无氟高分子辅助金属有机物沉积法制备高性能REBa_2Cu_3O_(7-z)超导薄膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
YBa2Cu3O7-z(YBCO)涂层导体即第二代高温超导带材是当前超导材料领域的研究热点,在电力系统、交通、军事、医学等方面有着巨大的应用前景。目前,制约涂层导体大规模应用的主要因素是成本高昂的制备技术。本文正是以低成本、高性能、易推广的制备技术为研究目标开发出了一种新型无氟高分子辅助金属有机物沉积(PA-MOD)技术和一种新型的高温部分熔融热处理工艺以及与之相应的磁通钉扎中心引入技术,并围绕这一技术开发的基础科学问题展开了较为深入的研究,使该技术的可靠性和重复性达到了较好的水平。采用优化的工艺参数制备出的YBCO超导薄膜其超导转变温度Tc达到91 K,临界电流密度Jc(77 K,0 T)达到3.5 MA/cm2
     第1章主要结合高温超导材料的研究进展及应用要求介绍了本课题的研究背景。其次,以基础科研和实际应用为导向提出了课题的主要研究内容,并且概括了论文的篇章结构。
     第2章首先回顾了超导电性的基础知识并对典型的高温超导材料作了详细介绍。继而阐述了涂层导体的结构、制备技术、性能及其应用。从化学溶液法的分类和制备流程两方面重点介绍了溶胶凝胶法、金属有机物沉积法和混合法的特点。并着重介绍了现行的两种典型的化学溶液沉积法即三氟醋酸盐法(TFA-MOD)和三甲基乙酸盐法(TMAP)的制胶工艺流程、热处理工艺路线及成相过程的化学反应机制。最后阐述了磁通钉扎的基础知识并归纳了目前提高YBCO涂层导体临界电流密度的方法。
     第3章主要分为实验方案设计和样品表征两个方面。在实验方案设计中全面介绍了制备YBCO薄膜的整个工艺流程。其中重点介绍了课题组自主开发的无氟PA-MOD法的整个开发过程,并给出了最终的制胶流程。在样品表征方面,主要涉及到的测试手段包括热分析、晶体结构和织构、表面和断面微结构、超导磁性质和电输运性质。
     自主开发的新型无氟高分子辅助金属有机物沉积(PA-MOD)技术具有以下特点:精确控制原料的化学计量比、成本低廉、涂层溶液制备过程简单易操作、同时高分子化合物的引入有效地增强了涂层溶液的均匀性和稳定性。传统的无氟化学溶液法制备YBCO薄膜过程中容易生成杂相BaCO3,该杂相通常堆积在YBCO的晶界处从而阻碍超导电流的传输,使得采用该方法制备的YBCO薄膜性能低下。20多年来,这一技术一直得不到发展。我们通过对无氟化学溶液法沉积YBCO超导薄膜的分解过程、成相工艺、热处理参数的优化以及相应的机理进行系统的研究,开发出在低温热处理过程中利用水蒸气与BaCO3反应的机理,使得制备过程中形成的BaCO3被分解,从而有效地解决了无氟化学溶液法制备过程中的这一难题,显著地提高了YBCO薄膜的性能以及制备技术的重复性。采用这一技术制备出的薄膜其超导转变温度达到90 K,77 K白场下的临界电流密度达到1 MA/cm2。这一技术对开发出低成本制备高性能YBCO高温超导涂层导体有着重要的意义。
     为了制备出高性能YBCO薄膜,我们研究了新型无氟PA-MOD法中不同高分子添加剂对涂层溶液合成以及对YBCO薄膜制备的影响。通过研究不同高分子添加剂制备的YBCO薄膜的性能,得到了收缩率最小的、辅助效率最佳的高分子聚乙烯醇缩丁醛(PVB),使超导薄膜的微观形貌显著改善、裂纹减少。在此基础上,开发出高温部分熔融热处理工艺,即在YBCO前驱薄膜中生成少量液相。液相的生成有利于增强前驱膜与基片之间的浸润性并促进其外延生长,同时液相能够弥合分解过程中形成的部分微裂纹和微孔。此外,较高的熔融温度还分解掉残余的BaCO3。这一新型的制备技术进一步改善了YBCO薄膜的微观结构,显著提高了其致密度和平整性,使孔洞率下降、裂纹减少,并使得超导相的成分控制更为精确。这些性能的改善使得YBCO超导薄膜的载流性能出现大幅度上升,在77 K,0 T下的临界电流密度达到了3.5 MA/cm2。这一性能指标在无氟化学法制备的YBCO薄膜中处于国际最好水平之一。
     由于化学溶液法工艺条件对组分的敏感性,由固相法所得到的制备参数不能直接作为指导化学溶液法制备掺杂的YBCO薄膜。因此采用化学溶液法引入磁通钉扎中心历来是YBCO超导薄膜研究的一个难点。为此,我们分别研究了微量Co3+、Fe3+、Zn2+、Ni2+、Li+等杂质离子的Cu位掺杂对YBa2Cu307-z超导薄膜结构和临界电流密度的影响。结果表明,微量杂质离子掺杂的YBCO薄膜具有良好的双轴织构以及更加平整致密的表面形貌。而且适量杂质离子掺杂使得YBCO薄膜的有场临界电流密度Jc显著提高。此外,Co3+和Zn2+名义掺杂量为0.001的YBCO薄膜的不可逆场Hirr和磁通钉扎力Fp也明显提高,表明通过微量杂质离子掺杂可以有效地改善YBC0薄膜的磁通钉扎性能。
     由于GdBCO具有比YBCO更高的载流性能,为了进一步提高涂层导体用超导层的性能,我们将所获得的技术推广到GdBCO系统。主要研究了微量Co3+、Fe3+、Zn2+、Ni2+的Cu位掺杂对GdBa2Cu3O7_Z薄膜结构和临界电流密度的影响。通过优化掺杂GdBCO薄膜的成相温度和熔融温度,制得了高性能的GdBCO薄膜。与YBCO体系不同的是,GdBCO体系中由于Gd位替代Ba位会生成在高温高场下可能作为钉扎中心的弱超导的固溶相。因此,杂质离子掺杂造成的纳米级缺陷和弱超导的固溶相均对提高GdBCO薄膜在高温高场下的Jc值有所贡献。
     此外,我们还研究了稀土元素以及BaZrO3掺杂对Y(Gd)Ba2Cu307-z临界电流密度的影响。根据约化临界电流密度随磁场变化的研究结果,过量稀土元素掺杂、稀土元素Y位部分替代主要提高了YBCO薄膜在低场下的磁通钉扎性能。而Nd、Eu、Gd等量共掺主要提高了薄膜在高温高场下的磁通钉扎性能,2%BaZrO3掺杂可以显著提高GdBCO薄膜在高温低场下的磁通钉扎性能。我们初步分析了在Y(Gd)BCO薄膜中采用不同方式引入钉扎中心的磁通钉扎机制。
     最后,我们着重分析了影响YBCO薄膜外延生长的热力学和动力学机理,并对控制薄膜织构和表面微结构的部分因素进行了探讨。我们对前驱薄膜形成及YBCO薄膜成相的化学反应机制进行了初步的阐述,并在此基础上应用经典形核理论推导出了先驱薄膜在单晶基片上非均匀形核的临界晶核尺寸、形核驱动力和形核所需要克服的能量壁垒。研究结果表明,通过调控反应过程中的结晶温度、水分压和氧分压可以控制YBCO薄膜以界面形核为主,将均匀的体相形核降到较低的水平。同时也可以通过改变这些参数来增加反应的驱动力,增大非均匀形核的成核率。
YBa2Cu3O7-z (YBCO) coated conductors (CCS), i.e. the second generation wires (tapes) is a focus in the present research field of superconducting materials. It has an enormous application prospect in electric power system, transportation, military and medical field. Now, the expensive preparation technology limits the large-scale applications of YBCO CCS. In this thesis, a fluorine-free polymer-assisted metal organic deposition (PA-MOD) technology and high temperature partial melting process as well as the corresponding flux pinning centers introduction method were newly developed with the objective of low-cost, high-performance and easy-scalability preparation technology. Moreover, several basic scientific issues with respect of this new preparation technology were deeply studied, and the reliability and reproducibility of this new technology has achieved a good level. YBCO film by the optimal processing parameters has the superconducting transition temperature Tc of 91 K and critical current density (77 K,0T)Jc up to 3.5 MA/cm2
     In chapter 1, research background of the dissertation has been introduced by combining the research development with application requests of high temperature superconducting materials. Moreover, the main study contents have been proposed oriented in the basic research and real applications and the architecture of the dissertation was summarized in detail.
     In chapter 2, the basic knowledge of superconductivity has been firstly reviewed and typical high temperature superconducting materials have been introduced in detail. Then the structure, preparation technology, properties and applications of CCS have been elaborated. And several chemical solution methods (CSD) such as sol gel、metal organic deposition and hybrid methods have been mainly introduced from the aspects of classification and procedures of the CSD methods. Additionally, two typical CSD methods including TFA-MOD and TMAP have been elaborated from the aspects of flow chart of solution synthesis, heat treatment profile and chemical reaction mechanism. At last, basic knowledge about flux pinning has been explained, and the present approaches of improving the Jc values of YBCO CCS have been summarized.
     In chapter 3, it includes the experimental design and characterization methods. The whole treating process of YBCO film fabrication has been introduced in the experimental design. The development process of self-developed non-fluorine PA-MOD method has been emphasized, and the final flow chart of solution synthesis has also been given in this part. Moreover, the major characterization approaches are thermal analysis, crystal structure and texture, surface and cross-sectional microstructure, superconducting magnetic property and electric transport properties.
     The newly developed PA-MOD approach has several advantages such as precise control of stoichiometry, low cost, simple operation process of coating solution preparation, and enhanced homogeneity and stability of coating solution through addition of polymers. BaCO3 impurity is easy to be formed in YBCO film by the traditional non-fluorine method, which precipitates in the YBCO grain boundaries thus prevent the current transportation. And this resulted in a low-performance YBCO film. The fluorine-free method has not been effectively developed over the past 20 years. In this thesis, we developed a heat treatment with reaction of BaCO3 and water gas in low temperature pyrolysis process through the systematic research of pyrolysis process, firing treatment and other treating parameters, which can decompose the formed BaCO3 impurity and significantly enhance the properties of YBCO film and improve the reproducibility of preparation technology. This treating process can effectively solve the difficult problem for YBCO film preparation by fluorine-free approach. YBCO film by this technology has Tc of 90 K and Jc (77 K,0 T) over 1 MA/cm2. Thus this technology has great significance to develop the YBCO coated conductors with low cost and high performance.
     Influence of different polymer additives in newly developed PA-MOD method on the coting solution synthesis and YBCO film preparation has been investigated in order to prepare high performance YBCO film. The polymer PVB has been identified as the smallest shrinkage and the best assistant efficiency by the study of properties of YBCO films by different polymers, which obviously improve the microstructure and decrease the microcracks of the film. On this basis, high temperature partial-melting process was developed i.e. littile liquid phase formation in precursor film. The formation of liquid phase is favorable to enhance the wettability between the precursor film and substrate and promote the epitaxial growth of the precursor film. Also, little liquid phase can make up part of the micro-holes amd microcracks formed in pyrolysis process. In addition, the residule BaCO3 can be decomposed at this high temperature. This newly developed fabrication technology can further improve the microstructure and enhance the density and smoothness the film, which decrease the holes and microcracks as well as control the stoichiometry of superconducting phase more precisely. These improved properties resulted in a great promotion of YBCO film, which has the Jc (77 K,0 T) up to 3.5 MA/cm2. This high Jc is one of the best results in the world for YBCO film by non-fluorine method.
     Because of the sensitivity of chemical solution deposition to the composition of starting materials, the treating parameters obtained by solid phase method can not directly take as the supervision for the doped YBCO film by chemical solution deposition. Therefore, it is ever a difficulty of introducing flux pinning centers by chemical solution deposition. Thus, the effect of dilute Co3+ Fe3+、Zn2+、Ni2+、Li+doping on the copper site of YBCO on the structure and critical current density of YBa2Cu3O7-z film has been studied. The results show that YBCO film with dilute impurity doping displays good biaxial texture and smoother as well denser surface morphology. And Jc value of the film with optimal doping level has been distinctly increased. In addition, the irreversibility field Hirr and flux pinning force Fp of YBCO film with Co3+ and Zn2+ doping level of 0.001 have been obviously improved. It is illustrated that dilute impurity doping can effectively improve the flux pinning properties of YBCO film.
     For the higher current carrying capabilities of GdBCO than YBCO, the obtained technology was extended in GdBCO system in order to further improve the properties of super layer for YBCO coated conductors. The effect of dilute Co3+、Fe3+、Zn2+、Ni2+ doping on the copper site on the structure and critical current density of GdBa2Cu3O7-z film has been mainly investigated. High performance GdBCO film has been prepared through optimizing the firing temperature and partial-melting temperature. The Gd/Ba substitution phase with weak superconductivity in the GdBCO system can be the potential pinning centers at higher temperature and fields, which is different with the YBCO system. Therefore, the nanoscale defects by dilute impurity doping and Gd/Ba substitution phase with weak superconductivity may jointly improve the Jc value of GdBCO film at higher temperature and fields.
     In addition, the influence of rare earth (RE) element and BaZrO3 doping on the Jc values of Y(Gd)BCO film has been investigated. According to the normalized Jc/Jc(0)-H curve, the flux pinning properties of YBCO film under the lower field can be improved by extra RE doping and RE partial substitution for Y site. While Nd, Eu, Gd substitution of Y site with the same doping level can improve the high-field flux pinning properties of the film, and 2%BaZrO3 doping can distinctly enhance the flux pinning properties at higher temperature and lower fields of GdBCO film. And the flux pinning mechanisms of Y(Gd)BCO films by different doping manners have been analysed.
     At last, the thermodynamic and dynamic conditions influencing the epitaxial growth of YBCO film have been analysed, and partial factors concerned on the control of texture and surface microstructure of the film has been discussed. The chemical reaction mechanism during the preparation of precursor film and phase formation of YBCO film has been speculated. On this basis, the critical nuclei size, nucleation driving force and nucleation energy barrier of heterogeneous nucleation of YBCO film on single crystal substrate have been derivated using classical nucleation theory. The results show that YBCO film can mainly nucleate by the interface nucleation through controlling the crystallized temperature, water partial pressure and oxygen partial pressure. Meanwhile, it can decrease the homogeneous bulk nucleation to a relatively lower level. And the driving force of chemical reaction and the heterogeneous nucleation rate can also be increased by adjusting these parameters.
引文
[1]H.K.Onnes. The resistance of pure mercury at helium temperature. Phys. Lab. Univ. Leiden.1911,120b:122b.
    [2]M.K.Wu, J.R.Ashburn, C.J.Torng, R.L.Meng, P.H.Hor, L.Gao, Z.J.Huang, Q. W. Y and C.W.Chu. Superconductivity at 93K in a new mixed phase Y-Ba-Cu-O compound. Phys.Rev.Lett.1987,58:908.
    [3]赵忠贤,陈立泉,崔长庚,黄玉珍,刘锦湘,陈赓华,李山林,郭树权and何业冶Ba-Y-Cu氧化物液氮温区的超导电性.科学通报.1987,32:177.
    [4]M.R.Cimberle, C.Ferdeghini, F.C.Matacotta, E.Olzi, C.Rizzuto and A.Siri. Resistive and current carrying properties of YBCO superconductors. Phys. Scr.1988,37 No 6:922.
    [5]L.T.Romano, P.R.Wilshaw, N.J.Long and C.R.M.Grovenor. High-resolution microchemistry and structure of grain boundaries in bulk YBa2Cu3O7-x. Supercond. Sci. Technol.1989,1 No 6:285.
    [6]C.P.Zhang, Z.M.Yu, J.R.Wang, Y.Feng and L.Zhou. YBCO bulk superconductors prepared by top-seed PMP process. Physica C.2003,386: 231.
    [7]M.Brand, S.Elschner, S.Gauss and W.Assmus. Transport critical current density of melt textured YBa2Cu3O7-x rods prepared by zone melting using a high temperature gradient. Appl. Phys. Lett.1994,64:2022.
    [8]C.H.Choi, Y.Zhao, C.C.Sorrell, M. L. Robina and C.Andrikidis.The increase of the critical current density of YBa2Cu307-y by a modified melt-textured-growth method. Physica C.1996,269:306.
    [9]A.Berenov, C.Farvacque, X.Qi, J.L.MacManus-Driscoll, D.MacPhail and S.Foltyn. Ca doping of YBCO grain boundaries. Physica C.2002,372-376: 1059.
    [10]C.H.Cheng and Y.Zhao. Enhancement of Jc by doping silver in grain boundaries of YBa2Cu3Oy polycrystals with solid-state diffusion method. J. Appl. Phys.2003,93 No4:2292.
    [11]D.Dimos, P.Chaudhari and J.Mannhart. Superconducting transport properties of grain boundaries in YBa2Cu3O7 bicrystals. Phys. Rev. B.1990,41:4038.
    [12]D.C.Larbalestier, A.Gurevich, D. M. Feldmann and A.A.Polyanskii. High-Tc superconducting materials for electric power applications. Nature.2001,414: 368.
    [13]R.A.Hawsey and D.K.Christen. Progress in research, development, and pre-commercial deployment of second generation HTS wires in the USA. Physica C.2006,445-448:488.
    [14]谢义元,V.Selvamanickam, Y.M.Chen, X.M.Xiong, M.Marchevsky, Y.F.Qiao, D.Hazelton and J.Carlos. High-performance 2G HTS Wire-manufacturing and technology advancement第十届全国超导学术研讨会摘要集.2009,
    [15]Y.Shiohara, Y.Kitoh and T.Izumi. Highlights in R&D for coated conductors in Japan. Physica C.2006,445-448:496.
    [16]X.Obradors, T.Puig, A.Pomar, F.Sandiumenge, N.Mestres, M.Coll, A.Cavallaro, N.Roma, J.Gazquez, J.C.Gonzalez, O.Castano, J.Gutierrez, A.Palau, K.Zalamova, S.Morlens, A.Hassini, M.Gibert, S.Ricart, J.M.Moreto, S.Pinol, D.Isfort, and J.Bock. Progress towards all-chemical superconducting YBa2Cu3O7-coated conductors. Supercond. Sci. Technol. 2006,19:S13.
    [17]A.Pomar, A.Cavallaro, M.Coll, J.Gazquez, A.Palau, F.Sandiumenge, T.Puig, X.Obradors and H.C.Freyhardt. All-chemical YBa2Cu3O7 coated conductors on IBAD-YSZ stainless steel substrates. Supercond. Sci. Technol.2006,19: LI.
    [18]J.H"anisch, C.Cai, V.Stehr, R.Huhne, J.Lyubina, K.Nenkov, G.Fuchs, L.Schultz and B.Holzapfel. Formation and pinning properties of growth-controlled nanoscale precipitates in YBa2Cu3O7-δ/transition metal quasi-multilayers. Supercond. Sci. Technol.2006,19:534.
    [19]A.Dzick, J.Issaev, A.Knoke, J.Garcia-Moreno, K.F.Sturm and H.C.Freyhardt. Critical currents in long-length YBCO-coated conductors. Supercond. Sci. Technol.2001,14:676.
    [20]H.Yamane, T.Hirai, K.Watanabe, N.Kobayashi, Y.Muto, M.Hasei and H.Kurosawa. Preparation of a High-Jc Y-Ba-Cu-O Film at 700℃ by Thermal Chemical Vapor Deposition. J. Appl. Phys.1991,69:7948.
    [21]V.A.Komashko, A.G.Popov, V.L.Svetchnikov, A.V.Pronin and V.S.Melnikov. Critical current density of thin YBCO films on buffered sapphire substrates. Supercond. Sci. Technol.2000,13:209.
    [22]T.Araki and I.Hirabayashi. Review of a chemical approach to YBa2Cu3O7-x-coated superconductors-metalorganic deposition using trifluoroacetates. Supercond. Sci. Technol.2003,16;R71.
    [23]Y.L.Xu. High Jc epitaxial YBa2Cu3O7-d films through a non-fluorine approach for coated conductor applications. Ph.D dissertation,University of Cincinnati.2003,
    [24]K.Tsukada, I.Yamaguchi, M.Sohma, W.Kondo, K.Kamiya, T.Kumagai and T.Manabe. Preparation of epitaxial YBa2Cu3O7-y films on CeO2-buffered yttria-stabilized zirconia substrates by fluorine-free metalorganic deposition. Physica C.2007,458:29.
    [25]C.Apetrii, H.Schlorb, M.Falter, I.Lampe, L.Schultz and B.Holzapfel. YBCO Thin Films Prepared by Fluorine-Free Polymer-Based Chemical Solution Deposition. IEEE Trans. Appl. Superconductivity.2005,15:2642.
    [26]Y.Takahashi, T.Araki, K.Yamagiwa, Y.Yamada, S.B.Kim, Y.Iijima, K.Takeda and I.Hirabayashi. Preparation of YBCO films on CeO2 buffered metallic substrates by the TFA-MOD method. Physica C.2001,357-360:1003.
    [27]Y.Yamada, S.B.Kim, T.Araki, Y.Takahashi, T.Yuasa, H.Kurosaki, I.Hirabayashi, Y.Iijima and K.Takeda. Critical current density and related microstructures of TFA-MOD YBCO coated conductors. Physica C.2001, 357-360:1007.
    [28]T.Minei, T.Tanaka, M.Ogata, N.Mori, K.Yamada and M.Mukaida. Growth process and microstructure of Y123 film fabricated by advanced TFA-MOD process. Physica C.2006,445-448:570.
    [29]Y.Tokunaga, T.Honjo, T.Izumi, YShiohara, Y.Iijima, T.Saitoh, T.Goto, A.Yoshinaka and A.Yajima. Advanced TFA-MOD process of high critical current YBCO films for coated conductors. Cryogenics.2004,44:817.
    [30]O.Castano, A.Cavallaro, A.Palau, J.C.Gonzalez, M.Rosell, T.Puig, S.Pinol, N.Mestres, F.Sandiumenge, A.Pomar, and X.Obradors. Influence of porosity on the critical currents of trifluoroacetate-MOD YBa2Cu3O7 films. IEEE Trans.Appl. Supercond.2003,13:2504:
    [31]D.L.Shi, Y.L.Xu, H.B.Yao, Z.Han, J.Lian, L.M.Wang, A.H.Li, H.K.Liu and S.X.Dou. The development of YBa2Cu3Ox thin films using a fluorine-free sol-gel approach for coated conductors. Supercond. Sci. Technol.2004,17: 1420.
    [32]B.J.Kim, K.Y.Yi, H.J.Kim, J.H.Ahn, J.G.Kim, S.K.Hong,,G.W.Hong and H.G.Lee. Optimization of processing parameters of YBCO films prepared by a dichloroacetic-metalorganic deposition method. Supercond. Sci. Technol. 2007,20:428.
    [33]K.Yamagiwa, J.Shibata, T.Hirayama and I.Hirabayashi. The influence of calcination processes on the superconducting properties of Yb123 films prepared by chemical solution deposition. Physica C.1998,309:231.
    [34]J.Xiong, Y.Chen, Y.Qiu, B.W.Tao, W.F.Qin, X.M.Cui, J.1.Tang and Y.R.Li. A novel process for CeO2 single buffer layer on biaxially textured metal substrates in YBCO coated conductors. Supercond. Sci. Technol.2006,19: 1068.
    [35]X.B.Zhu, Y.P.Sun, W.H.Song, J.Yang and H.W.Gu. Chemical solution deposition of La2Zr2O7 and Y2Ti2O7 buffer layers on NiW substrates. Physica C.2006,433:154.
    [36]S.F.Wang, S.Q.Zhao, Z.Liu, Y.L.Zhou, Z.H.Chen, H.B.Lu, K.J.Jin, B.L.Cheng and G.Z.Yang. Deposition and characterization of YBCO/CeO2/YSZ/CeO2 multilayers on biaxially textured Ni substrates. Chinese physics.2006,15:444.
    [37]X.M.Cui, B.W.Tao, Z.Tian, J.Xiong, X.Z.Liu and Y.R.Li. YBCO thin films prepared by fluorine-reduced metal-organic deposition using trifluoroacetates. Supercond. Sci. Technol.2006,19:L13.
    [38]X.M.Cui, B.W.Tao, Z.Tian, J.Xiong, X.F.Zhang and Y.R.Li. Enhancement of flux pinning of TFA-MOD YBCO thin films by embedded nanoscale Y2O3 Supercond. Sci. Technol.2006,19:844.
    [39]G.Li, M.H.Pu, X.H.Du, Y.B.Zhang, H.MZhou and Y.Zhao. A new single buffer layer for YBCO coated conductors prepared by chemical solution
    deposition. Physica C.2007,452:43.
    [40]Y.Zhao, M.H.Pu, G.Li, X.H.Du, H.M.Zhou, Y.B.Zhang, X.S.Yang, Y.Wang, R.P.Sun and C.H.Cheng. Development of a new series of buffer layers for REBCO coated conductors. Physica C.2007,463-65 574.
    [41]W.T.Wang, G.Li, M.H.Pu, R.P.Sun, H.M.Zhou, Y.Zhang, H.Zhang, Y.Yang, C.H.Cheng and Y.Zhao. Chemical solution deposition of YBCO thin film by different polymer additives. Physica C.2008,468:1563.
    [42]W.Meissner and R.Ochsenfeld. Ein neuer Effekt bei Eintritt der Supraleitfahigkeit. Naturwiss.1933,21:787.
    [43]J.GBednorz and K.A.Muller. Possible high Tc. superconductivity in the Ba-La-Cu-O system. Z phys B.198664:198.
    [44]H.Maeda, Y.Tanaka, M.Fukutomi and T.Asano. A New High-Tc Oxide Superconductor without a Rare Earth Element. Jpn. J. Appl. Phys.1988,27: L209.
    [45]Z.Z.Sheng and A.M.Hermann. Bulk superconductivity at 120 K in__the T1-Ca/Ba-Cu-O system. Nature.1988,332:55.
    [46]A.Schilling, M.Cantoni, J.D.GUO and H.R.Ott. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-0 system. Nature.1993,363:56.
    [47]J.Nagamatsu, N.Nakagawa, T.Muranaka, Y.Zenitani and J.Akimitsu. Superconductivity at 39 K in magnesium diboride. Nature.2001,410:63.
    [48]V.L.Ginzburg and L.D.Landau. On the theory of superconductivity. Zh. Eksperim. i Teor. Fiz. (USSR) 1950,20:1064.
    [49]A.A.Abrikosov. On the magnetic properties of superconductors of the second group. Zh. Eksp. Teor. Fiz.1957,32:1442.
    [50]周午纵and梁维耀.高温超导基础研究.上海科学技术出版社.1999.
    [51]D.P.Norton, A.Goyal, J.D.Budai, D.K.Christen, D.M.Kroeger, E.D.Specht, Q.He, B.Saffian, M.Paranthaman, C.E.Klabunde, D.F.Lee, B.C.Sales, and F.A.List. Epitaxial YBCO on biaxially textured nicke (001):An approach to superconducting tapes with high critical current density. Science.1996,274: 755.
    [52]A. Usoskin, J. Knoke, F. Garcia-Moreno, A. Issaev, J. Dzick, S. Sievers and H. C. Freyhardt. Large-area HTS-coated stainless steel tapes with high critical currents. IEEE Trans. Appl. Superconductivity.2001,11:3385.
    [53]J.Eickemeyer, D.Selbmann, R.Opitz, B. d. Boer, B.Holzapfel, L.Schultz and U.Miller. Nickel-refractory metal substrate tapes with high cube texture stability. Supercond. Sci.Technol.2001,14:152.
    [54]Y. Zhao, H.L.Suo, Y.H.Zhu, M.Liu, D.He, S. Ye, L.Ma, R.F.Fan and M.L.Zhou. Sparking Plasma Sintering Method for Developing Cube Textured Ni7W/Ni12W/Ni7W Multi-Layer Substrates Used for Coated Conductors. Journal of Physics:Conference Series.2008,97:012240.
    [55]A.Sheth, H.Schmidt and V.Lasrado. Review and evaluation of methods for application of epitaxial buffer and superconductor layers Applied Superconductivity.1998,6:855.
    [56]A. Goyal, D. P. Norton, J. D. Budai, M. Paranthaman, E. D. Specht, D. M. Kroeger, D K. Christen, Q. He, B. Saffian, F. A. List, D. F. Lee, P. M. Martin, C. E. Klabunde, E. Hatfield, and V. K. Sikka. High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals. Appl. Phys.Lett.1996,69:1795.
    [57]Y Iijima, N. Tanabe, O. Kohno and Y. Ikeno. In-plane aligned YBa2Cu3O7-x thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 1992,60:769.
    [58]H.Kim, J.Yoo, K.Jung, J.Lee, S.Oh and D.Youm. Fabrication of YBCO coated conductors using nickel tapes textured in single crystalline qualities. Supercond. Sci. Technol.2000,13:995.
    [59]傅永庆,朱晓东,徐可为and何家文.离子束辅助沉积技术及其进展.材料科学与工程.1996,14:22.
    [60]中国科学院半导体研究所.金属有机物化学气相沉积http://www.semi.ac.cn/semi/cn/ContentDir/1450/6086.aspx.2008,
    [61]R.W.Schwartz, T.Schneller and R.Waser. Chemical solution deposition of electronic oxide films. C. R. Chimie.2004,7:433.
    [62]M.W.Rupich, U.Schoop, D.T.Verebelyi, C.Thieme, W.Zhang, X.Li, T.Kodenkandath, N.Nguyen, E.Siegal, D.Buczek, J.Lynch, M.Jowett, E.Thompson, J.S.Wang, J.Scudiere, A.P.Malozemoff, Q.Li, S.Annavarapu, S.Cui, L.Fritzemeier, B.Aldrich, C.Craven, F.Niu, R.Schwall, A.Goyal, and
    M.Paranthaman. YBCO Coated Conductors by an MOD/RABiTSTM Process. IEEE Trans. Appl. Superconductivity.2003,13:2458.
    [63]U.O.W.M. Applied Superconductivity Center, http://asc.wisc.edu.2003.
    [64]J.T.Dawley, P.G.Clem, M.P.Siegal, D.L.Overmyer and M.A.Rodriguez. Thick sol-gel derived YBa2Cu3O7-x films. IEEE Transactions on Applied Superconductivity.2001,11:2873.
    [65]马衍伟and肖立业.第2代高温超导YBCO涂层导体的发展及其应用.科学通报.2005,50:1.
    [66]J.Fukushima, K.Kodaira and T.Matsushita. Preparation of ferroelectric PZT films by thermal decomposition of organometallic compounds J. Mater. Sci. 1984,19:595.
    [67]K.D.Budd, S.K.Dey and D.A.Payne. Sol-gel processing of lead titanate (PbTiO3), lead zirconate (PbZrO3), PZT, and PLZT thin films Brit. Ceram. Soc. Proc.1985,36:107.
    [68]A.A.Hussain and M.Sayer. Fabrication, Characterization and Theoretical-Analysis of High-Tc Y-Ba-Cu-O Superconducting Films Prepared by a Chemical Sol-Gel Method. Journal of Applied Physics.1991, 70(3):1580
    [69]P.Barboux, J.M.Tarascon, L.H.Greene, G.W.Hull and B.G.Bagley. Bulk and Thick-Films of the Superconducting Phase YBa2Cu3O7-Y Made by Controlled Precipitation and Sol-Gel Processes Journal of Applied Physics. 1988,63(8):2725.
    [70]C.E.Rice, R.B.Vandover and G.J.Fisanick. Preparation of Superconducting Thin-Films of Ba2YCu3O7 by a Novel Spin-on Pyrolysis Technique. Applied Physics Letters.1987,51(22):1842.
    [71]P.Vermeir, I.Cardinael, M.B″acker, J.Schaubroeck, E.Schacht, S.Hoste and I.V.Driessche. Fluorine-free water-based sol-gel deposition of highly epitaxial YBa2Cu3O7-δ films. Supercond. Sci. Technol.2009,22:1.
    [72]J.Lian, H.B.Yao, D. L. Shi, L.M.Wang, Y.L.Xu, Q.Liu and Z.Han. Structural characterization of epitaxial YBCO thin films prepared by a fluorine-free sol-gel method for coated conductors. Supercond. Sci. Technol.2003,16:
    [73]Y.Yamada, S.B.Kim, T.Araki, Y.Takahashi, T.Yuasa, H.Kurosaki, I.Hirabayashi, Y.Iijima and K.Takeda. Critical current density and related microstructures of TFA-MOD YBCO coated conductors. Physica C.2001, 1007:357.
    [74]P.M.Mankiewich, J.H.Scofield, W.J.Skocpol, R.E.Howard, A.H.Dayem and E.Good. Reproducible technique for fabrication of thin films of high transition temperature superconductors. Applied Physics Letters.1987, 51(21):1753.
    [75]T.Kumagai, T.Manabe, W.Kondo, H.Minamiue and S.Mizuta. Effects of heat treatment conditions on the critical current densities of Ba2YCu3O7-y films prepared by the dipping-pyrolysis process. Jpn. J. Appl. Phys.1990,29: L940.
    [76]A.Gupta, R.Jagannathan, E.I.Cooper, E.A.Giess, J.I.Landman and B.W.Hussey. Superconducting Oxide-Films with High Transition-Temperature Prepared from Metal Trifluoroacetate Precursors. Applied Physics Letters.1988,52(24):2077.
    [77]P.C.McIntyre, M.J.Cima and M.F.Ng. Metalorganic deposition of high-Jc Ba2YCu307-x thin films from trifluoroacetate precursors onto (100)SrTiO3. Journal of Applied Physics.1990,68(8):4183.
    [78]F.Parmigiani, G.Chiarello, N.Ripamonti, H.Goretzki and U.Roll. Observation of Carboxylic Groups in the Lattice of Sintered Ba2YCu3O7-Y High-Tc Superconductors. Physical Review B.1987,36(13):7148.
    [79]R.Teranishi, H. Fuji, T.Honjo, Y.Nakamura, T. Izumi, Y.Shiohara, J.Shibata, T.Yamamoto, Y.Ikuhara and M.Yoshimura. Growth mechanism of Y123 film by MOD-TFA process. Physica C.2002,378-381:1033.
    [80]J.A.Smith, M.J.Cima and N.Sonnenberg. High Critical Current Density Thick MOD-Derived YBCO Films. IEEE Transactions on Applied Superconductivity.1999,9:1531.
    [81]J.Shibata, T.Honjo, H.Fuji, T.Araki, I.Hirabayashi, T.Hirayama, T.Izumi, Y.Shiohara, T.Yamamoto and Y.Ikuhara. Crystallization mechanism of Nd1+xBa2-xCu3O7-y and YBa2Cu3O7-y films deposited by metalorganic deposition method using trifluoroacetates. Journal of Materials Research.
    2002,17(6):1266.
    [82]L.Wu, Y.Zhu, V.F.Solovyov, H.J.Wiesmann, A.R.Moodenbaugh, R.L.Sabatini and M.Suenaga. Nucleation band growth of YBa2Cu30x on SrTiO3 and CeO2 by a BaF2 postdeposition reaction process. Journal of Materials Research. 2001,16(10):2869.
    [83]T.Ono, K.Matsumoto, K.Osamura and I.Hirabayashi. Crystal Growth of YBa2Cu307-x Thin Films Prepared by TFA-MOD Method. IEEE Trans. Appl. Superconductivity.2003,13:2512.
    [84]T.Araki, K.Yamagiwa and I.Hirabayashi. Fabrication of YBa2Cu3O7-x film by metalorganic deposition method using trifluoroacetates and its process conditions. Cryogenics.2001,41:675.
    [85]T. Izumi, T.Honjo, YTokunaga, H.Fuji, R.Teranishi, Y.Iijima, T.Saitoh, YNakamura and Y.Shiohara. High-Ic YBCO Coated Conductors by Metal Organic Deposition Method Using Trifluoroacetates. IEEE Trans. Appl. Superconductivity.2003,13:
    [86]P.C.McIntyre, M.J.Cima, J.A.Smith and R.B.Hallockc. Effect of growth conditions on the properties and morphology of chemically derived epitaxial thin films of Ba2YCu3O7-x on (001) LaAIO3. Journal of Applied Physics. 1991,71(4):1868.
    [87]T.Puig, J.C.Gonzalez, A.Pomar, N.Mestres, O.Castano, M.Coll, J.Gazquez, F.Sandiumenge, S.Pinol and X.Obradors. The influence of growth conditions on the microstructure and critical currents of TFA-MOD YBa2Cu307 films. Supercond. Sci. Technol.2005,18:1141.
    [88]N.Chikumoto, T.Machi, Y.Tokunaga, T.Izumi and S.Tajima. Optimization of oxygenation process in YBCO tapes fabricated by TFA-MOD method. Physica C.2005,426-431:1118.
    [89]J.Shibata, Y.Tokunaga, R.Teranishi, H.Fuji, T.Honjo, T.Izumi and Y.Shiohara. Effects of heat-treatment conditions on microstructure of Y123 films deposited by TFA-MOD method. Physica C.2003,392-396:922.
    [90]X.M.Cui, B.W.Tao, J.Xiong, X.Z.Liu, J.Zhu and Y.R.Li. Effect of annealing time on the structure and properties of YBCO films by the TFA-MOD method. Physica C.2005,432:147.
    [91]Y.Tokunaga, T.Honjo, T.Izumi, Y.Shiohara, Y.Iijima, T.Saitoh, T.Goto, A.Yoshinak and A.Yajima. Advanced TFA-MOD process of high critical current YBCO films for coated conductors. Physica C.2004,44:817.
    [92]K.Nakaoka, J.Matsuda, H.Fuji, R.Teranishi, T.Izumi, Y.Shiohara, Y.Yamada, T.Goto and A.Yajima. Influence of calcination conditions on superconducting properties of YBCO coated conductors by advanced TFA-MOD process. Physica C.2006,445-448:545.
    [93]K.Nakaoka, J.Matsuda, Y.Kitoh, T.Goto, Y.Yamada, T.Izumi and Y.Shiohara. Influence of starting solution composition on superconducting properties of YBCO coated conductors by advanced TFA-MOD process. Physica C.2007, 463-465:519.
    [94]J.S.Matsuda, Y.Tokunaga, R.Teranishi, H.Fuji, A.Kaneko, S.Asada, T.Honjo, A.Yajima, Y.Iijima, T.Saitoh, T.Izumi, and Y.Shiohara. Effects of heat-treatment conditions on microstructure of multi-coating Y123 films deposited by advanced TFA-MOD method. Physica C.2004,412-414:890.
    [95]J.Matsuda, K.Nakaoka, R.Teranishi, Y.Kitoh, Y.Aoki, H.Fuji, Y.Yamada, T.Izumi and Y.Shiohara. Microstructure and crystallization mechanism of YBa2Cu3O7-y films formed by advanced TFA-MOD process. Physica C. 2006,445-448:563.
    [96]P.Y.Chu and R.C.Buchanan. Characteristics of Oxide Thin-Films from Carboxylate Precursors. Journal of Materials Research.1991,6(8):1736.
    [97]P.Y.Chu. Microstructure and Phase Development in YBa2Cu3O7_x Superconducting Films Prepared from Carboxylate Precursors. Ceramic Engineering.U. of Illinois at Urbana-Champaign:Urbana-Champaign.1992,
    [98]P.Y.Chu, I.Campion and R.C.Buchanan. Phase-Transformation and Preferred Orientation in Carboxylate Derived ZrO2 Thin-Films on Silicon Substates. Journal of Materials Research.1992,7(11):3065.
    [99]Y.Xu, A.Goyala, N.A.Rutter, D.Shi, M.Paranthaman, S.Sathyamurthy, P.M.Martin and D.M.Kroeger. Fabrication of high-critical current density YBa2Cu3O7-x films using a fluorine-free sol gel approach. J. Mater. Res. 2003,18:677. [100] Y.Xu, A.Goyal, K.J.Leonard, E.D.Specht, D.Shi and M.Paranthaman. Processing Dependence of Texture, and Critical Properties of Films on RABiTS Substrates by a Non-Fluorine MOD Method. J. Am. Ceram. Soc.2006,89[3]:914.
    [101]K.Ohmatsu, S.Hahakura, K.Hasegawa and M.Ueyama. Development of HoBCO Coated Conductors by Fluorine-Free MOD/PLD Composite Process. IEEE Trans. Appl. Superconductivity.2007,17:3363.
    [102]B.J.Kim, K.Y.Yi, H.J.Kim, J.H.Ahn, J.G.Kim, S.K.Hong, G.W.Hong and H.G.Lee. Optimization of processing parameters of YBCO films prepared by a dichloroacetic-metalorganic deposition method. Supercond. Sci. Technol.2007,20:428.
    [103]D.C.Larbalestier, A.Gurevich, D.M.Feldmann and A.A.Polyanskii. High-Tc superconducting materials for electric power applications. Nature.2001, 414:368.
    [104]张欲恒.超导物理.中国科学技术大学出版社.1997,
    [105]周午纵and梁维耀.高温超导基础研究.上海科学技术出版社.1999,
    [106]A.M.Campbell and J.E.Evetts. Critical Currents in Superconductors (London:Taylor and Francis).1972,
    [107]M.R.Koblischka and M.Murakami. Pinning mechanisms in bulk high-Tc superconductors. Supercond. Sci. Technol.2000,13:738.
    [108]B.Dam, J.M.Huijbregtse and N.F.C.Klaasse. Origin of high critical currents in YBa2Cu3O7-x superconducting thin films. Nature.1999,399:439.
    [109]N.HariBabu, D.A.Cardwell and A.M.Campbell. Flux pinning in large NdBa2Cu3O7-δ grains fabricated by seeded-melt growth. Phys. Rev. B.2000, 61:735.
    [110]L.Krusin-Elbaum, L.Civale, J.R.Thompson and C.Field. Accommodation of vortices to columnar defects:Evidence for large entropic reduction of vortex localization. Phys. Rev. B 1996,53:11744.
    [111]J.L.MacManus-Driscoll, S.R.Foltyn, Q.X.Jia and e. al. Systematic enhancement of in-field critical current density with rare-earth ion size variance in superconducting rare-earth barium cuprate films. Appl. Phys. Lett.2004,84:5329.
    [112]C.Cai, B.Holzapfel, J.Ha″nisch and e. al. High critical current density and its field dependence in mixed rare earth (Nd,Eu,Gd)Ba2Cu3O7-x thin films. Appl.Phys. Lett.2004,84:377.
    [113]Y.X.Zhou, S.Ghalsasi, I.Rusakova and K.Salama. Flux pinning in MOD YBCO films by chemical doping. Supercond. Sci. Technol.2007,20: S147.
    [114]M.N.Hasan, M.Kiuchi, S.Otabe and e. al. Flux pinning properties of (Nd,Eu,Gd)Ba2Cu3Oy (NEG-123) superconductor with 211 phase particles. Supercond. Sci. Technol.2007,20:345.
    [115]J.Ha'nisch, C.Cai, R.Huhne and e. al. Formation of nanosized BaIrO3 precipitates and their contribution to flux pinning in Ir-doped YBa2Cu307-x quasi-multilayers. Appl. Phys. Lett.2005,86:122508.
    [116]A.Crisan, S.Fujiwara, J.C.Nie and e. al. Sputtered nanodots:A costless method for inducing effective pinning centers in superconducting thin films. Appl. Phys. Lett.2001,79:4547.
    [117]F.J.Baca, D.Fisher, R. L. S. Emergo and J.Z.Wu. Pore formation and increased critical current density in YBa2Cu3Ox films deposited on a substrate surface modulated by Y2O3 nanoparticles. Supercond. Sci. Technol.2007,20:554.
    [118]J.L.MacManus-Driscoll, S.R.Foltyn, Q.X.Jia and e. al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3. Nature Mater.2004,3:439.
    [119]A.Goyal, S.Kang, K.J.Leomard and e. al. Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7-δ films. Supercond. Sci. Technol. 2005,18:1533.
    [120]S.Kang, K.J.Leonard, P.M.Martin, J.Li and A.Goyal. Strong enhancement of flux pinning in YBa2Cu3O7-δ multilayers with columnar defects comprised of self-assembled BaZrO3 nanodots. Supercond. Sci. Technol. 2007,20:11.
    [121]K.Yamada, M.Mukaida, H.Kai, R.Teranishi, A.Ichinose, R.Kita, S.Kato, S.Horii, Y.Yoshida, K.Matsumoto, and S.Toh. Transmission electron microscopy characterization of nanorods in BaNb206-doped ErBa2Cu3O7-x films. Appl. Phys. Lett.2008,92:112503.
    [122]C.V.Varanasi, P.N.Barnes and J.Burke. Enhanced flux pinning force and uniquely shaped flux pinning force plots observed in YBa2Cu3O7-x films with BaSnC3 nanoparticles. Supercond. Sci. Technol.2007,20:1071.
    [123]A.Ichinose, K.Naoe, T.Horide, K.Matsumoto, R.Kita, M.Mukaida, Y.Yoshida and S.Horii. Microstructures and critical current densities of YBCO films containing structure-controlled BaZrO3 nanorods. Supercond. Sci. Technol.2007,20:1144.
    [124]Y.Yamada, K.Takahashi, H.Kobayashi, M.Konishi, T.Watanabe, A.Ibi, T.Muroga and S.Miyata. Epitaxial nanostructure and defects effective for pinning in Y(RE)Ba2Cu3O7-x coated conductors. Appl. Phys. Lett.2005, 87:132502.
    [125]W.Zhang, Y.Huang, X.Li, T.Kodenkandath, M.W.Rupich, U.Schoop, D.T.Verebelyi, C.L.H.Thieme, E.Siegal, T.G.Holesinger, B.Maiorov, L.Civale, D.J.Miller, V.A.Maroni, J.Li, P.M.Martin, E.D.Specht, A.Goyal, and M.P.Paranthaman. Control of Flux Pinning in MOD YBCO Coated Conductor. IEEE Trans. Appl. Superconductivity.2007,17:3347.
    [126]A.Goyal, J.Li, P.M.Martin, A.Gapud, E.D.Specht, M.Paranthaman, X.Li, W.Zhang, T.Kodenkandath and M.W.Rupich. Enhanced Flux-Pinning in Dy-Doped, MOD YBCO Films on RABiTS. IEEE Trans. Appl. Superconductivity.2007,17:3340.
    [127]S.V.Ghalsasi, Y.X.Zhou, I.Rusakova, Y.Y.Sun and K.Salama. Enhancement of Current Carrying Capability in MOD-Processed YBCO Films Using Chemical Doping. IEEE Trans. Appl. Superconductivity.2007,17:3343.
    [128]X.M.Cui, G.Q.Liu, J.Wang, Z.C.Huang, Y.T.Zhao, B.W.Tao and Y.R.Li. Enhancement of critical current density of YBa2Cu3O7-d thin films by nanoscale CeO2 pretreatment of substrate surfaces.physica C.2007,466: 1.
    [129]N.Roma, S.Morlens, S.Ricart, K.Zalamova, J.M.Moreto, A.Pomar, T.Puig and X.Obradors. Acid anhydrides:a simple route to highly pure organometallic solutions for superconducting films. Supercond. Sci. Technol.2006,19:521.
    [130]X.M.Cui, B.W.Tao, Y.R.Li, X.Z.Liu, J.J.Chen and J.Xiong. Effects of precursor solution concentration on the properties and morphology of YBCO films deposited by TFA-MOD method. Rare metals.2005,24 No 3: 272.
    [131]M.S.Bhuiyan, M.Paranthaman and K.Salama. Solution-derived textured oxide thin films-a review. Supercond. Sci. Technol.2006,19:R1.
    [132]C.P.Bean. Magnetization of Hard Superconductors. Phys. Rev. Lett.1962, 8:250.
    [133]S.Ghalsasi, Y.X.Zhou, J.Chen, B.Lv and K.Salama. MOD multi-layer YBCO films on single-crystal substrate. Supercond. Sci. Technol.2008, 21:045015.
    [134]S.H.Jang, J.H.Lim, J.S.Lee, K.M.Yoon, K.T.Kim, J.Joo, S.B.Jung and H.J.Lee. Effects of heat treatment and film thickness on microstructure and critical properties of YBCO film processed by TFA-MOD. Physica C. 2007,451:118.
    [135]G.Li, M.H.Pua, R.P.Sun, W.T.Wang, W.Wua, X.Zhang, Y.Yang, C.H.Cheng and Y.Zhao. Sm-doped CeO2 single buffer layer for YBCO coated conductors by polymer assisted chemical solution deposition (PACSD) method. Journal of Alloys and Compounds 2008,466:429.
    [136]C.J.Brinker and GW.Scherer. Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing Academic,New York.1990,
    [137]Q.X.Jia, T.M.Mccleskey, A.K.Buffell, Y.Lin, G.E.Cllis, H.Wang, A.D.Q.Li and S.R.Foltyn. Polymer-assisted deposition of metal-oxide films. Nature materials.2004,3:529.
    [138]Y.Lin, J.S.Lee, H.Wang, Y.Li, S.R.Foltyn, Q.X.Jia, G.E.Collis, A.K.Burrell and T.M.McCleskey. Structural and dielectric properties of epitaxial Ba1-xSrxTi03 films grown on LaAlO3 substrates by polymer-assisted deposition. Appl. Phys. Lett.2004,85:5007.
    [139]M.Jain, Y.Li, M.F.Hundley, M.Hawley, B.Maiorov, I.H.Campbell, L.Civale, Q.X.Jia, P.Shukla, A.K.Burrell, and T.M.McCleskey. Magnetoresistance in polymer-assisted deposited Sr-and Ca-doped lanthanum manganite films. Appl. Phys. Lett.2006,88:232510-1.
    [140]X.Obradors, T.Puig, A.Pomar, F.Sandiumenge, N.Mestres, M.Coll, A.Cavallaro, N.Rom, J.Gazquez, J.CGonzalez, O.Castano, and J.Gutierrez. Progress towards all-chemical superconducting YBa2Cu3O7-coated conductors. Supercond. Sci. Technol.2006,19:S13.
    [141]G.Li. Preparation of coated conductors by polymer assisted chemical solution deposition Ph.D dissertation,2007, SouthWest Jiaotong University.
    [142]J.S.Matsuda, Y.Tokunaga, R.Teranishi, H.Fuji, A.Kaneko, S.Asada, T.Honjo, A.Yajima, Y.Iijima, T.Saitoh, T.Izumi, and Y.Shiohara. Effects of heat-treatment conditions on microstructure of multi-coating Y123 films deposited by advanced TFA-MOD method. Physica C 2004,412-414:890.
    [143]T.Iguchi, T.Araki, Y.Yamada, I.Hirabayashi and H.Ikuta. Fabrication of Gd-Ba-Cu-O films by the metal-organic deposition method using trifluoroacetates. Supercond. Sci. Technol.2002,15:1415.
    [144]O.Castano, A.Cavallaro, A.Palau, J.C.Gonzalez, M.Rossell, T.Puig, F.Sandiumenge, N.Mestres, S.Pinol, A.Pomar, and X.Obradors. High quality YBa2Cu3O7 thin films grown by trifluoroacetates metalorganic deposition. Supercond. Sci. Technol.2003,16:45.
    [145]A.Umezawa, G.W.Crabtree, J.Z.Liu, H.W.Weber, W.K.Kwok, L.H.Nunez, T.J.Moran and C.H.Sowers. Enhanced critical magnetization currents due to fast neutron irradiation in single-crystal YBa2Cu3O7-δ. Phys. Rev. B. 1987,36:7151.
    [146]Y.X.Zhou, W.Lo, T.B.Tang and K.Salama. Enhancement in transport properties of seeded melt-textured YBCO by Cu-site doping. Supercond. Sci. Technol.2002,15:722.
    [147]J.Gutierrez, A.Llordes, J.G'azquez, M.Gibert, N.Rom'a, S.Ricart, A.Pomar, F.Sandiumenge, N.Mestres, T.Puig, and X.Obradors. Strong isotropic flux pinning in solution-derived YBa2Cu3O7-x nanocomposite superconductor films, nature materials.2007,6:367.
    [148]T.Haugan, P.N.Barnes, R.Wheeler, F.Meisenkothen and M.Sumption. Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu307-x superconductor. Nature.2004,430:867.
    [149]K.Matsumoto, T.Horide, A.Ichinose, S.Horii, Y.Yoshida and M.Mukaida. Critical Current Control in YBa2Cu307-δ Films Using Artificial Pinning Centers. Jpn. J. Appl. Phys.2005,44:L246.
    [150]S.Kang, A.Goyal, J.Li, A.A.Gapud, P.M.Martin, L.Heatherly, J.R.Thompson, D.K.Christen, F.A.List, M.Paranthaman, and D.F.Lee. High-Performance High-Tc Superconducting Wires. Science 2006,311:1911.
    [151]Y.Ishii, J.I.Shimoyama, Y.Tazaki, T.Nakashima, S.Horii and K.Kishio. Enhanced flux pinning properties of YBa2Cu3Oy by dilute impurity doping for CuO chain. Appl. Phys. Lett.2006,89:202514.
    [152]J. L.Tallon, C.Bernhard, U.Binninger, A.Hofer, G.V.M.Williams, E.J.Ansaldo, J.I.Budnick and C.Niedermayer. In-Plane Anisotropy of the Penetration Depth Due to Superconductivity on the Cu-0 Chains in YBa2Cu307-δ, Y2Ba4Cu7O15-δ, and YBa2Cu4O8. Phys. Rev. Lett.1995,74: 1008.
    [153]C.Bernhard, C.Niedermayer, U.Binninger, A.Hofer, C.Wenger, J.L.Tallon, G.V.M.Williams, E.J.Ansaldo, J.I.Budnick, C.E.Stronach, D.R.Noakes, and M.A.Blankson-Mills. Magnetic penetration depth and condensate density of cuprate high-Tc superconductors determined by muon-spin-rotation experiments. Phys. Rev. B.1995,52:10488.
    [154]S.H.Pan, E.W.Hudson, K.M.Lang, H.Eisaki, S.Uchida and J.C.Davis. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu208+d. Nature.2000,403:746.
    [155]Y.X.Zhou, S.Scruggs and K.Salama. Effects of ionic doping on superconducting properties of melt textured YBa2(Cu1-xMx)3O7-δ(M=Co, Ni, Zn or Ga) large grains. Supercond. Sci. Technol.2006,19:S556.
    [156]D.D.Hughes. Flux pinning mechanisms in type two superconductors.1974,
    [157]K.Takahashi, H.Kobayashi, Y.Yamada, A.Ibi, H.Fukushima,M.Konishi, S.Miyata, Y.Shiohara, T.Kato arid T.Hirayama. Investigation of thick PLD-GdBCO and ZrO2 doped GdBCO coated conductors with high critical current on PLD-CeO2 capped IBAD-GZO substrate tapes. Supercond. Sci. Technol.2006,19:924.
    [158]K.Takahashi, Y.Yamada, M.Konishi, T.Watanabe, A.Ibi, T.Muroga, S.Miyata, Y.Shiohara, T.Kato and T.Hirayama. Magnetic field dependence of Jc for Gd-123 coated conductor on PLD-CeO2 capped IBAD-GZO substrate tapes. Supercond. Sci. Technol.2005,18:1118.
    [159]M.Muralidhar, H.S.Chauhan, T.Saitoh, K.Kamada, K.Segawa and M.Murakami. Effect of mixing three rare-earth elements on the superconducting properties of REBa2Cu3Oy. Supercond. Sci. Technol.1997, 10:663.
    [160]A.Hu, N.Sakai, H.Zhou, K.Inoue, N.Chikumoto and M.Murakami. Air processing of ternary (Sm,Eu,Gd)Ba2Cu3O7-d superconductors with enhanced peak effects. Physica C.2004,402:127.
    [161]M.Murakamiy, N.Sakai, T.Higuchiz and S.I.Yooz. Melt-processed light rare earth element-Ba-Cu-O. Supercond. Sci. Technol.1996,9:1015.
    [162]H.Zhang. Research of microstructure and critical current density of high temperature GdBa2Cu3O7-δ superconductors. Ph.D dissertation, chinese University of science and technology.2007,
    [163]H.Zhou, B.Maiorov, H.Wang, J.L.MacManus-Driscoll, T.GHolesinger, L.Civale, Q.X.Jia and S.R.Foltyn. Improved microstructure and enhanced low-field Jc in (Yo.67Euo.33)Ba2Cu307-δ films. Supercond. Sci. Technol. 2008,21:1.
    [164]M.Muralidhar, M.Jirsa, N.Sakai and M.Murakami. High flux pinning in ternary (Nd-Eu-Gd)Ba2Cu3Oy superconductors at 77 K. Physica C.2002, 378-381:750.
    [165]M.Muralidhar, S.Nariki, M.Jirsa and M.Murakami. Single-domain NEG-123 bulk superconductors for high magnetic field applications. Physica C.2002,372-376:1134.
    [166]P.Mele, K.Matsumoto, T.Horide, A.Ichinose, M.Mukaida, Y.Yoshida, S.Horii and R.Kita. Incorporation of double artificial pinning centers in YBa2Cu3O7-d films. Supercond. Sci. Technol..2008,21:015019.
    [167]S.H.Wee, A.Goyal, J.Li, YL.Zuev, S.Cook and L.Heatherly. The incorporation of nanoscale columnar defects comprised of self-assembled BaZrO3 nanodots to improve the flux pinning and critical current density of NdBa2Cu3O7-δ films grown on RABiTS. Supercond. Sci. Technol.2007, 20:789.
    [168]Y.Xu, A.Goyal, J.Lian, L.M.Wang and D.Shi. Microstructural Characterization of YBCO films grown by a Fluorine-Free Process. International Workshop on Processing & Applications of Superconductors,2002,Gatlinburg, Tennessee, USA.
    [169]P.Y.Chu and R.C.Buchanan. Reactive Liquid-Phase Sintering of Solution-Derived YBa2Cu3O7-x Superconducting Thin-Films.1. Ambient and Precursor Effects on BaO-CuO Liquid-Phase Formation. Journal of Materials Research.1993,8:2134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700