb0.007O3/In sandwiches. Chinese Science Bulletin,2012,57(1):20-24.
    [60] Cui Y M, Zhang L W, Wang R M, et al. Investigation of metal contacts to Nb-1.0wt.%-dopedSrTiO3. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2007,138(3):214-218.
    [61] Robertson J. Band offsets of wide-band-gap oxides and implications for future electronicdevices. Journal of Vacuum Science&Technology B,2000,18(3):1785-1791.
    [62] Henrich V E, Dresselhaus G, Zeiger H J. Surface defects and electronic-structure of srtio3surfaces. Physical Review B,1978,17(12):4908-4921.
    [63] Jonker G H. Magnetic compounds with perovskite structure.4. conducting andnon-conducting compounds. Physica,1956,22(8):707-722.
    [64] Wollan E O. Neutron diffraction study of the magnetic properties of the series ofperovskite-type compounds [(1-x)la,xca]mno3. Physical Review,1955,100(2):545-563.
    [65] Zener C. Interaction between the d-shells in the transition metals. Physical Review,1951,81(3):440-444.
    [66] Goodenough J B. Theory of the role of covalence in the perovskite-type manganites[La,M(ii)]MnO3. Physical Review,1955,100(2):564-573.
    [67] Searle C W, Wang S T. Studies of Ionic Ferromagnet (lapb)mno3.3. FerromagneticResonance Studies. Canadian Journal of Physics,1969,47(23):2703.
    [68] Chahara K, Ohno T, Kasai M, et al. Magnetoresistance in Magnetic Manganese Oxide withIntrinsic Antiferromagnetic Spin Structure. Applied Physics Letters,1993,63(14):1990-1992.
    [69] Vonhelmolt R, Wecker J, Holzapfel B, et al. Giant Negative Magnetoresistance in Perovskitelikela2/3ba1/3mnox Ferromagnetic-Films. Physical Review Letters,1993,71(14):2331-2333.
    [70] Jin S, Tiefel T H, Mccormack M, et al. Thousandfold Change in Resistivity in MagnetoresistiveLa-Ca-Mn-O Films. Science,1994,264:413-415.
    [71] Dagotto E, Burgy J, Moreo A. Nanoscale phase separation in colossal magnetoresistancematerials: lessons for the cuprates. Solid State Communications,2003,126(1-2):9-22.
    [72] Gubanov A I. Teoriya kontakta dvukh poluprovodnikov s provodimostyu odnogo tipa.Zhurnal Tekhnicheskoi Fiziki,1951,21(3):304-315.
    [73] Gubanov A I. K Teorii poluprovodnikov so smeshannoi provodimostyu. ZhurnalEksperimentalnoi i Teoreticheskoi Fiziki,1951,21(1):79-87.
    [74] Gubanov A I. K Teorii kontaktnykh yavlenii v poluprovodnikakh. Zhurnal TekhnicheskoiFiziki,1952,22(5):729-735.
    [75] Kroemer H. Theory of a wide-gap emitter for transistors. Proceedings of the Institute of Radioengineers,1957,45(11):1535-1537.
    [76] Anderson R L. Germanium-gallium arsenide heterojunctions. IBM Journal of Research andDevelopment,1960,4(3):283-287.
    [77] Anderson R L. Experiments on ge-gaas heterojunctions. Solid-State electronics,1962,5:341.
    [78] Rhoderick E H, Williams R H. Metal-Semiconductor Contacts. Oxford: Claredon,1988.
    [79] Sharma B L, Purohit R K. Semiconductor Hererojuntions. Oxford:1974.
    [80]虞丽生.半导体异质结物理.北京:科学出版社,2006.
    [81] Perlman S S, Feucht D L. p-n heterojunctions. Solid-State Electronics,1964,7(12):911-923.
    [82] Chen Y F, Bagnall D M, Koh H J, et al. Plasma assisted molecular beam epitaxy of ZnO onc-plane sapphire: Growth and characterization. Journal of Applied physics,1998,84(7):3912-3918.
    [83] Yamamoto T, Shiosaki T, Kawabata A. Characterization of zno piezoelectric films preparedby rf planar-magnetron sputtering. Journal of Applied Physics,1980,51(6):3113-3120.
    [84] Lau C K, Tiku S K, Lakin K M. Growth of epitaxial zno thin-films by organometallicchemical vapor-deposition. Journal of the Electrochemical Society,1980,127(8):1843-1847.
    [85] Selvan J S, Fujimura M, Suhara T. Fabrication of Zn-indiffused LiNbO3optical waveguidesby diffusing sol-gel spin-coated ZnO film at low-pressure atmosphere. Japanese Journal ofApplied Physics Part1-Regular Papers Short Notes&Review Papers,2004,43(8A):5313-5315.
    [86] Vispute R D, Talyansky V, Choopun S, et al. Heteroepitaxy of ZnO on GaN and itsimplications for fabrication of hybrid optoelectronic devices. Applied Physics Letters,1998,73(3):348-350.
    [87] Honig R E, Woolston J R. Laser-induced emission of electrons, ions, and neutral atoms fromsolid surfaces. Applied Physics Letters,1963,2(7):138-139.
    [88] Smith H M, Turner A F. Vacuum deposited thin films using a ruby laser. Applied Optics,1965,4(1):147.
    [89] Dijkkamp D, Venkatesan T, Wu X D, et al. Preparation of y-ba-cu oxide superconductorthin-films using pulsed laser evaporation from high-tc bulk material. Applied Physics Letters,1987,51(8):619-621.
    [90] Bierwagen O, Pomraenke R, Eilers S, et al. Mobility and carrier density in materials withanisotropic conductivity revealed by van der Pauw measurements. Physical Review B,2004,70:16530716.
    [91] Da Luz M S, Dos Santos C, Shigue C Y, et al. The van der Pauw method of measurements inhigh-T(c) superconductors. Materials Science-Poland,2009,27(2):569-579.
    [92] Demircan O, Xu C C, Zondlo J, et al. In situ Van der Pauw measurements of the Ni/YSZanode during exposure to syngas with phosphine contaminant. Journal of Power Sources,2009,194(1):214-219.
    [93] Din M, Gould R D. Van der Pauw resistivity measurements on evaporated thin films ofcadmium arsenide, Cd3As2. Applied Surface Science,2006,252(15):5508-5511.
    [94] Guo Y, Liu Y P, Li J Q, et al. Van der Pauw Hall Measurement on Intended Doped ZnOFilms for p-Type Conductivity. Chinese Physics Letters,2010,27:0672036.
    [95] Heller R B, Mcgannon J, Weber A H. Precision determination of the lattice constants of zincoxide. Journal of Applied Physics,1950,21(12):1283-1284.
    [96] Hutton J, Nelmes R J, Meyer G M, et al. High-resolution studies of cubic perovskites byelastic neutron-diffraction-cspbcl3. Journal of Physics C-Solid State Physics,1979,12(24):5393-5410.
    [97] Heiland G, Ibach H. Pyroelectricity of zinc oxide. Solid State Communications,1966,4(7):353.
    [98] Ellmer K, Mientus R. Carrier transport in polycrystalline transparent conductive oxides: Acomparative study of zinc oxide and indium oxide. Thin Solid Films,2008,516(14):4620-4627.
    [99] Nakano M, Makino T, Tsukazaki A, et al. Transparent polymer Schottky contact for a highperformance visible-blind ultraviolet photodiode based on ZnO. Applied Physics Letters,2008,93:12330912.
    [100] Ehre D, Lyahovitskaya V, Tagantsev A, et al. Amorphous piezo-and pyroelectric phases ofBaZrO3and SrTiO3. Advanced Materials,2007,19(11):1515.
    [101] Anderson P W, Hasegawa H. Considerations on double exchange. Physical Review,1955,100(2):675-681.
    [102] Millis A J, Littlewood P B, Shraiman B I. Double exchange alone does not explain theresistivity of La1-xSrxMnO3. Physical Review Letters,1995,74(25):5144-5147.
    [103] Millis A J, Shraiman B I, Mueller R. Dynamic Jahn-Teller effect and colossalmagnetoresistance in La1-xSrxMnO3. Physical Review Letters,1996,77(1):175-178.
    [104] Sugiura M, Uragou K, Noda M, et al. First demonstration of rectifying property of p-i-nheterojunctions fabricated by tri-layered semiconducting oxides. Japanese Journal of AppliedPhysics Part1-Regular Papers Short Notes&Review Papers,1999,38(4B):2675-2678.
    [105] Tanaka H, Zhang J, Kawai T. Giant electric field modulation of double exchangeferromagnetism at room temperature in the perovskite manganite/titanate p-n junction.Physical Review Letters,2002,88:0272042.
    [106] Jin K J, Lu H B, Zhou Q L, et al. Positive colossal magnetoresistance from interface effect inp-n junction of La0.9Sr0.1MnO3and SrNb0.01Ti0.99O3. Physical Review B,2005,71:18442818.
    [107] Yan L, Goh W C, Ong C K. Magnetic and electrical properties of La0.7Sr0.3MnO3-Zn0.8Co0.2Al0.01O junctions on silicon substrates. Journal of Applied Physics,2005,97:10390310.
    [108] Jin K X, Zhao S G, Chen C L, et al. Positive colossal magnetoresistance effect inZnO/La0.7Sr0.3MnO3heterostructure. Applied Physics Letters,2008,92:11251211.
    [109] Xiong Y M, Wang G Y, Luo X G, et al. Magnetotransport properties in La1-xCaxMnO3(x=0.33,0.5) thin films deposited on different substrates. Journal of Applied Physics,2005,97:0839098.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700