高温超导双晶结导向磁通运动以及太赫兹混频检测器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高温超导YBa_2Cu_3O_(7-δ)单晶中有许多的孪晶,对于研究磁通精确运动来说体系比较复杂。我们利用双晶结中人工制造的,单个的双晶晶界,通过控制晶界的位置和取向,研究了晶界对磁通的诱导作用,进一步揭示晶界钉扎诱导下的磁通霍尔流动(霍尔电阻反常)。为我们深入研究太赫兹与高温超导约瑟夫森结的相互作用机理,分析双晶结的电磁噪声性能等提供重要的理论实验依据。本论文的主要研究工作与创新成果:
     利用人工双晶晶界研究纵向磁致电阻和霍尔磁致电阻对温度、电流、磁场的依赖关系。晶界的存在将影响YBa_2Cu_3O_(7-δ)薄膜的磁通输运特性,由于晶界对磁通的诱导作用,倾斜的晶界将增加体系中磁通的横向运动分量,从而大大增加体系的霍尔电阻。
     得到了双晶晶界存在时高温超导薄膜的H-T相图。相图分为四个区域:完全超导态、晶界流动态、磁通流动态以及正常态,而晶界流动态在超导薄膜中是没有被看到的。驱动电流与磁场越大,磁通晶界流动态的范围越大。
     低磁场情况下,晶界的Ⅰ-Ⅴ特性曲线出现磁通晶格运动模式转变引起的电压台阶型跳跃;在场冷剩场情况下,Ⅰ-Ⅴ特性曲线特殊的回滞现象,说明双晶晶界内部点钉扎力的不均匀性。
     运用电子束曝光(EB)技术成功制备了800nm结宽的带有天线的YBa_2Cu_3O_(7-δ)双晶结太赫兹超导混频器,由于超流减小,提高了对太赫兹波灵敏度;运用新的工艺方法--两次减薄,酸刻和干刻结合的方法成功制备了T1_2Ba_2Ca_3Cu4O_(12-δ)双晶结,结的稳定性大幅提高。研究高温超导双晶结太赫兹的谐波混频器,测量了基本特性,表明其具有灵敏度和谐波次数高等独特的优点。
Artificial pinning defects, which is usually used to control vortex motion, has been a topic of great interest in the field of vortex dynamics in recent years. Vortex is a macroscopic quantum phenomenon wherein an individual vortex is quantized. Precise control of an individual quantized vortex plays an important role in growing number of flux devices. YBa2Cu3O7-σ (YBCO) single crystals normally have a large quantity of twin bound-aries (TBs), which have been studied through numerous experimental techniques and theoretical calculations. A large amount of TBs introduce complexity to research on the precise motion of vortices. In this study, we use an individual artificial YBCO bicrystal grain boundary (GB). The principle of the bicrystal technology consists of growing a film epitaxially on a bicrystalline substrate. Owing to epitaxial growth, the substrate grain boundary is replicated in the film. This technique enables one to fabricate well-defined grain boundaries of many misorientations.
     GBs can locally reduce superconduction, depair current density, suppress the onset of vortex penetration, and increase power dissipation. GBs can act as easy-flow channels for vortex motion. We study guiding of vortices in a YBCO film with an individual inclined GB. Dissipative resistance in high-Tc superconductor (HTS) YBCO films caused by guiding of vortices with the GB is highly dependent on the location of the GB. We investigate the dependence of both longitudinal (Rxx) and transversal (Rxy) magnetoresistances on the orientation of the GB, temperature, current density, and magnetic field intensity. The inclined GB has a significant influence on transport properties of YBCO film.
     We have determined that the preferential vortices flow along the GB, which can be described as a channel flow state. An increase in temperature or magnetic field intensity leads to the destruction of the guided motion of vortices, and both longitudinal and transversal magnetoresistances are close to the properties of normal HTS films without GB. We present experimental measurements of the guiding effect in YBCO film with an individual GB oriented at the angle a=30°with respect to the direction of the applied current. We can also develop a significant magnetic-field temperature phase diagram in the presence of the GB, which reflects the important role of the GB in vortex transport properties of HTS.
     We used EB to fabricate800nm wide YBCO bicrystal junctions, and we used double reduction methord to fabricate TIBaCaCuO bicrystal junctions. Due to high temperature superconducting (HTS) Josephson junction has excellent high frequency and nonlinear properties, it can be used in HTS frequency mixer. HTS Josephson junction mixer has much excellence, including its high sensitivity and harmonic, low local oscillator frequency and microwave power, low noise and wide frequency band.
引文
1 D. Saint-James, G. Sarma, and E. T. Thomas, Type II Superconductivity, Pergamon, Oxford,1969.
    2吴杭生、管惟炎、李宏成著:《超导电性.第二类超导体和弱连接超导体》,科学出版社,北京,1979。
    3中国科学院物理研究所《超导电材料》编写组编:《超导电材料》,科学出版社,北京,1973。
    4胡立发,周廉,张平祥,高温超导的磁化与磁滞损耗,物理学报,2001,50(4),503-510。
    5丁世英,颜家烈,史可信,余正,高澎,童红武,YBaCu氧化物超导体磁化曲线性质的实验报告,低温物理学报,1987,9(3),60-64。
    6王卫卫,蒲明华,王文涛,赵勇,湿度对YBCO薄膜微观结构和超导性能的影响,超导技术,39(7),53-55。
    7闻海虎,高温超导体磁通动力学的一些重要进展,物理,2002,2。
    8 A. V. Samoilov, A. Legris, F. Rullier-Albenque, P. Lejay, S. Bouffard, Z. G. Ivanov, and L.-G. Johansson, Mixed-State Hall Conductivity in High-Tc Superconductors: Direct Evidence of Its Independence on Disorder, Phys. Rev. Lett.,1995,74, 2351-2356.
    9 Fisher M P A, Vortex-glass superconductivity:A possible new phase in bulk high-Tc oxides, Phys. Rev. Lett.,1989,62:1415-1418.
    10 Feigel'man MV, Geshkenbein VB, Larkin AI, Vinokur VM, Theory of collective flux creep, Phys. Rev. Lett.,1989,63:2303-2306
    11 P H Kes, J Aarts, J van den Berg, C J van der Beek and J A Mydosh, Thermally assisted flux flow at small driving forces, Supercond Sci. Technol.,1989,1:242-249.
    12 R. H. Koch, V. Foglietti, W. J. Gallagher, G. Koren, A. Gupta, and M. P. A. Fisher, Experimental evidence for vortex-glass superconductivity in Y-Ba-Cu-O, Phys. Rev. Lett.,1989,63:1511-1514.
    13 M. Charalambous, R. H. Koch, T. Masselink, T. Doany, C. Feild, and F. Holtzberg, Subpicovolt Resolution Measurements of the Current-Voltage Characteristics of Twinned Crystalline YBa2Cu3O7-x:New Evidence for a Vortex-Glass Phase, Phys. Rev. Lett.,1995,75:2578-2581.
    14 C Dekker, PJM Woltgens, RH Koch, and BW Hussey, Absence of a finite-temperature vortex-glass phase transition in two-dimensional YBa2Cu3O7-8 films, Phys. Rev. Lett.,1992,69:2717-2720.
    15 D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors, Phys. Rev.B., 1991,43:130-152.
    16 Hai-hu Wen, H. A. Radovan, F.M. Kamm, and P. Ziemann,2D Vortex-Glass Transition with Tg=0 K in Tl2Ba2CaCu2O8 Thin Films due to High Magnetic Fields, Phys. Rev. Lett.,1998,80:3859-862.
    17 Han H., Park H., Cho M., and Kim J., Field Induced Vanishing of the Vortex Glass Temperature in TI2Ba2CaCu208 Thin Films, Phys. Rev. Lett.,1997,79:1559-1962.
    18 H. Safar, P. L. Gammel, D. A. Huse, and D. J. Bishop, Experimental evidence for a multicritical point in the magnetic phase diagram for the mixed state of clean untwinned YBa2Cu307, Phys. Rev. Lett.,1993,70:3800-3803.
    19 E. Zeldov, D. Majer, M. Konczykowski, V. B. Geshkenbein, V. M. Vinokur, and H. Shtrikman, Nature,1995,375:373-375.
    20 G Blatter, MV Feigel'Man, VB Geshkenbein, Vortices in high-temperature superconductors, Rev. Mod Phys.,1994,66:1125-1128
    21 D Majer, E Zeldov, and M Konczykowski, Separation of the Irreversibility and Melting Lines in Bi2Sr2CaCu2O8 Crystals, Phys. Rev. Lett.,1995,75:1166-1169.
    22 Dan T. Fuchs, Eli Zeldov, Michael Rappaport, Tsuyoshi Tamegai, Shuuichi Ooi, and Hadas Shtrikman 1, Transport properties governed by surface barriers in Bi2Sr2CaCu208,Nature,1998,391:373-375.
    23 Fuchs, D.T., Zeldov, E., Tamegai, T., Ooi, S., Rappaport, M., Shtrikman, H, Possible new vortex matter phases in Bi2Sr2CaCu2O8., Phys.Rev.Lett, 1998,80:4971-4974
    24 A. Mazilu and H. Safar, Vortex dynamics of heavy-ion-irradiated YBa2Cu3O7-δ Experimental evidence for a:reduced vortex mobility at the matching field, Phys. Rev. B,1998,58:8913-8917.
    25 B. Khaykovich, E. Zeldov, D. Majer, T. W. Li, P. H. Kes, and M. Konczykowski, Vortex-Lattice Phase Transitions in Bi2Sr2CaCu2O8 Crystals with Different Oxygen Stoichiometry, Phys. Rev. B,1996,76:2555-2558.
    26 DaemlingM, Seuntjens J M, Larbalestier CD, Oxygen-defect flux pinning, anomalous magnetization and intra-grain granularity in YBa2Cu307-δ, Nature,1990, 346:332-335
    27 H. H. Wen, R. L. Wang, H. C. Li, B. Yin, S. Q. Guo, and Z. X. Zhao, Single vortex creep in TI2Ba2CaCu2O8 epitaxial thin films, Phys. Rev. B,1996,54, 1386-1390.
    28 Giamarchi, T. and Le Doussal, Moving glass phase of driven lattices, Appl. Phys. Lett.,,1996,76:3408-3411.
    29 Giamarchi, T. and Le Doussal, P., Elastic theory of pinned flux lattice, Phys. Rev. Lett.,1994,72:1530-1533.
    30 G Yang, P Shang, S D Sutton, I P Jones, J S Abell, Competing pinning mechanisms in Bi_{2} Sr_{2} CaCu_{2} O_{y} single crystals by magnetic and defect structural studies, Phys. Rev. B,1993,48:4054-4060.
    31 Kosterlitz J M, and Thouless D J. J, Ordering, metastability and phase transitions in two-dimensional systems, Phys. C,1973,6:1181-1186.
    32 Wen H H et al. EuroPhys. Lett.,1998,42:319-324.
    33 Duvillaret L., Garet F., Coutaz J. L., Highly precise determination of optical constants and sample thickness in terahertz time2domain spectroscopy., Applied Optics,1999,38(2):409.
    34 Peter H. Siegel, Terahertz Technology, IEEE Trans. Microw. Theory Tech. VOL.50, NO.3, MARCH (2002).
    35 Michael C Kemp, Millimetre Wave and Terahertz Technology for the Detection of Concealed Threats, A Review Pruc. Of SPIE, Vol.6402.
    36姚建铨,迟楠,杨鹏飞,太赫兹通信技术的研究与展望,中国激光第36卷第9期(2009).
    37刘盛纲,太赫兹科学技术的新发展,ChinaBasicScience,(2006).
    38刘盛纲,钟任斌,太赫兹科学技术及其应用的新发展,电子科技大学学报,第38卷,第5期,(2009).
    39 F. Sizov, THz radiation sensors, Opto-Electron. Rev,18, no.1, (2010).
    40 Masayoshi Tonouchi, Cutting-edge terahertz technology, nature photonics, VOL 1, (2007).
    41 Roger Appleby, H. Bruce Wallace, Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region, IEEE Trans. Antennas Propag. VOL.55, NO.11, (2007).
    42 Dean P. Neikirk, David B. Rutledge, and Michael S. Muha, Far-infrared imaging antenna arrays, Appl. Phys. Lett.40(3), (1982).
    43 Wang Yifeng, Mao Jingxian, Analysis on developmentstatus of Terahertz techno logy and application prospect, [J].2008,23(1):1-5.
    44 Qi Zumin, Study of applicati on of THz wave in military field, [J].2008,29(12): 1-4.
    45 Shen Jin, Rong Jian, Liu Wenxin, Progress of terahertz in communication technol ogy, Infrared and Laser Engineering,2006,35(z3):342-347.
    46 Xie Xu, Zhong Hua, and Yuan Tao, Terahertz imaging of defects in space shuttle foam insulation, Physicals,2003,32(9):583-584.
    47 Liu Shenggang, New developments of Terahertz technology, China Basic Science, 2006,8(1):7-12
    48 Zhang Lei, Xu Xinlong, Li Fuli, Review of the progress of Tray imaging, Chinese Journal of Quantum Electronics,2005,22(2):129-134.
    49 E. E. Haller, M. R. Hueschen and P. L. Richards, Ge:Ga photoconductors in low infrared backgrounds, Appl. Phys. Lett.34(8), (1979).
    50 Kodo Kawase, Jun-ichi Shikata and Hiromasa Ito, Terahertz wave parametric source J. Phys. D:Appl. Phys.34 (2001).
    51 Miikka Matias Kangas, CryogenicBolometer Systems, Dissertation for degree Doctor of Philosophy, University of California Santa Barbara, (2003).
    52 Boris S. Karasik, David Olaya, Jian Wei, Record-Low NEP in Hot-Electron Titanium Nanobolometers, IEEE Trans. Appl. Supercond, VOL.17, NO.2, (2007).
    53 P F Goldsmith, J Carpenter, N Erickson, Bolometers for Submillimeter and Millimeter Astronomy, Astronomical Society of the Pacific, Pages:463-491, (2002).
    54 Jian Wei, David Olaya, Boris S. Karasik, Ultrasensitive hot-electron nanobolometers for terahertz astrophysics, nature nanotechnology, VOL 3, (2008).
    55 Boris S. Karasik, David Olaya, Jian Wei, Record-Low NEP in Hot-Electron Titanium Nanobolometers, IEEE Trans. Appl. Supercond, VOL.17, NO.2, (2007).
    56 Jonas Zmuidzinas, Paul. L. Richards, Superconducting Detectors and Mixers for Millimeter and Submillimeter Astrophysics, Proc. IEEE, VOL.92, NO.10, (2004).
    57 R. Schoelkopf, S. Moseley, C. Stachle, P. Wahlgren, and P. Delsing, A concept for a submillimeter wave single-photon counter, Trans. Appl. Supercond.9, 2935-2939(1999).
    58 S. Ariyoshi,a_ C. Otani, A. Dobroiu, Terahertz imaging with a direct detector based on superconducting tunnel Junctions, Appl. Phys. Lett.88,203503 (2006)
    59 E. E. Bloemhof, The Application of superconducting tunnel junction detectors to astronomy, Int. J. Infrared Milli. Waves, Vol.20, No.12,1999.
    60 D.R. Schmidt, K.W. Lehnert, A.M. Clark, W.D. Duncan, K.D. Irwin, N. Miller, and J.N. Ullom, A superconduc-tor-insulator-normal metal bolometer with microwave readout suitable for large-format arrays, Appl. Phys. Lett.86,053505 (2005).
    61 R. Blundell and K.H. Gundlach, A quasioptical SIN mixer for 230 GHz frequency range, Int. J. Infrared Milli. Waves,8,1573-1579 (1987).
    62 Jhon R. Tucker, Marc J. Feldman, Quantum detection at millimeter wavelengths, Reviews of Modern Physics, Vol.57, No.4,1055-1113. (1985).
    63 J V.V. Shirotov and Yu.Ya. Divin, Frequency-selective Josephson detector:Power dynamic range at subterahertz frequencies, Techn. Phys. Lett.30,522-524 (2004).
    64 M.A. Kinch and B.V. Rollin, Detection of millimeter and sub-millimetre wave radiation by free carrier absorption in a semiconductor, Brit. J. Appl. Phys.14, 672-676 (1963).
    65 S.M. Smith, M.J. Cronin, R.J. Nicholas, M.A. Brummell, J.J. Harris, and C.T. Foxon, Millimeter and submillimeter detection using Gal-xAlxAs/GaAs heterosructures, Int. J. Infrared Milli. Waves 8,793-802 (1987).
    66 K.S. Ⅱ'in, M. Lindgren, M. Currie, A.D. Semenov, G.N. Gol' tsman, R. Sobolewski, S.I. Cherednichenko, and E.M. Gershenzon, Picosecond hot-electron energy relaxation inNbN superconducting photodetectors, Appl. Phys. Lett.76, 2752-2754 (2000).
    67 A. Semenov, G.N. Gol'tsman, and R. Sobolewski, Hot-electron effect in semiconductors and its applications for radiation sensors, LLE Review 87, 134-143 (2001).
    68 H. Hilgenkamp and J. Mannhart, Grain boundaries in high-T superconductors, Reviews of Morden Physics,2002,74:485.
    69 R Gross, P Chaudhari, D Dimos, A Gupta, G Koren, Thermally activated phase slippage in high-T_{c} grain-boundary Josephson junctions, Appl.Phys.Lett., 59,(1990), p727
    70 Adam, R., M. Currie, R. Sobolewski, O. Harnack, and M. Darula, Picosecond response of optically driven Y-Ba-Cu-O microbridge and Josephson-junction integrated struc-tures, IEEE Trans. Appl Supercond.1999,9,4091-4094.
    71 Alarco.J. A., and E. Olsson, Analysis and prediction ofthe critical current density across [001]-tilt YBa2Cu3O8 grain boundaries of arbitrary misorientation angles, Phys. Rev.B,1995,52,13625-13630.
    72 Alarco, J. A., E. Olsson, Z. G. Ivanov, P. A. Nilsson, D. Winkler, E. A. Stepantsov, and A. Y. Tzalenchuk, Microstructure of an artificial grain boundary weak link in aYBa2Cu308 thin film grown on a [100][110], [001]-tiltY-ZrO2 bicrystal, Ultramicroscopy,1993,51,239-246.
    73 JG Wen, T Usagawa, T Takagi, et al., Microstructural studies of high-Tc superconducting Josephson junctions to understand junction properties, IEEE Trans. Appl. Supercond.9,2046 [1999].
    74 Z. G. Ivano, P. A. Nilssonl, D. Winkler, J. A. Alarco, T. Claeson, E. A. Stepantsov, and A. Ya. Tzalenchuk, Weak links and dc SQUIDS on artificial nonsymmetric grain boundaries in YBa2Cu307-s, Appl. Phys. Lett.59,3030 (1991).
    75 Jochen Mannhart and Praveen Chaudhari, High-Tc bicrystal grain boundaries, Physics Today.2001,48-53.
    76 A. Gurevich, M. S. Rzchowski, G. Daniels, S. Patnaik, B. M. Hinaus, F. Carillo, F. Tafuri, and D. C. Larbalestier, Flux flow of Abrikosov-Josephson vortices along grain boundaries in high-temperature superconductors, Phys. Rev. Lett.88, 097001 (2002).
    77 P. Lee, et al., Physica C,441 (1), (2006).
    78 Z.W. Lin, G.D. Gu, A.S. Mahmoud, G.J. Russell, Temperature dependence of the vortex motion along twinplanes in YBa2Cu307.6, Physica C 349 (2001) 95-102.
    79 V.V. Chabanenko, A.A. Prodan, V.A. Shklovskij, A.V. Bondarenko, M.A. Obolenskii, H. Szymczak and S. Piechota, Guiding of vortices inYBa2Cu3O7-δ single crystals with unidirected twins, Physica C,314,133 (1999).
    80 Yoshihisa Enomoto and Takashi Mitsuda, Computer simulations of re-entrant I-V curvein superconductors with twin boundaries, Physica C,367 (2002) 60-66.
    81 Rinke J.Wijngaarden, R. Griessen, J. Fendrich, andW.K. Kwok, Influence of twin planes in YBa2Cu3O7-δ on magnetic flux movement and current flow, Phys. Rev. B, 55,3268 (1997).
    82 M. Jirsa, M. R. Koblischka, T. Higuchi, and M. Murakami, Effect of twin planes in the magnetization hysteresis loops of NdBa2Cu3O7 single crystals, Phys. Rev. 5,1998,22,58-61.
    83 B. Y. Zhu, Jinming Dong, and D. Y. Xing, Vortex dynamics in twinned superconductors, Phys. Rev. B 57,5075 (1998).
    84 C. Reichhardt and C. J. Olson, Dynamic vortex phases and pinning in superconductors with twin boundariess, Phys. Rev. B,61,3665 (2000).
    85 C. Reichhardt and C. J. Olson Reichhardt, ynamical behaviors of quasi-one-dimensional vortex states:Possible applications to the vortex chain state, Phys. Rev. B,66,172504 (2002).
    86 Hidehiro Asai and Satoshi Watanabe, Vortex dynamics and critical current in superconductors with unidirectional twin boundaries, Phys. Rev. B,77,224514 (2008).
    87 C. Reichhardt and C. J. Olson Reichhardt, Shear banding and spatiotemporal oscillations in vortex matter in nanostructured superconductors, Phys. Rev. B,81, 100506,(2010)
    88 J. Groth, C. Reichhardt, C. J. Olson, Stuart B. Field, and Franco Nori, Vortex Plastic Motion in Twinned Superconductors, Phys. Rev. Lett.,21,3625 (1996).
    89 F. Pardo, F. de la Cruz, P. L. Gammel, E. Bucher, C. Ogelsby, and D. J. Bishop, Real Space Images of the Vortex Lattice Structure in a Type II Superconductorduring Creep over a Barrier, Phys. Rev. Lett.,79,1369 (1997).
    90 M. J. Hogg, F. Kahlmann, E. J. Tarte, Z. H. Barber, and J. E. Evetts, Vortex channeling and the voltage-current characteristics of YBa2Cu3O7 low-angle grain boundaries, Appl. Phys. Lett.,78,1433 (2001).
    91 T. Horide, K. Matsumoto, A. Ichinose, M. Mukaida, Y Yoshida, and S. Horii, Magnetic-field-induced crossover from flux-flow to Josephson-junction behaviorin a highly transparent weak link, Phys. Rev. B,75,020504 (2007).
    92 R. D. Redwing, B. M. Hinaus, and M. S. Rzchowski, Observation of strong to Josephson-coupled crossoverin 10° YBa2Cu3Ox bicrystal junctions Appl. Phys. Lett.,75,3171(1999).
    93 D. M. Feldmann, T. G. Holesinger, R. Feenstra and C. Cantoni, Mechanisms for enhanced supercurrent across meandered grain boundaries in high-temperature superconductors, Journal of Applied Physics,102,083912(2007).
    94 A. Jukna, I. Barboy, G. Jung, S. S. Banerjee, Y. Myasoedov,V. Plausinaitiene, A. Abrutis,X. Li, D. Wang, andRoman Sobolewski,Laser processed channels of easy vortex motion in YBa2Cu307.6 films, Appl. Phys. Lett.87,192504 (2005).
    95 B. Y. Zhu, D.Y. Xing, Jinming Dong, B.R. Zhao, Dynamical phase transition of a driven vortex lattice with disordered pinning, Physica C,311,140 (1999).
    96 J.E.Zimmerman et al. Operation of a Y-B-C-O rf SQUID at 81K, Appl.Phys.Lett., 51,(1987)61.
    97 D. Dimos et al., Superconducting transport properties of grain boundaries in YBa2Cu307 bicrystals, Phys. Rev. B,41 (1990) 4031
    98 Z. G. Ivanov et al., Local ordering studies of semiconducting glasses, Appl. Phys. Lett.,59 (1991) 3030
    99 Char K., et.al., Monolithic 77K dc SQUID magnetometer, Appl. Phys. Lett.59,733 (1991)
    100 Char K., et.al., Extension of the bi-epitaxial Josephson junction process to various substrates,Appl. Phys. Lett.59,2177 (1991)
    101 Hilgenkamp H., J. Mannhart, Grain boundaries in high-Tc superconductors, Rev. Mod. Phys.74,485 (2002)
    102 K. P. Daly et al., A planar YBa2Cu307 gradiometer at 77K, Appl. Phys. Lett.,58 (1991)543
    103 Reuter W. M., et.al., Fabrication and characterization of YBa2Cu3O7 step-edge junction arrays, Appl. Phys. Lett.,62,2280 (1993)88
    104 E.H. Armstrong, The super heterodyne-its origin, development, and some recent improvements. Pro. IRE. Vol.12, pp540-552,1924
    105 Wschottky Uber den super heterodyngedankens Elek.Nachrichtentech. vol.2, p.454-456,1925.
    106 J. R. Tucker etc. Appl. Phys. Leet.,33(7), (1978) 611.
    107 John. R. Tucker etc., Quantum limited detection in tunnel junction mixers, IEEE J. Quantum Electronics, QE-15, (1979) 1234.
    108 J. H. Claassen and P. L.Richards, Performance limits of a Josephson-junction mixer, J. Appl. Phys.,49(7), (1978) 4117.
    109 Yuan Taur, Characteristics of a Josephson junction harmonic mixer with external pumping, IEEE Trans. MAG MAG-15, (1979) 465.
    110张裕恒,《超导物理》,中国科学技术大学出版社,1997。
    111 B. D. Josephson, "Coupled superconductors", Rev. Mod. Phys.,1964, p.216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700