YBCO涂层导体长带与厚膜制备技术及钉扎机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
YBa2Cu3O7-δ (YBCO)高温超导材料的不可逆场高,在高温高场中仍保持较高的临界电流密度,具有很好的应用前景。对YBCO涂层导体长带制备技术的研究,提高它的载流能力和高场性能是应用的需求。本文采用脉冲激光沉积(PLD)方法,以获得高性能的YBCO涂层导体长带为目的,研究在带有隔离层CeO2/YSZ/Y2O3/NiW的金属基带上,连续沉积YBCO膜的制备技术,进而研究涂层导体厚膜的制备和磁通钉扎机制。
     自主设计研发了适合连续制备长带的动态真空镀膜装置,使其完全满足长带样品脉冲激光沉积YBCO的需求。
     研究了适用于该装置的PLD技术制备YBCO带材的基本参数及它们的相关性,主要包括脉冲激光能量、背底氧压、沉积温度、靶基距等参数。采用分幅照相法,对激光诱导等离子体的形态进行了观测和分析;并根据沉积温度对YBCO膜的织构取向和超导性能的影响,确定了这些基本参数的最佳范围。
     研究了连续移动沉积YBCO带材的技术,尝试通过增加YBCO超导膜的厚度来提高其临界电流(Ic)。为此提出了两条技术路线来增加YBCO膜的厚度:(1)改变脉冲激光重复频率:(2)改变基带移动的速率。结果表明,通过改变这两个参数可以增加YBCO膜的厚度,但其Ic却在增加到50A后,不再随膜厚度的增加而进一步提高。分析认为导致电流随膜厚度增加而趋于饱和这一结果的原因有以下几点:(1)随厚度增加,衬底表面生长温度降低,导致YBCO膜表面容易出现a轴取向颗粒;(2)在某一厚度开始出现微裂纹,并伴随有孔洞的存在;(3)由于生长条件的微变动导致YBCO膜的结构取向有偏差;(4)衬底的化学稳定性和温度控制不当导致YBCO与隔离层界面发生界面反应;(5)非超导相或缺陷的存在致使转变温度Tc的转变宽度宽,存在拖尾等不利现象;(6)靶材的表面沟槽直接影响等离子体羽辉的形态,进而影响YBCO的成分:(7)气压的变化、基带的微动、测温方式的不当等因素都会引起沉积温度的变化。因此在制备技术上做了多方面的改进,严格控制各沉积参数的稳定性。同时提出了反复沉积,分层控制的方法,使得YBCO随厚度的增加,膜表面的平整性、致密性得到大幅度改善,YBCO膜面内面外取向性也随之得到提高,实现了无裂纹、平整、高质量的YBCO薄膜生长。
     采用分层工艺和最佳实验参数:氧压30Pa,相对沉积温度730℃,激光能量195mJ,基带移动速率0.1mm/s,脉冲激光重复频率10Hz,在CeO2/YSZ/Y2O3/NiW金属基带上,成功制备出一米长YBCO涂层导体。X射线衍射(XRD)θ-2θ扫描显示了YBCO膜呈单一c轴取向,并在长度方向上进行了多点测量,其YBCO(103)面XRDφ-扫描和(005)面ω-扫描半高宽的最好结果分别为6.87°和3.60°。分段测量了YBCO的超导转变温度,结果表明,长度方向上,Tc值在90.1-91.7K的范围内,转变宽度△T住0.4-0.7K的范围:分段测量的临界电流大于200A/cm-width。
     首次提出了“间歇式”的沉积方式,成功制备了一系列不同厚度的YBCO膜和BaZrO3掺杂的YBCO膜。当YBCO(?)莫的厚度达到2.0微米时,膜表面致密、平整,其临界电流密度(Jc)仍保持在106A/cm3(77K,OT)量级。分析表明,YBCO(?)其随厚度的增加保持着良好的晶体结构,并伴随有应力存在。同时发现掺为(?)BaZrO3的样品存在阳离子缺陷,这些缺陷可能起磁通钉扎中心的作用。
     进一步对掺杂的YBCO膜进行了磁场下性能的研究。结果表明,掺杂BaZrO3(?)样品无论在零场还是外加磁场下,YBCO(?)莫的Jc都高于未掺杂的YBCO(?)膜,在77K、0T的外场下,掺药(?)YBCOJc达到3.16×106A/cm2:在77K、IT外场一下,Jc达到6.21×105A/cm2,与未掺杂(?)YBCO膜相比,Jc提高了约2倍。掺杂YBCO(?)膜在77K、1.6T时对应最大钉扎力为7.1GN/m3;在65K、3.7T对应最大钉扎力为47GN/m3,在3-5T的磁场范围钉扎力均保持在45GN/m3。
     首次对不同厚度的掺杂和米掺杂YBCO单磁通区钉扎类型进行了分析。研究表明,随温度变化钉扎类型也在发生变化,在低中温区以δl钉扎为主。随着温度的升高,应力钉扎逐渐增强,直至应力钉扎起主导作用。
High temperature superconducting material YBa2Cu3O7-x(YBCO) intrinsically has high critical current density at high magnetic field, which is suitable for electric power applications. The purpose of this thesis is to develop the fabrication processes of meter long coated conductor in order to the high critical current of YBCO. The YBCO was deposited on NiW metal tape with the CeO2/YSZ/Y2O3buffer layer by using pulsed laser deposition (PLD). Furthermore, YBCO thick film and flux pinning mechanism were studied.
     A home designed reel-to-reel PLD system was set up for continuously depositing meter-long YBCO tape. Our focus was first on the study of the basic deposition process parameters of the YBCO tapes, such as pulsed laser energy, background oxygen pressure, deposition temperature, and target to substrate distance, and their dependence. The images of the laser plasma were analyzed by a frame photography method, and the texture orientation and superconducting properties of the YBCO films at different deposition temperatures were studied. The optimized ranges of these basic parameters were determined.
     With the optimized deposition parameters established, we studied the technology for reel to reel deposition of YBCO tapes. In order to improve the critical current Ic, we tried to increase YBCO film thickness through two approaches, one is increasing the laser pulse repetition rate, and the other is changing the reel to reel tape speed. It was found that although the YBCO film thickness was increased, the critical current maxed at50A and did not change significantly with increasing thickness. The saturation of Ic with increasing YBCO film happened. The reasons were as follow. The substrate surface temperature decreased as the YBCO film thickness increased, resulting in the formation of a-axis grains, and appearance of micro cracks and holes above certain film thickness. Process parameters affected the superconducting properties of the YBCO tapes in various ways. Minute fluctuations in the growth conditions resulted in deviation of the texture of part of the YBCO film from the preferred c-axis orientation; chemical instability of the substrate and deposition temperature drifting caused interface reaction between the YBCO film and the buffer layer; non-superconducting phases and other defects widened the transition width of the critical temperature Tc of the YBCO films; target surface roughness directly affected the shape of the plasma plume, therefore resulting in changes in the composition of the YBCO films; changes in chamber pressure, small movements of the substrate, and the way of the temperature measured all had an impact the stability of the deposition temperature on the YBCO films. Based on these experimental results, we modified our deposition processes by applying more rigorous control on the above mentioned parameters. A new multi-coating process was developed using layer by layer deposition process, which improved the YBCO texture, and produced in crack free, smooth, high quality YBCO films.
     Using the multi-coating process and optimized parameters of30Pa oxygen pressure,730℃relative deposition temperature,195mJ laser energy,0.1mm/s reel to reel tape speed,10Hz laser pulse repetition rate, meter long YBCO coated conductor on the buffered tape was successfully fabricated. XRD0-20scan showed a pure c-axis YBCO texture. The best results of YBCO (103) XRD φ-scan and (005) ω-scan values are6.87°and3.60°, respectively. The critical transition temperature of the YBCO tape were typically as90.1-91.7K with0.4-0.7K transition widths. The critical current was over200A/cm-width at77K and OT.
     An intermitted deposition method was first proposed for fabricating YBCO thick films with and without BaZrO3doped. YBCO films with thicknesses up to2.0μm demonstrated critical current densities in the order of106A/cm2. Analysis showed these films maintained better crystalline. The doping of BaZrO; generated flux pinning centers with cation disorder.
     Further comparison of the superconducting properties of the doped and undoped YBCO films under magnetic field showed that the BaZrO3doped samples always had a higher critical current density than that of the pure YBCO. The doped YBCO film had a critical current density Jc of3.16x106A/cm2at77K,OT and6.21×105A/cm2at1T which was about twice of those of the undoped samples. The pinning force in the doped YBCO films was7.1GN/m3at77K and1.6T, and47GN/m3at65K and3.7T. The pinning force stayed on the level of45GN/m3under higher magnetic field ranging from3T to5T.
     We also analyzed the pinning type of single flux pinning in the doped and undoped YBCO samples. It has showed that the pinning type changes with temperature. At low and medium temperature, they are mostly of δl pinning. As the temperature increased the amount of stress pinning increased, and eventually took the majority.
引文
[1]Onnes H.K.. The resistance of pure mercury at helium temperatures [J]. Commun. Phys. Lab. Univ. Leiden.,1911,120b.122b
    [2]Meissner W. and Ochsenfeld R.. Ein neuer Effekt bei Eintritt der Supraleitfahigkeit [J]. Naturwissenschaften,1933,21(44):787-788
    [3]Baedeen J., Cooper L.N. and Schrieffer J.R.. Theory of Superconductivity [J]. Phys. Rev.,1957,108:1175-1204
    [4]Josephson B.D.. Possible new effects in superconductive tunneling [J]. Physics Letters, 1962,1(7):251-253; Josephson B.D.. Coupled Superconductors [J]. Rev. Mod. Phys., 1964,36(1):216-220
    [5]Gavaler J.. Superconductivity in Nb-Ge Films above 22K [J]. Appl. Phys. Lett.,1973, 23:480-481
    [6]Bednorz G., Muller K.A.. Possible High-Tc Superconductivity in the Ba2La2Cu2O System [J]. Phys. B,1986,64:189
    [7]Chu C.W., Hor P.H., Meng R.L., et al. Evidence for superconductivity above 40 K in the La-Ba-Cu-O compound system [J]. Phys. Rev. Lett.,1987,58:405
    [8]赵忠贤,陈立泉,杨乾声,等.Ba-Y-Cu氧化物液氮温区的超导电性[J].科学通报,1987.6:412
    [9]Meada H., Tanaka Y., Fukutomi M. et al, A new high-Tc oxide superconductor without a rare earth element [J]. Jpn. Appl. Phys.,1988,27:209
    [10]Sheng Z.Z. and Hermann A.M., et al. Superconductivity at 90 K in the T1-Ba-Cu-O system [J]. Phys. Rev. Lett.,1988,60:937
    [11]Putilin S.N., Antipov E.V., Chmaissem O., et al. Superconductivity at 94 K in HgBa2Cu04+6[J]. Nature,1993,362:226
    [12]Nagamatsu J., Nakagawa N., Muranaka T., et al. Superconductivity at 39 K in Magnesium Diboride [J]. Nature,2001,410:63
    [13]Kamihara Y., Watanabe T., Hirano M., et al. Iron-based layered superconductor La[O1-x Fx]FeAs(x=0.05-0.12) with Tc=26 K [J]. Am Chem Soc,2008,130: 3296-3297
    [14]Chen G.F., Li Z., Li G., et al. Superconducting properties of Fe-based layered superconductor LaO0.9F0.1-δFeAs [J]. Phys. Rev. Lett.,2008,101:057007
    [15]Zhu X.Y., Yang H., Fang L., et al. Upper critical field. Hall effect and magnetoresistance in the iron-based layered superconductor LaO0.9F0.1-δFeAs [J]. Supercond Sci Tech,2008,21:105001
    [16]Sefat A.S., McGuire M.A., Sales B.C., et al. Electronic correlations in the superconductor LaFeAsO0.89F0.11 with low carrier density [J]. Phys. Rev. B,2008,77: 174503
    [17]Takahashi H., Igawa K., Arii K., et al. Superconductivity at 43 K in an iron-based layered compound LaO1-x Fx FeAs [J]. Nature. 2008. 453: 376-378
    [18]Wen H.H., Mu G., Fang L., et al. Superconductivity at 25 K in hole-doped (La1-Srx)OFeAs [J]. Europhys. Lett., 2008. 82: 17009
    [19]Chen X.H., Wu T., Wu G.. et al. Superconductivity at 43 K in SmFeAsO1-xFx [J]. Nature, 2008, 453:761-762
    [20]Chen G.F., Li Z., Wu D., et al. Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-x Fx FeAs [J]. Phys. Rev. Lett.. 2008. 100:247002
    [21]Ren Z.A., Yang J.. Lu W., et al. Superconductivity in the iron-based F-doped layered quaternary compound Nd[O1-x Fx [J]. FeAs. Europhys. Lett.. 2008. 82: 57002
    [22]闻海虎.超导的发现[J].物理,2010.39(9):361-362
    [23]韩汝珊.高温超导物理[M].北京,北京大学出版社,1998:9-15
    [24]张其瑞.解思深,姚希贤,等.高温超导电性[M].杭州.浙江大学出版社,1992:1-178
    [25]Jorgensen J.D., Veal B.W.. Paulikas A.P., et al. Structural properties of oxygen-deficient YBa2Cu3O7-δ[J]. Phys. Rev. B. 1990. 41: 1863-1877
    [26]Dimos D., Chaudhari P.. Mannhart J.. et al. Orientation Dependence of Grain-Boundary Critical Currents in YBa2Cu3O7-δ Bicrystals [J]. Phys. Rev. Lett., 1988,61:219-222
    [27]Dimos I)., Chaudhari P., Mannhart J.. Superconducting transport properties of grain boundaries in YBa2Cu3O7 bicrystals [J]. Phys. Rev. B, 1990. 41: 4038-4049
    [28]Verebelyi D.T.. Christen D.K., Feenstra R., et al. Low angle grain boundary transport in YBa2Cu3O7-δ coated conductors [J]. Appl. Phys. Lett., 2000. 76: 1755
    [29]Feldmann D.M., Larbalestier D.C., Verebelyi D.T., et al. Inter- and intragrain transport measurements in YBa2Cu3O7-x deformation textured coated conductors [J]. Appl. Phys. Lett.. 2001,79: 3998
    [30]Heinig N.F., Redwing R.D. Nordman J.E., et al. Strong to weak coupling transition in low misorientation angle thin film YBa2Cu3O7-x bicrystals [J]. Phys. Rev.B, 1999, 60: 1409-1417
    [31]Venkatesan T., Chang C.C., Dijkkamps D., et al. Tarascon, Substrate effects on the properties of Y-Ba-Cu-0 superconducting films prepared by laser deposition [J]. J. Appl. Phys., 1988, 63: 4591-4598
    [32]Zhu Y, Zhang H.. Wang H., et al. Grain boundary in textured YBa2Cu3O7-δ superconductor [J]. J. Mater. Res., 1991. 6: 2507-2518
    [33]Tkaczyk J.E., Briant C.L., de Luca J.A.. et al. Critical current and microstructure of unbiaxially aligned, polycrystalline YBa2Cu3O7-δ [J]. J. Mater. Res., 1992. 7: 1317-1327
    [34]蒋志君.高温超导强电应用研究进展与展望[J].低温与超导,2009,37(10):17-20
    [35]Hayashi K., Hikata T., Kaneko T., et al. Development of Ag-sheathed Bi-2223 superconducting wires and their applications [J]. IEEE T Appl. Supercond.,2001,11: 3281
    [36]Kelley N.J., Wakefield C., Nassi M., et al. Field demonstration of a 24-kV warm dielectric HTS cable [J]. IEEE T Appl. Supercond.,2001,11:2461
    [37]Larbalestier David, Gurevich Alex. Matthew Feldmann D., et al. High- Tc superconducting materials for electric power applications [J]. Nature,2001,414: 368-377
    [38]Iijima Y., Tanabe N., Kohno O., et al. Inplane Aligned YBa2Cu3O7-x Thin-Films Deposited on Polycrystalline Metallic Substrates [J]. Applied Physics Letters,1992, 60(6):769-771.
    [39]Norton D.P., Goyal A., Budai J.D., et al. Epitaxial YBa2Cu3O7 on biaxially textured nickel (001):An approach to superconducting tapes with high critical current density [J]. Science,1996,274:755-757
    [40]Goyal A.. Norton D.P.. Budai J.D., et al. High critical current density superconducting tapes by epitaxial deposition of Yba2Cu3Ox thick films on biaxially textured metals [J]. Applied Physical Letters,1996.69(12):1795-1797
    [41]Goyal A., Lee D.F., List F.A., et al. Recent progress in the fabrication of high-Jo tapes by epitaxial deposition of YBCO on RABiTS [J]. Physica C,2001,357:903-913
    [42]Kakimoto K., Iijima Y., Saitoh T.. Fabrication of long-Y123 coated conductors by combination of IBAD and PLD [J]. Physica C.2003,392-396:783-789
    [43]Chikumoto N., Lee S., Nakao K., et al. Development of inside-plume PLD process for the fabrication of large Ic (B) REBCO tapes [J]. Physica C,2009,469:1303-1306
    [44]Stan L., Chen Y., Xiong X., et al. Investigation of (Y, Gd) Ba2Cu3O7-x grown by MOCVD on a simplified IBAD MgO template [J]. Supercond. Sci. Technol.,2010,23: 014011
    [45]Selvamanickam V., Guevara A., Zhang Y., et al. Enhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-O tapes with zirconium doping fabricated by metal-organic chemical vapor deposition [J]. Supercond. Sci. Technol.,2010,23: 014014
    [46]Izumi T., Yoshizumi M., Miura M., et al. Present status and strategy of reel-to-reel TFA-MOD process for coated conductors [J]. Physica C,2009,469:1322-1325
    [47]Nemetschek R., Prusseit W., Holzapfel B., et al. Continuous Tape Coating by Thermal Evaporation [J]. IEEE Trans Appl Supercond.2003.13(2):2477-2480
    [48]Miura M., Yoshizum M., Izumi T., et al. Increase of the production rate and crystal growth mode of GdBa2Cu3Oy-coated conductors using an in-plume growth technique for a reel-to-reel pulsed-laser deposition system [J]. Supercond. Sci. Technol, 2010, 23: 014019
    [49]Wu X.D., Foltyn S.R., Arendt P., et al. Preparation of high quality YBa2Cu3O7-δ thick films on flexible Ni-based alloy substrates with textured buffer layers [J|. IEEE Trans. Appl. Supercon., 1995, 5: 2001-2006
    [50]Foltyn S.R., Tiwari P., Dye R.C., et al. Pulsed laser deposition of thick YBa2Cu3O7-δ films with .Jc≥1 MA/cm2 [J]. Appl. Phys. Lett., 1993, 63: 1848-1850
    [51]Foltyn S.R., Jia Q.X.. Arendt P.N., et al. Relationship between film thickness and the critical current of YBa2Cu3O7-δ-coated conductors [J]. Appl. Phys. Lett., 1999, 75: 3692-3694
    [52]Foltyn S.R., Wang H., Civale L., et al. Overcoming the barrier to 100()A/cm width superconducting coatings [J]. Appl. Phys. Lett., 2005, 87: 162505
    [53]Zhou II., Maiorov B., Baily S.A.. et al. Thickness dependence of critical current density in YBa2Cu3O7-δ films with BaZrO3 and Y2O3 addition [J]. Supercond. Sci. Technol., 2009, 22:085013
    [54]Feldmann D.M., Holesinger T.G., Maiorov B.. et al. 1000 A cm ' in a 2 urn thick YBa2Cu3O7-x film with BaZrO3 and Y2O3 additions[J]. Supercond. Sci. Technol.. 2010,23: 115016
    [55]Foltyn S.R., Wang H., Civale L., et al. The role of interfacial detects in enhancing the critical current density of YBa2Cu3O7-δ coatings [J]. Supercond. Sci. Technol., 2009,. 22:125002
    [56]Wang H., Foltyn S.R., Civale L., et al. Attenuation of interfacial pinning enhancement in YBCO using a PrBCO buffer layer |J|. Physica C, 2009, 469: 2033-2036
    [57]Gurevich A.. Pinning size effects in critical currents of superconducting films [J]. Supercond. Sci. Technol., 2007, 20: S128-S135
    [58]MacManus Driscoll J.L., Foltyn S.R., Jia Q.X., et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3 [J]. Nat. Mater., 2004, 3:439-443
    [59]Matsumoto K. and Mele P.. Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors [J]. Supercond. Sci. Technol.. 2010, 23: 014001
    [60]Haugan T., Barnes P.N., Wheeler R.. et al. Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7-x superconductor [J]. Nature 430, 2004: 867-870
    [61]FIolesinger T.G., Civale L., Maiorov B.. et al. Progress in nano-engineered microstructures for tunable high-current, high temperature superconducting wires |J|. Adv. Mater., 2008, 20: 391-407
    [62]Feldmann D.M., Holesinger T.G., Maiorov B., et al. Improved flux pinning in YBa2Cu3O7 with nanorods of the double perovskite Ba2YNbO6 [J]. Supercond. Sci. Technol.,2010,23:095004
    [63]Daeumling M., Sentjens J.M., and Larbalestier D.C.. Oxygen-defect flux pinning, anomalous magnetization and intra-grain granularity in YBa2Cu3O7-δ [J]. Nature,1990, 346:332-335
    [64]Maroni V.A., Li Y., Feldmann D.M., et al. Correlation between cation disorder and flux pinning in the YBa2Cu307 coated conductor [J]. J. Appl. Phys.,2007,102:113909
    [65]Dam B., Huijbregtse J.M., Klaassen F.C., et al. Origin of high critical currents in YBa2Cu3O7-δ superconducting thin films [J]. Nature,1999,399:439-442
    [66]Civale L.. Vortex pinning and creep in high-temperature superconductors with columnar defects [J]. Supercond. Sci. Technol.,1997,10:A11-A28
    [67]Mele P., Matsumoto K., Horide T., et al. Ultra-high flux pinning properties of BaMO3-doped YBa2Cu3O7-δthin films (M=Zr, Sn) [J]. Supercond. Sci. Technol.,2008, 21:032002
    [68]Agassi D., Christen D.K.. and Pennycook S.J.. Flux pinning and critical currents at low-angle grain boundaries in high-temperature superconductors [J]. Appl. Phys. Lett., 2002,81:2803-2805
    [69]Jooss Ch., Warthmann R., and Kronmuller H.. Pinning mechanism of vortices at antiphase boundaries in YBa2Cu3O7-δ [J]. Phys. Rev. B,2000,61:12433-12446
    [70]Engel S., Thersleff T., Huhne R., et al. Enhanced flux pinning in YBa2Cu3O7 layers by the formation of nanosized BaHfO3 precipitates using the chemical deposition method [J]. Appl. Phys. Lett.,2007,90:102505
    [71]Guti'errez J., Llord'es A., G'azquez J., et al. Strong isotropic flux pinning in solution-derived YBa2Cu307-5 nanocomposite superconductor films [J]. Nat. Mater., 2007,6:367-373
    [72]Varanasi C.V., Barnes P.N., and Burke J.. Enhanced flux pinning force and uniquely shaped flux pinning force plots observed in YBa2Cu3O7-δ films with BaSnO3 nanoparticles [J]. Supercond. Sci. Technol.,2007,20:1071-1075
    [73]Dew-Hughes D.. Flux pinning mechanisms in type Ⅱ superconductors [J]. Philos. Mag.,1974,30:293-305
    [74]Hettinger J.D., Swanson A.G., Skocpol W.J., et al. Flux creep and high-field critical currents in epitaxial thin films of YBa2Cu307 [J]. Phys. Rev. Lett.,1989,62: 2044-2047
    [75]Civale L., McElfresh M.W., Marwick A.D., et al. Scaling of the hysteretic magnetic behavior in YBa2Cu307 single crystals [J]. Phys. Rev. B,1991.43:13732
    [76]Blatter G., Geshkenbein V.B., and Larkin A.I.. From isotropic to anisotropic superconductors: A scaling approach [J]. Phys. Rev. Lett., 1992. 68: 875-878
    [77]Griessen R., Wen H.H., Vandalen A.J.J., et al. Evidence for mean free-path fluctuation-induced pinning in YBa2Cu3O7 and YBa2Cu4O8 films [J]. Phys. Rev. Lett.. 1994.72: 1910-1913
    [78]Wen H.H.. Schnack H.G., Griessen R., et al. Critical current, magnetization relaxation and activation energies for YBa2Cu3O7 and YBa2Cu4O8 films [J]. Physica C. 1995, 241:353-374
    [79]Wen H.H., Wang R.I.., Li H.C., et al. Single vortex creep in T12Ba2CaCu2O8 epitaxial thin films [J]. Phys. Rev. B, 1996. 54: 1386-1390
    [80]闻海虎.高温超导体磁通动力学和混合态相图(Ⅰ)[J].物理.2006.35:16-26
    [81]Wen H.H., Zhao Z.X., Wang R.L., et al. Lvidenee for the lattice-mismatch-stress-field induced flux pinning in (Gd1-xYx)Ba2Cu3O7-δ thin films[J]. Physica C. 1996, 262: 81-88
    [1]Dijkkamp D., Venkatatesan T., Wu X. D., et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material [J]. Appl. Phys. Lett.,1987,51:619-621
    [2]Inam A., Wu X.D., Venkatesan T.. Pulsed laser etching of high-Tc superconducting films [J]. Appl. Phys. Lett.,1987,51:1112-1114
    [3]Wu X.D., Dijkkamp D., Ogale S.B.. Epitaxial ordering of oxide superconductor thin-films on (100) SrTiO3 prepared by pulsed laser evaporation [J]. Appl. Phys. Lett., 1987,51:861-863
    [4]张端明,赵修建,李智华,等.脉冲激光沉积动力学与玻璃基薄膜[M].武汉:湖北长江出版集团湖北科学技术出版社,2006:68-79
    [5]Singh R.K., Kumar D.. Pulsed laser deposition and characterization of high Tc YBa2Cu3O7-x superconducting thin films [J]. Muterich Sciericc and Engineering,1998, R22:113-185
    [6]王守证.薄膜物理学[M].北京,北京大学物理系,1998:44.62
    [7]Yang J., Liu H.Z., Qu F., et al. Continuous deposition of buffer layers for YBCO coated conductor using reactive magnetron sputtering, Materials Science Forum [J]. 2007,546-549:1871-1876
    [8]Zhang H., Yang J., Liu H.Z., et al. Meter-long CeO2/YSZ/Y2O3 buffer layers for YBCO coated conductors using DC reactive sputtering [J]. Physica C,2010,470: 1998-2001
    [9]Liu H.Z., Yang J., Qu F., et al. Influence of moving tape speed on continuous deposition of buffer layers for long-length YBCO coated conductors [J]. Physica C, 2007,460-462:1415-1417
    [10]Schlom D.G., Hellman E.S., Hartford E.H., et al. Origin of the phi approximate to+/-9 degrees peaks in YBa2Cu3O7-δ films grown on cubic zirconia substrates [J]. Journal of Materials Research,1996,11(6):1336-1348
    [11]黄新民,解挺.材料分析测试方法[M],北京.国防工业出版社,2009:140-141
    [12]Ferraro J.R. and Maroni V. A.. The characterization of high critical temperature ceramic superconductors by vibrational spectroscopy [J]. Appl. Spectrosc.1990,44: 351-366
    [13]Hong S., Cheong H., Park G.. Raman analysis of a YBa2Cu3O7-δ thin film with oxygen depletion [J]. Physica C,2010,470:383-390
    [14]黄新民,解挺.材料分析测试方法[M].北京.国防工业出版社,2009:199-205
    [15]林良真,张金龙.李传义,等.超导电性及其应用[M].北京,北京工业大学出版社.1998:1-18
    [16]Hochmuth H. and Lorenz M.. Side-selective and non-destructive determination of the critical current density of double-sided superconducting thin films [J]. Physica C.1996. 265:335-340
    [17]Hochmuth H. and Lorenz M.. Inductive determination of the critical current density of superconducting thin films without lateral structuring [J]. Physica C,1994.220: 209-214
    [18]Claassen J.H., Reeves M.E. and Soulen R.J.. A contactless method for measurement of the critical current density and critical temperature of superconducting films[J]. Rev. Sci. Instrum.,1991.62:996-1004
    [1]Li X.P., Rupich M.W., Thieme C.L.H.,et al. The development of second generation HTS wire at American Superconductor [J]. IEEE Transactions on Applied Superconductivity 2009, 19: 3231 -3235
    [2]Selvamanickam V., Chen Y.. Xiong X., et al. High Performance 2G Wires: From R&D to Pilot-Scale Manufacturing [J]. IEEE Transactions on Applied Superconductivity 2009, 19: 3225-3230
    [3]Izumi T., Shiohara Y.. R&D of coated conductors for applications in Japan [J]. Physica C. 2010, 470: 967-970
    [4]Kutami H., Mayashida T., Hanyu S., et al. Progress in research and development on long length coated conductors in Fujikura [J]. Physica C, 2009, 469: 1290-1293
    [5]Li Yijie, Reeves .J., Xiong X.. et al. Fast Growth Process of Long-Length YBCO Coated Conductor With High Critical Current Density [J]. IEEE Transactions on Applied Superconductivity, 2005. 15: 2771-2774
    [6]Fuji H., Igarashi M., Hanada Y.. et al. Long Gd-123 coated conductor by PLD method [J]. Physica C, 2008, 468: 1510-1513
    |7] Watanabc T.. Kuriki R.. Iwai II.. et al. High Rate Deposition by PLD of YBCO Films for Coated Conductors [J]. IEEE Transactions on Applied Superconductivity. 2005, 15: 2566-2569
    [8]Alexander Usoskin, Alexander Rutt, Juergen Knoke, et al. Long-Length YBCO Coated Stainless Steel Tapes with High Critical Currents [J]. IEEE Transactions on Applied Superconductivity, 2005, 15: 2604-2607
    [9]张端明,赵修建,李智华.等.脉冲激光沉积动力学与玻瞝基薄膜[M].武汉:湖北长江出版集团湖北科学技术出版社,2006:69
    [1]Selvamanickam V.. Yao Y.. Chen Y., et al. The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd, Y)Ba2Cu3Ox superconducting tapes [J]. Supercond. Sci. Technol.. 2012. 25: 125013
    [2]Selvamanickam V., Guevara A.Zhang Y.. et al. Knhanced and uniform in-field performance in long (Gd, Y)-Ba-Cu-() tapes with zirconium doping fabricated by metal-organic chemical vapor deposition [J]. Supercond. Sci. Technol., 2010, 23: 014014
    [3]MacManus Driscoll J. I.,., Foltyn S. R., Jia Q. X., et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3 [J]. Nat. Mater. 2004, 3:439-443
    [4]71 Guti'errez J. Llord'es A.. G'azquez J., et al. Strong isotropie flux pinning in solution-derived YBa2Cu3O7-x nanocomposite superconductor films [J]. Nat. Mater. 2004, 6: 367-373
    [5]Maiorov B.. Baily S.A., Zhou H., et al. Synergetic combination of different types of delect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7 [J]. Nat. Mater. 2009. 8: 398-404
    [6]Goyal A., Kang S., Leonard K.J., et al. Irradiation-free, columnar defects comprised of sell-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7-δ films [J]. Supercond. Sci. lech. 2005, 18: 1533-1538
    [7]Kang S.. Goyal A., Li J.. et al. High-performance high- Tcc superconducting wires [J]. Science, 2006, 311: 1911-1914
    [8]Satoshi Awaji, Masafumi Namba. Kazuo Watanabe, et al. Flux pinning properties of TFA-MOD (Y, Gd)Ba2Cu3()N tapes with BaZrO3 Nanoparticles [J]. Supercond. Sci. Technol, 2010, 23:014006
    [9]Barnes P.N., Mukhopadhyay S., Nekkanti R., et al. XPS depth profiling studies of YBCO layer on buffered substrates [J]. Advances in Cryogenic Engineering, 2002, 48B: 614-618
    [10]Barnes P.N., Mukhopadhyay S.M., Haugan T.J., et al. Correlation Between the XPS Peak Shapes of YBa2Cu3O7-δ and Film Quality [J]. IEEE Transactions on applied superconductivity. 2003, 13: 3643-3646
    [11]Sakai II., ltti R., Yamada Y., et al. Homoepitaxy of thin films using YBa2Cu3O7-single-crystal substrates [J]. Physica C. 1995, 241: 292-300
    [12]Beyer J., Schurig T., Menkal S.. et al. XPS investigation of the surface composition of sputtered YBCO thin films [J]. Physica C. 1995, 246: 156-162
    [13]Shi L., Huang Y., Pang W.. et al. Study on the Pr-doped and Ce-doped YBa2Cu3Oy system by XPS and Raman spectrum [J]. Physica C, 1997, 282-287: 1021-1022
    [14]Marti nez O., Jim6nez J., Martin P., et al. A microRaman study of the structural properties of PLD high Tc superconducting thin films [J]. Physica C,1996.270: 144-154
    [15]Bums G., Dacol F.H., Feidl C., et al. Raman measurements of YBa2Cu3O7-δ as a function of oxygen content [J]. Solid State Commun.1991,77:367-371
    [16]Huong P.V., Bruyere J.C., Bustarret E., et al. Structure and orientation of a superconducting Y-Ba-Cu-O thin film on zirconia substrate. A study by micro-raman spectroscopy [J]. Solid State Commun.1989,72:191-194.
    [17]Venkataraman K., Baurceanu R., Maroni V.A.. Characterization of MBa2Cu3O7-x Thin Films by Raman Microspectroscopy [J]. Appl. Spectrosc.,2005,59:639-649
    [18]Rosen H., Engler E.M., Strand T.C., et al. Raman study of lattice modes in the high-critical-temperature superconductor Y-Ba-Cu-O [J]. Phys Rev B,1987,36: 726-728
    [19]Ay tug T., Chen Z., Maroni V.A., et al. Nano-engineered defect structures in Ce-and Ho-doped metalorganic chemical vapor deposited YBa2Cu3O6+δ films:Correlation of structure and chemistry with flux pinning performance [J]. J. Appl. Phys.,2011,109: 113923
    [20]Maroni V.A., Venkataraman K., Miller D.J., et al. Coordinated Characterization of Coated Conductors (C4) [J]. IEEE Transactions On Applied Superconductivity,2005, 15:2798-2802
    [21]Maroni V.A., Li Y., Feldmann D.M., et al. Correlation between cation disorder and flux pinning in the YBa2Cu3O7 coated conductor [J]. J. Appl. Phys.,2007,102: 113909
    [22]Berenov A., Purnell A., Zhukov A., et al. Microstructural characterisation of high Jc, YBCO thick films grown at very high rates and high temperatures by PLD [J]. Physica C,2002,372-376:683-686
    [23]Rosen H.J., Macfarlane R.M., Engler E.M., et al. Systematic Raman study of effects of rare-earth substitution on the lattice modes of high-Tc superconductors [J]. Phys. Rev. B,1988,38:2460-2465
    [24]Larbalestier D., Gurevich A., Feldmann D.M., et al. High-Tc superconducting materials for electric power applications [J]. Nature,2001,414:368-377
    [25]Matsumoto K. and Mele P.. Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors [J]. Supercond. Sci. Technol.,2010,23:014001
    [26]Abrikosov A. A.. On the magnetic properties of superconductors of the second group [J]. Soviet Physics JETP,1957,5:1174-1182
    [27]Gyorgy E.M., Vandover R.B., Jackson K.A., et al. Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended Bean model [J]. Appl. Phys. Lett.,1989,55: 283-285
    [28]Wen H.H., Zhao Z.X., Xiao Y.G.. et al. Evidence for flux pinning induced by spatial fluctuation of transition temperatures in single domain (Y1-xPry) Ba2Cu3O7-δ samples [J]. Physica C, 1995.251: 371-378
    [29]Ghorbani S.R.. Wang X.E., Dou S.X., et al. Flux-pinning mechanism in silicone-oil-doped MgB2: Evidence for charge-carrier mean free path fluctuation pinning [J]. Phys. Rev. B. 2008, 78: 184502
    [30]Dam B., Huijbregtse J.M., Klaassen F.C., et al. Origin of high critical currents in Y Ba2Cu3O7-δ superconducting thin films [J]. NATURE, 1999, 399: 439-442
    [31]Aytug T., Paranthaman M., Leonard L.J., et al. Analysis of flux pinning in YBa2Cu3O7-δ films by nanoparticle-modified substrate surfaces [J]. Phys. Rev. B, 2006,74: 184505
    [32]Foltyn S.R., Civale L., MacManus-Driscoll J.L., et al. Materials science challenges for high-temperature superconducting wire [J]. Nat. Mater. 2007, 6: 631-642
    [33]Ijaduola A.O., Thompson J.R., Feenstra R.. et al. Critical currents of ex situ YBa2Cu3O7-δ thin films on rolling assisted biaxially textured substrates: Thickness, field, and temperature dependencies [J]. Phys. Rev. B. 2006, 73: 134502
    [34]Nelson D.R. and Vinokur V.M.. Boson localization and correlated pinning of superconducting vortex arrays [J]. Phys. Rev. B, 1993, 48: 13060-13097
    [35]Dew-Hughes D.. Flux pinning mechanisms in type H superconductors [J]. Philos. Mag., 1974,30:293-305
    [36]Blatter G, Geshkenbein V.B., and Larkin A.I.. From isotropic to anisotropic superconductors: A scaling approach [J]. Phys. Rev. Lett., 1992, 68: 875-878
    [37]Blatter G.. Feigel'man M.V., Geshkenbein V.B., et al. Vortices in high-temperature superconductors [J]. Rev. of Mod. Phys., 1994, 66: 1125-1388
    [38]Griessen R., Wen H.H., Vandalen A.J.J., et al. Evidence for mean free-path fluctuation-induced pinning in YBa2Cu3O7 and YBa2Cu4O8 films [J]. Phys. Rev. Lett., 1994,72: 1910-1913
    [39]Wen H.H., Zhao Z.X., Wang R.L., et al. Evidence for the lattice-mismatch-stress-field induced flux pinning in (Gd1-xYx)Ba2Cu3O7-δ thin films [J]. Physica C, 1996, 262: 81-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700