YBCO涂层导体的化学溶液沉积制备技术及超导性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温超导涂层导体是基于双轴织构缓冲层模板生长的类单晶氧化物涂层,在液氮温区具有高临界电流密度。涂层导体是由金属基带/缓冲层/YBa2Cu3Oy(YBCO)超导层/保护层多层材料构成。为了获得双轴织构化模板和高性能的YBCO超导层,需要结合多种材料制备技术,例如轧制辅助双轴织构技术、离子束辅助沉积技术、脉冲激光沉积、磁控溅射、金属有机气相沉积和化学溶液沉积技术等。目前,YBCO超导层制备技术主要有两种,其中,脉冲激光沉积是以真空技术为基础,是探索高性能涂层导体技术的重要途径;化学溶液沉积技术以非真空技术为基础,是工业化低成本涂层导体的主攻方向。由于化学溶液沉积制备YBCO超导层的工艺过程具有低成本、易于控制薄膜组份以及易于实现连续制备等特点,因此采用化学溶液沉积制备YBCO,已逐渐成为了目前研究的热点。为了获得更加优异的性能,需要对化学溶液沉积过程中的材料成相机理进行分析,进而探索薄膜制备过程中所涉及的传统前驱液慢速热解特性,前驱膜宏观缺陷形成,YBCO形核和生长,a轴晶形成,以及化学溶液沉积技术引入钉扎等问题。
     为了更加清楚地认识化学溶液沉积制备YBCO的分解和晶化机理,优化工艺参数以提高超导层的性能,本论文分别采用传统全氟前驱液和低氟前驱液制备YBCO超导层。采用红外光谱和热分析等对传统全三氟乙酸胶体和低氟胶体中特征官能团的变化和胶体的热分解行为进行分析。采用金相显微分析、原子力显微镜、X射线衍射、扫描电镜以及磁场中临界电流密度(Jc-B)测试等表征手段,研究了YBCO热解和晶化过程的关键因素,YBCO薄膜的钉扎性能等随工艺参数变化,并对其相关机理进行了探讨。本论文主要研究内容包括:传统三氟乙酸金属有机沉积(TFA-MOD)工艺优化、新型低氟前驱液的开发、化学溶液沉积技术引入钉扎中心等方面。
     1、YBCO超导层的传统三氟乙酸金属有机沉积制备工艺包括前驱溶液配制、热解和晶化等过程。研究表明,在前驱溶液配制过程中,前驱体三氟乙酸铜对YBCO胶体性质起主要影响作用。YBCO全氟前驱液的特殊性使得传统工艺为慢速热解。研究发现,在热解阶段相对湿度是决定前驱膜表面裂纹产生的主要因素,升温速率是前驱膜产生褶皱形貌的主要因素。在晶化阶段,过高成相温度会导致YBCO膜产生退润湿现象,低氧分压可以充分抑制YBCO膜中a轴晶的生长。
     2、系统地研究了具有不同晶格匹配度的单晶衬底和不同形貌的缓冲层对YBCO膜生长过程的影响,以及YBCO层沉积过程对金属衬底界面的影响。结果表明,表面光滑的La_2Zr_2O_7缓冲层有利于生长高织构和性能良好的超导层。在化学溶液沉积过程中,热解膜中活性组份Ba(O,F)_2与CeO_2发生界面反应生成BaCeO_3,并且金属衬底会发生氧化。通过工艺优化,采用化学溶液沉积技术在LaAlO_3单晶衬底上制备的YBCO薄膜样品在77K自场条件下的临界电流密度为~2.7MA/cm~2;在具有缓冲层衬底上制备超导层样品(YBCO/CeO_2/YSZ/CeO_2/NiW)在77K自场下临界电流达到60A/cm-w。
     3、为了降低传统前驱液对低温热解工艺的敏感性,同时减少前驱体中氟含量,提高超导层的制备速率,采用苯甲酸铜替换三氟乙酸铜,获得了新型低氟前驱液。对比实验表明,新型低氟前驱液的热解时间明显缩短,而且在较广升温速率范围内(1-10K/min)都能获得完整无宏观缺陷的热解膜。整个热解时间1-2.5小时,仅为传统工艺的1/4-1/5,充分满足了高性能YBCO薄膜快速制备要求。在低氟前驱膜的晶化过程中,超导层中间相随温度发生变化,表明了晶化机制仍然为“异位氟化钡”机制。通过调节形核阶段的水汽含量,实现了YBCO超导层的均匀形核和快速晶化。最终,采用低氟前驱液在金属衬底上制备了YBCO超导层,实现了快速晶化,所获得的具有c轴织构的晶化膜,其超导性能与传统制备方法相当。
     4、采用化学溶液沉积技术制备了两种不同钉扎类型的超导层,即YGd_xBa_2Cu_3O_y和YBCO+xBaZrO_3,并系统地研究了掺杂比例对超导层钉扎性能的影响。结果表明,YGdBCO薄膜中发生部分钇位替代现象和析出的少量RE_2O_3形成点缺陷,可以作为有效钉扎中心,有利于提高薄膜的磁通钉扎性能。随着前驱液中钆含量增加,YBCO相的c轴拉长。过量10%Gd的YBCO薄膜在磁场下具有最佳的性能(J_c=0.18MA/cm~2@77K、1T,F_p=~1.7GN/m~3),比未掺杂的纯YBCO样品高出约1倍。另一方面,在前驱液中引入锆元素,可以在YBCO中形成BaZrO_3第二相。研究表明,第二相的存在可以促使薄膜更加致密,并表现出更加优异的磁通钉扎能力。在YBCO引入5%BaZrO_3时,薄膜的临界电流密度最高(J_c=4.9MA/cm~2@77K、自场,J_c=0.42MA/cm~2@77K、1T,F_p=~4GN/m~3)。
The superconducting films of high temperature superconductor coatedconductors (CC) have pseudo single crystal structures based on the biaxiallytextured buffer layer templates. Coated conductors have high critical currentdensity at liquid nitrogen temperature, and show great potential for practicalapplications. Generally, coated conductors are constructed by four components,which are flexible metal substrate, buffer layer, YBa2Cu3Oy(YBCO)superconducting layer and protective layer. Several technologies have beencombined to obtain biaxially textured templates and high performance YBCOsuperconducting layers, including Rolling Assisted Biaxially Tectured Substrates(RABiTS), Ion Beam Assited Deposition (IBAD), Pulsed Laser Deposition(PLD), Sputtering, Metal Organic Chemical Vapor Deposition (MOCVD),Chemical Solution Deposition (CSD). So far there are two main techniques forthe deposition of YBCO superconducting layer, PLD based on vacuumtechnology is an important method for high performance superconducting layer,and CSD based on non-vacuum technology is a low cost method forindustrialization of coated conductors. CSD method has several advantages, suchas low cost, easily precise control of film composition and reel-to-reel.Accordingly, it has attracted more and more attentions. In order to increase theperformance of YBCO superconducting layer, we should investigate the phaseformation and crystallization mechanism of YBCO film prepared by CSDprocess. We also should pay more attention to the important problems, such asthe special properties of traditional all-TFA solution for slow pyrolysis, theformation of cracks in precursor film, nucleation and growth of YBCO, theformation of a-axis grain, and enhancement of flux pinning properties.
     In order to understand the mechanism of decomposition and crystallizationof YBCO, optimize the parameters and improve the superconducting propertiesof films, this paper is devoted to study YBCO films prepared by CSD methodusing the traditional all-TFA solution and low fluorine solution. The changes ofbands and decomposition behaviors of YBCO gels are analyzed by Thermal Analysis and Fourier Transforms Infrared Spectroscopy. The key parametersinvolved in the decomposition, growth, and the flux pinning of YBCO films areinvestigated by using various characterization techniques, including X-raydiffraction, optical microscopy, atomic force microscopy, scanning electronmicroscopy and Jc-B measurement. The researches of thesis include theoptimization of traditional TFA-MOD, development of new low fluorine solutionand enhancement of flux pinning properties by chemical doping.
     1. The process of TFA-MOD includes precursor solution, decomposition andcrystallization. During the preparation of precursor solution, coppertrifluoroacetate has great influence on the properties of YBCO-TFA gel for slowpyrolysis process. During the pyrolysis process, the relative humidity is criticalto achieve an YBCO film with crack-free surface. The heating rate has greatinfluence on the formation of buckling surface. During the firing process, thestress-induced spontaneous dewetting of YBCO film can be observed at higherfiring temperatures. The low oxygen partial pressure is beneficial to thesuppression of a-axis grains.
     2. The effect of single crystal substrate with different lattice mismatch andthe effect of La2Zr2O7buffer layer’s roughness on the growth of YBCO filmshave been investigated. The effect of MOD process on the microstructure ofbuffer layers is also discussed. The smooth surface of LZO layer is veryimportant for the highly texture and good performance of YBCO film. Duringthe CSD process, the interfacial reaction and the substrate oxidation are observed.BaCeO3is formed by the reaction between Ba(O,F)2and CeO2. The YBCO filmshave been deposited by CSD process with optimized parameters on differentsubstrates. Sample (YBCO/LAO) shows an optimized performance of Jc=~2.7MA/cm2at77K self field. The critical current of another sample(YBCO/CeO2/YSZ/CeO2/NiW) is about60A/cm-w at77K self field.
     3. In order to lower the sensitivity of traditional all-TFA solution, reduce thefluorine content and increase the efficiency, a new fluorine solution has beendeveloped by using copper benzoate as precursor. The decomposition time forthe low fluorine solution can be greatly reduced, and the precursor film showscrack-free and homogeneous surface in the whole heating rate range of1-10K/min. The decomposition time (1-2.5h) of the low fluorine solution is shortened to1/4-1/5of that for all-TFA solution. The low fluorine approach canbe useful for the fabrication of YBCO films with fast calcination process. Duringthe crystallization, the compositions of intermediated phase change with theannealing temperature, which demonstrate that the growth mechanism of the lowfluorine solution is still “ex-situ BaF_2” process. The water vapor pressure can becontrolled to realize the uniform nucleation and fast growth of YBCO grains.The YBCO film prepared by low fluorine solution on buffered NiW substrate hasalso demonstrated high performance.
     4. Two kinds of YBCO films with different pining types (YGd_xBa_2Cu_3O_y andYBCO+xBaZrO_3) are prepared by chemical solution deposition. The effects ofdoping content on the properties of YBCO films have been investigated. The fluxpinning properties of YGdBCO film can be enhanced by the substitution of Yions by Gd ions and the precipitation of RE_2O_3, which can both work as effectivepinning centers. The length of c-axis in YGdBCO film increases with the contentof Gd ions. When the content of Gd is at10%, YGd_(0.1)Ba_2Cu_3O_yfilm has goodperformance in magnetic field (J_c=0.18MA/cm~2at77K,1T, F_p=~1.7GN/m~3),which is almost twice of that for the pure YBCO film. On the other hand, thesecond phase BaZrO_3can be formed in YBCO film by addition of Zr compoundin the precursor solution. The appearances of second phase make the film denseand increase the flux pinning. YBCO with5%BaZrO_3doping shows higherperformance in magnetic field with J2c=4.9MA/cm@77K, self field, and J_c=0.42MA/cm~2at77K,1T, F_p=~4GN/m~3.
引文
[1]林良真,张金龙,李传义等.超导电性及其应用[M].北京:北京工业大学出版社,1998,1-4.
    [2]闻海虎.铜氧化合物超导体和铁基超导体对比研究的启示[R].杭州:浙江大学,2011.
    [3]周廉,甘子钊.中国高温超导材料及应用发展战略研究[M].北京:化学工业出版社,2007,22-59.
    [4]张其瑞.高温超导电性[M].杭州:浙江大学出版社,1994,555-614.
    [5] Norton D P, Goyal A, Budai J D, et al. Epitaxial YBa_2Cu_3O_7on biaxially textured nickel(001): an approach to superconducting tapes with high critical current density[J]. Science,1996,274(5288):755-757.
    [6] Hawsey R, Christen D. Progress in research, development, and pre-commercialdeployment of second generation HTS wires in the USA[J]. Physica C,2006,445-448:488-495.
    [7] Hanyu S, Iijima Y, Fuji H,et al. Development of500m-length IBAD-Gd2Zr2O7film forY-123coated conductors[J]. Physica C,2007,463-465:568-570.
    [8] Zhang W, Rupich M W, Schoop U, et al. Progress in AMSC scale-up of second generationHTS wire[J], Physica C,2007,463-465:505-509.
    [9]戴少涛.未来电网中的超导电力技术[R].西安:西北有色金属研究院,2010.
    [10]梁敬魁,车广灿,陈小龙.新型超导体系相关系和晶体结构[M].北京:科学出版社,2006,6:292-307.
    [11] Ye J, Nakamura K. Quantitative structure analyses of YBa_2Cu_3O_(7-δ)thin films:Determination of oxygen content from X-ray diffraction patterns[J]. Physical Review B,1993,48:7554-7546.
    [12] Held R, Schneider C W, Mannhart J et al. Low-angle grain boundaries in YBa_2Cu_3O_(7-δ)with high critical current densities[J]. Physical Review B,2009,79:014515.
    [13]蔡传兵,潘成远,刘志勇等.高温超导涂层导体-RE123双轴织构技术及其发展状态[J].物理学进展,2007,27:467-490.
    [14]卢亚锋.钙态矿缓冲层研究[R].西安:西北有色金属研究院全国超导会,2007.
    [15] Solovyov V, Dimitrov I K, Li Q. Growth of thick YBa_2Cu_3O_7layers via a barium fluorideprocess[J], Superconductor Science and Technology,2013,26:013001.
    [16] Solovyov, S. Raising performance of2G wires through improved nucleation of YBCO ontechnical oxide buffers[R]. USA Alexandria VA: DOE Superconductivity for ElectricSystems Peer Review,2009.
    [17] Miller D, Maroni V. Coordinated characterization of coated conductors for improvedperformance[R]. USA Alexandria VA: DOE Superconductivity for Electric Systems PeerReview,2010.
    [18] Mutlu I H, Acun H, Celik E, et al. Preparation of YBa_2Cu_3O_7-xsuperconducting solutionsand films from alkoxide-based precursors using sol-gel method and investigation of theirchemical reaction mechanisms[J]. Physica C,2007,451:98-106.
    [19] Liu M, Suo H L, Zhao Y, et al. The improvement of YBCO film properties by two-stepdeposition using pyrolysis method [J]. Physica C,2007,460-462:1424-1426.
    [20] Schoofs B, Cloet V, Vermeir P, et al. A water-based sol-gel technique for chemicalsolution deposition of (RE)Ba2Cu3O7-y(RE=Nd and Y) superconducting thin films[J].Superconductor Science and Technology,2006,19:1178-1184.
    [21] Shi D, Xu Y, Yao H, et al. The development of YBa2Cu3Oxthin films using afluorine-free sol-gel approach for coated conductors[J]. Superconductor Science andTechnology,2004,17:1-6.
    [22] Kitoh Y, Matsuda J, Suzuki K, et al. Effect of metal composition ratios of solutions onJc-B properties of REBCO coated conductors fabricated by advanced TFA-MODprocess[J]. Physica C,2007,463-465:523-526.
    [23] Tsukada K, Yamaguchi I, Sohma M, et al. Preparation of epitaxial YBa_2Cu_3O_7-yfilms onCeO2-buffered yttria-stabilized zirconia substrates by fluorine-free metalorganicdeposition[J]. Physica C,2007,458:29-34.
    [24] Kim B J, Yi K Y, Kim H J, et al. Optimization of processing parameters of YBCO filmsprepared by a dichloroacetic metal organic deposition method[J]. Superconductor Scienceand Technology,2007,20:428-432.
    [25] Gupta A, Jagannathan R, Cooper E I, et al. Superconducting oxide-films with hightransition temperature prepared form metal frifluoroacetate precursors[J]. AppliedPhysical Letter,1988,52(24):2077-2079.
    [26] Mclntyre P C, Cima M J, Smith J A, et al. Effect of growth conditions on the propertiesand morphology of chemically derived epitaxial thin films of Ba2YCu3O7-xon(001)LaAlO3[J]. Journal of Applied Physics,1992,71(4):1868-1877.
    [27] Rupich M W, Verebelyi D T, Zhang W, et al. Metalorganic deposition of YBCO films forSecond-Generation high temperature Superconductor wires[J]. MRS Bulletin,2004,572-578.
    [28] Araki T, Niwa T, Yamada Y, et al. Growth model and the effect of CuO nanocrystalliteson the properties of chemically derived epitaxial thin films of YBa_2Cu_3O_7-x[J]. Journal ofApplied Physics,2002,92:3318-3325.
    [29] Araki T, Hirabayashi I. Review of a chemical approach to YBa_2Cu_3O_7-xcoatedsuperconductors metalorganic deposition using trifluoroacetates[J]. SuperconductorScience and Technology,2003,16: R71-R94.
    [30] Wire Development Group. Understanding and engineering the performance of2G HTSwire[R]. USA Washington DC: DOE Superconductivity for Electric Systems AnnualPeer review,2006.
    [31] Li Q. Review of ARPA-E projects and beyond-from basic science to energyapplications[R]. Japan Tokyo: International Symposium on Superconductivity,2012.
    [32] Xu Y, Goyal A, Leonard K, et al. High performance YBCO films by the hybrid ofnon-fluorine yttrium and copper salts with Ba-TFA[J]. Physica C,2005,421:67-72.
    [33] Bhuiyan M S, Paranthaman M, Sathyamurthy S, et al. Development of modifiedMOD-TFA approach for YBCO film growth[J]. IEEE Transactions on AppliedSuperconductivity,2007,17:3557-3560.
    [34] Zhang W, Maroni V, Miller D. Coordinated Characterization of Coated Conductor:[R].USA DOE Superconductivity for Electric Systems Peer Review,2007.
    [35] Selvamanickam V, Chen Y, Xiong X, et al. Progress in second-generation HTS wiredevelopment and manufacturing[J]. Physica C,2008,468:1504-1509.
    [36] Fleshler S, Rupich M, Malozemoff A. Scale-up of2G HTS wire manufacturing atAMSC[R]. USA Crystal City VA: DOE Annual Peer Review,2007.
    [37] Rupich M, Verebelyi D, Fleshler S, et al. Performance and status of manufacturing scaleup of344superconductors[R]. USA Panama City FL: DOE Wire Development andApplications Workshop,2007.
    [38]金利华,李成山,闫果等.涂层导体中的TFA-MOD超导层技术进展[J].材料导报,2008,22(8):90-94.
    [39] Rupich M W, Li X, Sathyamurthy S, et al. Advanced development of TFA-MOD coatedconductors[J]. Physica C,2011,471:919-923.
    [40] Malozemoff A P. Does the electric power grid need a room temperaturesuperdonductor[R]. Japan Tokyo: International Symposium on Superconductivity,2012.
    [41] Siegal M P, Dawley J T, Clem P G, et al. Improving chemical solution depositedYBa_2Cu_3O_7-dfilm properties via high heating rates[J]. Physica C,2003,399:143-150.
    [42] Clem P, Voigt J A, Siegal M P, et al. Solution deposition for YBCO coated conductors[R].USA Washington DC: Superconductivity for Electric Systems Annual Peer Review,2004.
    [43] Clem P. All Solution Deposited Coated Conductor Program[R]. USA Crystal City VA:DOE Annual Peer Review,2007.
    [44] Izumi T. R&D aiming at absolutely superior coated conductors[R]. Japan Tokyo:International Symposium on Superconductivity,2012.
    [45] Izumi T, Yoshizumi M, Matsuda J, et al. Progress in development of advancedTFA-MOD process for coated conductors[J]. Physica C,2007,463-465:510-514.
    [46] Nakaoka K, Yoshizumi M, Usui Y, et al. High-rate fabrication of YBCO coatedconductors using TFA-MOD method[J]. Physics Procedia,2012,27:196-199.
    [47] Kitoh Y, Matsuda J, Suzuki K, et al. Fabrication of Y1-xRExBa2Cu3Oyfilms on singlecrystalline substrates and IBAD buffered metallic tapes by advanced TFAMOD[J].Physica C,2006,445-448:558-562.
    [48] Miura M, Maiorov B, Baily S A, et al. Mixed pinning landscape innanoparticle-introduced YGdBa2Cu3Oyfilms grown by metal organic deposition[J].Physical Review B,2011,83:184519.
    [49] Yoshizumi M. Recent progress in development of TFA-MOD process for REBCO coatedconductors with high properties[R]. Japan Tokyo: International Symposium onSuperconductivity,2012.
    [50] Izumi T. Research&development of Reel-to-Reel TFA-MOD process for coatedconductors[R]. Japan Tsukuba: International Symposium on Superconductivity,2007.
    [51] Takagia Y, Takahashi Y, Nakaoka K, et al. Development of high-Ic processing for lowcost YBCO coated conductors by multi-turn reel-to-reel crystallization large furnace forTFA-MOD process[J]. Physics Procedia,2012,27:200-203.
    [52] Teranishi R, Izumi T, Shiohara Y. Highlights of coated conductor development inJapan[J]. Superconductor Science and Technology,2006,19: S4-S12.
    [53] Aoki Y. Development of TFA-MOD process using a batch-type furnace for long lengthYBCO coated conductor[R]. Japan Tsukuba: International Symposium onSuperconductivity,2007.
    [54] Izumi T. Road for marketable coated conductors[R]. Japan Tokyo: InternationalSymposium on Superconductivity,2011.
    [55] Moon S H. Recent progress of HTS2G wire development in Korea. Japan Tokyo:International Symposium on Superconductivity,2012.
    [56] Puig T. Coated conductor research in Europe[R]. Japan Tokyo: International Symposiumon Superconductivity,2012.
    [57] Obradors X, Puig T, Pomar A, et al. Progress towards all-chemical superconductingYBa_2Cu_3O_(7-δ)coated conductors[J]. Superconductor Science and Technology,2006,19:S13-S26.
    [58] Puig T, Gutierrez J, Pomar A. Vortex pinning in chemical solution nanostructured YBCOfilms[J]. Superconductor Science and Technology,2008,21:034008.
    [59] Driessche I, Feys J, Hopkins S C, et al. Chemical solution deposition using ink-jetprinting for YBCO coated conductors[J]. Superconductor Science and Technology,2012,25:065017.
    [60] Vilardell M. Novel inkjet printing methodologies for YBa2Cu3Oyfilm growth andpatterning[R]. Netherlands Hague: Superconductivity Centennial Conference2011.
    [61] Rikel M O, Ehrenberg J, Mahachi S, et al. Development of All-CSD Processes for CoatedConductors at Nexans: Limitations and Possible Solutions. IEEE Transactions on AppliedSuperconductivity,2011,21(3):2928-2932.
    [62] Zhang W, Huang Y, Li X, et al. Control of flux pinning in MOD YBCO coatedconductor[J]. IEEE Transactions on Applied Superconductivity,2007,17:3347-3350.
    [63] Arenal R, Miller D J, Maroni V A, et al. Characterization of Er-Added YBCO CoatedConductor Produced by Metal Organic Deposition (MOD)[J]. IEEE Transactions onApplied Superconductivity,2007,17:3359-3362.
    [64] Goswami R, Holtz R L, Rupich M W, et al. Formation of nanoparticles and defects inYBa_2Cu_3O_7-dprepared by the metal organic deposition process[J]. Scripta Materialia,2007,57:797-800.
    [65] Ghalsasi S V, Zhou Y X, Rusakova I, et al. Enhancement of Current Carrying Capabilityin MOD-Processed YBCO Films Using Chemical Doping[J]. IEEE Transactions onApplied Superconductivity,2007,17:3343-3346.
    [66] Nakaoka K, Matsuda J, Kitoh Y, et al. Influence of starting solution composition onsuperconducting properties of YBCO coated conductors by advanced TFA-MODprocess[J]. Physica C,2007,463-465:519-522.
    [67] Miura M, Yoshizumi M, Sutoh Y, et al. Introduction of pinning center to enhance Icunder magnetic fields in REBCO coated conductors fabricated by advanced TFA-MODprocess[J]. Physica C,2008,468:1643-1646.
    [68] Matsushita T, Nagamizu H, Tanabe K, et al. Improvement of flux pinning performance athigh magnetic fields in GdBa2Cu3Oycoated conductors with BHO nano-rods throughenhancement of Bc2[J]. Superconductor Science and Technology,2012,25:125003.
    [69] Tobita H, Notoh K, Higashikawa K, et al. Fabrication of BaHfO3doped Gd1Ba2Cu3O7-δcoated conductors with the high Ic of85A/cm-w under3T at liquid nitrogen temperature(77K)[J]. Superconductor Science and Technology,2012,25:062002.
    [70] Engel S, Thersleff T, Hühne R, et al. Enhanced flux pinning in YBCO layers by theformation of nanosized BaHfO3precipitates using the chemical deposition method[J].Applied Physics Letter,2007,90:102505.
    [71] Gutiérrez J, Llordés A, Gázquez J, et al. Strong isotropic flux pinning in solution-derivedYBa_2Cu_3O_7-xnanocomposite superconductor films[J]. Nature Materials,2007,6:367-373.
    [72] Strickland N M. Enhanced flux pinning by BaZrO3nanoparticles in metal-organicdeposited YBCO second-generation HTS wire[J]. Physica C,2008,468:183-189.
    [73] Lu F, Kametani F, Hellstrom E E, et al. Film growth of BaZrO3-doped YBa_2Cu_3O_(7-δ)byusing fluorine-free metal-organic deposition[J]. Superconductor Science and Technology,2012,25:015011.
    [74] Polat O, Ertugrul M, Thompson J R, et al. Superconducting properties of YBa_2Cu_3O_(7-δ)films deposited on commercial tape substrates, decorated with Pd or Ta nano-islands[J].Superconductor Science and Technology,2012,25:025018.
    [75] Pomar A, Llorde′s A, Gibert M, et al. Tuning the superconducting properties ofYBa_2Cu_3O_7tapes grown by chemical methods[J]. Physica C,2007,460-462:1401-1404.
    [76] Iguchi T, Araki T, Yamada Y, et al. Fabrication of Gd-Ba-Cu-O films by themetal-organic deposition method using trifluoroacetates[J]. Superconductor Science andTechnology,2002,15:1415-1420.
    [77] Kaneko A, Fuji H, Teranishi R, et al. Fabrication of REBa2Cu3O7-yfilm by advancedTFA-MOD process[J]. Physica C,2004,412-414:926-930.
    [78] Nakamura T, Kita R, Miura O, et al. Fabrication of GdBa2Cu3Oyfilms by metal-organicdeposition using metal-naphthenates[J]. Physica C,2007,463-465:540-543.
    [79] Shin G M, Kim D J, Song K J, et al. MOD-Processed SmBCO Films on LaAlO3(100)Substrates[J]. IEEE Transactions on Applied Superconductivity,2007,17:3561-3563.
    [80] Mitani A, Teranishi R, Yamada K, et al. Effect of fabrication conditions on crystalline ofSmBCO films fabricated by TFA-MOD method[J]. Physica C,2008,468:1546-1549.
    [81] Araki T, Yamagiwa K, Hirabayashi I, et al. Large-area uniform ultrahigh-JcYBa_2Cu_3O_7-xfilm fabricated by the metalorganic deposition method using trifluoroacetates[J].Superconductor Science and Technology,2001,14: L21-L24.
    [82]宋力,马稳,徐照仙,无水苯甲酸铜配合物的合成与结构[J].信阳师范学院学报,2002,15:181-183.
    [83]钟鸣,陈慧娟,胡付欣,苯甲酸铜的合成及热分解机理[J].信阳师范学院学报,2007,20:303-304.
    [84] Bhuiyan M S, Paranthaman M, Salama K. Solution-derived textured oxide thin films-areview[R]. Superconductor Science and Technology,2006,19: R1-R21.
    [85] Araki T, Hirabayashi I, Niwa T, et al. A large volume reduction and calcining profile forlarge-area YBa_2Cu_3O_7xfilm by metalorganic deposition using trifluoroacetates[J].Superconductor Science and Technology,2004,17:135-139.
    [86]张云.低温预分解过程对涂层导体结构和性质的影响[D].西安:陕西师范大学,2010.
    [87]Araki T, Takahashi Y, Yamagiwa K et al. Firing condition for entire reactions of fluorideswith water vapor in metalorganic deposition method using trifluoroacetate[J]. Physica C357,2001,991-994.
    [88]王耀.高温超导涂层导体的缓冲层机制研究[D].西安:西北工业大学,2011.
    [89]崔旭梅. TFA-MOD方法生长YBCO薄膜的结构和性能研究[D].成都:电子科技大学,2006.
    [90]王富耻.材料现代分析测试方法[M].北京:北京理工大学出版社,2006,266-267.
    [91]孟庆昌.透射电子显微学[M].哈尔滨:哈工大出版社,1998,1-14.
    [92] Dawley J T, Clem P G, Boyle T J, et al. Rapid processing method for solution depositedYBa_2Cu_3O_(7-δ)[J]. Physica C,2004,402:143-151.
    [93] Dawley J T, Clem P G, Siegal M P et al. High Jc YBa_2Cu_3O_(7-δ)films via rapid low pO2pyrolysis[J]. Journal of Material Research,2001,16:13-16.
    [94] Baillie M J, Brown D H, Moss K C. Anhydrous Metal Trifluoroacetates[J]. Journal ofChemistry Society,1968, A:3110-3114.
    [95] Morlens S, Romà N, Ricart S et al. Thickness control of solution deposited YBCOsuperconducting films by use of organic polymeric additives[J]. Journal of MaterialsResearch,2007,22:2330-2338.
    [96] Zalamova K, Romà N, Pomar A, et al. Smooth Stress Relief of Trifluoroacetatemetal-Organic Solutions for YBa_2Cu_3O_(7-δ)film growth[J]. Chemistry of Materials,2006,18:5897-5906.
    [97] Gàzquez J, Sandiumenge F, Coll M, et al. Precursor evolution and nucleation mechanismof YBa2Cu3Oxfilms by TFA metal organic decomposition[J]. Chemistry of Materials,2006,18:6211-6219.
    [98] Zalamova K, Pomar A, Palau A, et al. Intermediate phase evolution in YBCO thin filmsgrown by the TFA process[J]. Superconductor Science and Technology,2010,23:014011.
    [99] Mosiadz M, Juda K L, Hopkins S C, et al. An in-depth in situ IR study of the thermaldecomposition of yttrium trifluoroacetate hydrate[J]. Journal of Thermal Analysis andCalorimetry,2012,107:681-691.
    [100] Mosiadz M, Juda K L, Hopkins S C, et al. An in-depth in situ IR study of the thermaldecomposition of barium trifluoroacetate hydrate[J]. Thermochimica Acta,2011,513:33-37.
    [101] Mosiadz M, Juda K L, Hopkins S C, et al.80_An in-depth in situ IR study of the thermaldecomposition of copper trifluoroacetate hydrate[J]. Journal of Fluorine Chemistry.2012,135,59-67.
    [102] Mclntyre P C, Cima M J, Smith J A, et al. Effect of growth conditions on the propertiesand morphology of chemically derived epitaxial thin films of Ba2YCu3O7-xon (001)LaAlO3[J]. Journal of Applied Physics,1992,71:1868-1877.
    [103] Wypych G. Handbook of solvents[M]. Canada Toronto: ChemTec Publishing,2001.
    [104] Dawley J T, Clem P G, Siegal M P, et al. Improving sol-gel YBa_2Cu_3O_7filmmorphology using high-boiling-point solvents[J]. Journal of Material Research,2002,17:1900-1903.
    [105] Ichino Y, Sudoh K, Miyachi K, et al. Orientation mechanism of REBa2Cu3Oy(RE=Nd,Sm, Gd, Y, Yb) thin films prepared by pulsed laser deposition[J], IEEE Transactions onApplied Superconductivity,2003,13(2):2735-2738.
    [106] Zhu D, Huang J, Li H, et al. A new method to preserve the c-axis growth of thickYBa_2Cu_3O_(7-δ)films grown by pulsed laser deposition[J]. Physica C,2009,469(22):1977-1982.
    [107] Coll M, Gázquez J, Pomar A, et al. Stress-induced spontaneous dewetting ofheteroepitaxial YBa_2Cu_3O_7thin films[J]. Physical Review B,2006,73:075420.
    [108] Cai Y Q, Chen Y, Tang L, et al. Dominant effect of oxygen enhancement on thecrystalline orientation of YBa2Cu3Oxfilm prepared by liquid-phase epitaxial growth[J].Crystal Growth&Design,2007,7(8):1469-1471.
    [109] Rup J L M, Solenthaler C, Gasser P, et al. Crystallization of amorphous ceria solidsolutions[J]. Acta Materialia,2007,55:3505-3512.
    [110] Li J G, Wang Y, Ikegami T, et al. Densification below1000°C and grain growthbehaviors of yttria doped ceria ceramics[J]. Solid State Ionics,2008,179:951-954.
    [111] Solovyov V F, Bagarinao K D, Nykypanchuk D, Nanoscale abnormal grain growth in(001) epitaxial ceria[J]. Physical Review B,2009,80:104102.
    [112] Solovyov V F, Abraimov D, Miller D, et al. Correlation between YBa_2Cu_3O_(7-δ)nucleidensity and the grain orientation of the CeO2buffered Ni-W template of thesecond-generation superconducting wire[J]. Journal of Applied Physics,2011,105:113927.
    [113] Knoth K, Huhne R, Oswald S, et al. Detailed investigations on La2Zr2O7buffer layersfor YBCO-coated conductors prepared by chemical solution deposition[J]. ActaMaterialia,2007,55:517-530.
    [114] Yu Z M, Odier P, Ortega L, et al. LZO covered Cu-based substrates[J]. Journal ofAlloys and Compounds,2008,460:519-523.
    [115]于泽铭.新型Cu-Ni双金属层基带制备及CSD技术制备LZO缓冲层[D].沈阳:东北大学,2008.
    [116]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001,122-123.
    [117] Paranthaman M P, Sathyamurthy S, Heatherly L, et al. All MOD buffer/YBCO approachto coated conductors[J]. Physica C,2006,445-448:529-532.
    [118] Tokunaga Y, Fuji H, Teranishi R, et al. High critical current YBCO films using advanceTFA-MOD process[J]. Physica C,2004,412-414:910-915.
    [119]金利华,张云,于泽铭等.改进型前驱液对化学溶液法制备YBCO薄膜的影响[J].低温物理学报,2010,32:38-42.
    [120] Lewandowski W, Kalinowska M, Lewandowska H. The influence of metals on theelectronic system of biologically important ligands. Spectroscopic study of benzoates,salicylates, nicotinates and isoorotates[J]. Journal of Inorganic Biochemistry,2005,99:1407-1423.
    [121] Marangoni R, Bubniak G A, Cantao M P, et al. Modification of the Interlayer Surface ofLayered Copper(II) Hydroxide Acetate with Benzoate Groups: Submicrometer FiberGeneration[J]. Journal of Colloid and Interface Science,2001,240:245-251.
    [122] Miller D, Maroni V, Selvamanickam V, et al. The Argonne-SuperPower CRADA:Characterization of Coated Conductors[R]. USA Arlington VA: DOE Superconductivityfor Electric System Annual Peer Review,2008.
    [123] Feenstra R, List F A, Li X, et al. A modular ex situ conversion process for thickMOD-fluoride RBCO precursors[J]. IEEE Transactions on Applied Superconductivity,2009,19:3131-3135.
    [124] Miller D, Feenstra R. Optimization of RBCO nucleation and growth Optimization ofRBCO nucleation and growth in fluoride in fluoride-precursor ex situ processing[R].USA Arlington VA: Superconductivity for Electric System Annual Peer Review,2008.
    [125] Wesolowski D E, Yoshizumi M, Cima M. Trajectory property relationships in MODderived YBCO fims[J]. Physica C,2006,450:76-82.
    [126] Wesolowki D E, Yoshizumi M, Cima M. Understanding the MOD process betweendecomposition and YBCO formation[J]. IEEE Transactions on AppliedSuperconductivity,2007,17:3351-3354.
    [127] Wu L, Solovyov V F, Wiesmann H J, et al. Mechanisms for hetero-epitaxial nucleationof YBa_2Cu_3O_(7-δ)at the buffered precursor SrTiO3interface in the post deposition reactionprocess[J]. Applied Physics Letter,2002,80:419-421.
    [128] Wong N W, Levin I, Cook L P, et al. Nature of the transient BaF2-related phases in the“BaF2” processing of Ba2YCu3O7-xsuperconductors[J]. Applied Physics Letters,2006,88:102507.
    [129] Wong N W, Cook L, Yang Z, et al. Phase relations of high Tc superconductors[R]. USAWashington DC: DOE Superconductivity Program for Electric Systems Annual PeerReview,2004.
    [130] Xu Y, Qian Z, Xu Z, et al. Nucleation study of YBCO by modified TFA-MODapproach[J]. IEEE Transactions on Applied Superconductivity,2009:19:3127-3130.
    [131] Solovyov V F, Bagarinao K, Li Q, et al. Nature of Y1Ba2Cu3O7nucleation centers onceria buffers[J]. Superconductor Science and Technology,2010,23:014008.
    [132] Obradors X, Puig T, Ricart S, et al. Growth, nanostructure and vortex pinning insuperconducting YBa_2Cu_3O_(7-δ)thin films based on trifluoroacetate solutions[J].Superconductor Science and Technology,2012,25:123001.
    [133] Ichino Y, Sudoh K, Miyachi K, et al. Orientation mechanism of REBa2Cu3Oy(RE=Nd,Sm, Gd, Y, Yb) thin films prepared by pulsed laser deposition[J]. IEEE Transactions onApplied Superconductivity,2003,13(2):2735-2738.
    [134] Dew-Hughes D. Flux Pinning Mechanism in Type II Superconductors[J]. Philos Mag,1974,30:293-230.
    [135] Haugen T, Barnes P N, Wheeler R, et al. Addition of nanoparticle dispersions toenhance flux pinning of the YBa_2Cu_3O_7-xsuperconductor[J]. Nature,2004,430:867-870.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700