无线IP网络中视频FGS编码与传输研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的发展和社会的进步,人类对信息的需求越来越多,在移动中获得信息成了人们自然而然的要求。以数据和多媒体业务为主,在无线终端上向用户提供多种具有不同服务质量和内容的服务,正是未来无线通信发展的方向。视频是多媒体数据的重要组成部分,无线视频的编码与传输技术也因此成为当前多媒体通信领域的研究热点。
     在当今不同类型的无线网络都趋同于IP网络的背景下,现代网络已进入了无线IP网络的发展阶段。无线IP网络概念的提出,是IP网络发展中的一个重要标志,同时也是无线网络发展的一个里程碑。然而,无线IP网络的异构性,使得视频通信面临着极大挑战,如何应对这种挑战,以下几个方面的问题需要引起重视:第一,无线IP网络中的有线链路和无线链路带宽容量和带宽变化的不对称性;第二,视频传输数据差错的多样性和时变特性;第三,视频数据传输时延和时延抖动的约束性;第四,服务质量(QoS)保障的复杂性等。
     本文的研究以作者所在实验室承担的国家863重大攻关课题——“数字视音频编码、传输、测试与应用示范系统”和国家自然科学基金重大项目——“未来移动通信系统基础理论与技术研究”为主要背景,对无线IP网络中视频的源端编码技术和传输系统进行了较深入的分析与讨论,尝试为以上针对无线IP视频传输提出的问题找到合适的解决方案。
     从系统的角度出发,采用联合信源——信道编码技术进行信源和信道间的优化码率配置,以提高视频传输系统的自适应性。并且,在信源端采用视频精细粒度可伸缩性(FGS)编码方案,以适应网络带宽容量和带宽变化;提出了多乘积码的信道编码方案以对抗无线IP网络中的混合差错;采用前向纠错(FEC)来减小时延以满足实时视频应用的要求。
     针对源端的FGS和PFGS编码技术存在编码效率低下的致命弱点,在对其深入研究和分析的基础上,提出了比特平面编码技术中的残差系数符号新的编码方案,一定程度上提高了编码效率;同时,对原码流结构进行了改进,给出了两种分级码流结构:两级和三级码流结构,这种结构提高了码流的容错性,而且,也是后面多乘积码中不同打包方案所需要的;还结合信源率失真理论,引入了FGS增强层的率失真模型并讨论帧间码率分配算法,为后面的联合优化做了铺垫。
     针对前面改进的码流结构,提出了两种传输打包方案:变长打包和等长打包;针对无线IP网络产生的混合传输差错的特点以及实时视频传输的要求,提出了跨层的多乘积码FEC(MPFEC)方案,即在链路层采用率兼容穿孔卷积码(RCPC)实现包内FEC,在传输层通过使用系统里德——索罗蒙码(RS)实现包间FEC;并建立了发送端估计信道传输失真的模型。
     基于广义率失真理论,采用联合信源——信道编码技术,结合信源端的FGS技术和MPFEC传输策略,给出了新的FGS增强层和信道码率优化配置算法。实验仿真结果证明该算法实际传输效果很好。
     考虑了基本层(或单层)视频传输的问题,在基本层由于采用了运动补偿预测编码技术,传输差错的帧间依赖性致使差错繁殖是不可避免的。对在目标码率约束条件下,为了减少计算的复杂性,信道编码性能、差错繁殖的衰减性和率失真函数均被建模,实验仿真证明这些模型在给定条件下与实际仿真测量结果间吻合很好。特别是,引入了差错繁殖的衰减模型之后,建立了新的率失真模型,使得率失真曲面的生成更加简单。
With the rapid development of information technology and the great progress of society, the demand for obtaining information has become greater and greater. Therefore, it is not surprising that people hope to obtain information in mobile. User will be provided with services of different contents and qualities by way of data and multimedia application on wireless terminal. The above will be the shows of the future of wireless communication. Video is a very important part of multimedia data. Wireless video coding and transmitting technology has become the biggest buzz words of present multimedia communication research area.
     Modern network is entering the era of developing wireless IP network, due to the different types of wireless networks are converging into all IP networks today. The proposal of the concept of IP networks is both the trademark of IP network development and the milestone of wireless network development.
     However, heterogeneity of wireless IP network challenges video communication greatly. To meet the challenge, the following should be taken into serious consideration: Firstly, the wired link of wireless IP network has bandwidth capacity and bandwidth change which are unsymmetrical to wireless link. Secondly, which the error of transmitting video data is variant and time varying. Thirdly, the delay and jitter of transmitting video data are constrained. Finally, guarantee of QoS is complicated.
     The laboratory, at which the author works, is undertaking the national high technology research and development program of China (No.2002AA119010) and the National Natural Science Foundation of China (No.60496315). Based on the research work at the laboratory, the author makes a detailed and profound analysis of video coding and transmission system of wireless IP network, thesis tries to find out solutions to the problem described above.
     From the angel of system, joint source-channel coding is adopted to optimize rate allocation so as to increase self-adaptation of video transmitting system. In addition, FGS video coding is taken to adapt to the different bandwidth and variation of bandwidth. Multiple products coding scheme is suggested to correct the hybrid errors of wireless IP network. Furthermore, FEC is adopted to decrease the delay for real time video application.
     Angled at the fatal weakness of low coding efficiency of FGS and PFGS video coding, based on its analysis and research, a new coding scheme of the sign of residue coefficient in bit-plane is advanced, which raises coding efficiency to a certain degree. In the meantime, bitstream structure has been greatly improved by classifying it into two grades: two-grade and three-grade bitstream structure. It not only raises error resilience of bitstream, but also is required by the following various packaging schemes in multiple product FEC. Combing source rate-distortion theory, rate-distortion model of FGS enhancement layer is introduced. Rate allocation arithmetic among frames of FGS enhancement layer is discussed so as to pave the way for future joint optimization.
     Owing to the above-mentioned improved bitstream structure, two transmitting package scheme are suggested correspondingly: lengthened package and equally-lengthened package; to correct the hybrid errors of wireless IP network and realize the real time video application, multiple product FEC (MPFEC) scheme could be one suitable solution. It requires the realization of intra-package FEC by way of containing RCPC in the data link layer, of inter-package FEC by way of using systematic RS coding in transport layer. The model of estimating transmission distortion at sending end has been set up.
     Based on the general rate distortion theory, combined with FGS technology at source and MPFEC transmitting strategy, adopting joint source-channel technology, FGS enhancement layer rate and channel rate optimization allocation arithmetic is put forward. Experimental imitating results prove it to be a very effective way to the practical transmission.
     Considering the problem of base layer (or single layer) video transmission, error propagation is avoidless duo to inter-roll dependency in which motion-compensation predicating coding technology results. Constrained by target rate, channel coding performance, error propagation attenuation and distortion function are all modeled to decrease the complicated computation. Experiments prove that under given condition computing results of these models very approximate to those of the practical simulation results. Particularly, the introduction of attenuation model of error propagation and construction of new rate distortion model has simple greatly the generating of rate-distortion surface.
引文
[1] Z. Qian, Z. Wenwu, and Z. Ya-qin, "End-to-end QoS for video delivery over wireless Internet," Proceedings of the IEEE, vol. 93:123-134, 2005.
    [2] Y. Fan, Z. Qian, Z. Wenwu, and Z. Ya-Qin, "Bit allocation for scalable video streaming over mobile wireless Internet," presented at Proceedings IEEE INFOCOM, vol.3: 2142 - 2151, 2004.
    [3] 蒋明海 , "移动网络的未来 :无线 IP 网络 ," 微计算机信息 , vol. 20: 109-110, 2004.6.
    [4] "无线网络接入技术比较," http: //www.net130.com /CMS/Pub/special /special_ wireless /2006_01_25_24925.htm, 2006.
    [5] 雷震洲 , "IEEE 802.16 和 WiMAX," http: //searchmobilecomputing. techtarget.com.cn /84/1893084.shtml, 2004.
    [6] 张振, "基于篮牙技术构建无线接入网," 湖南理工学院学报, vol. 18: 86-88, 2005.2.
    [7] J. H. Dholakia and V. K. Jain, "Technologies for 3G wireless communications," presented at Proceedings of International Conference on Information Technology: Coding and Computing: 162-166, 2001.
    [8] P. Chaudhury, W. Mohr, and S. Onoe, "The 3GPP proposal for IMT-2000," Communications Magazine, IEEE, vol. 37: 72-81, 1999.
    [9] E. Dahlman, P. Beming, J. Knutsson, F. Ovesjo, M. Persson, and C. Roobol, "WCDMA-the radio interface for future mobile multimedia communications," Vehicular Technology, IEEE Transactions on, vol. 47: 1105-1118, 1998.
    [10] M. Etoh and T. Yoshimura, "Advances in wireless video delivery," Proceedings of the IEEE, vol. 93: 111-122, 2005.
    [11] 李虓江, 视频通信中的误码控制技术研究. [博士论文]. 杭州: 浙江大学, 2003.
    [12] T. Ahmed, A. Mehaoua, R. Boutaba, and Y. Iraqi, "Adaptive packetvideo streaming over IP networks: a cross-layer approach," Selected Areas in Communications, IEEE Journal on, vol. 23: 385-401, 2005.
    [13] T. Kun, Z. Qian, and Z. Wenwu, "An end-to-end rate control protocol for multimedia streaming in wired-cum-wireless environments," presented at Proceedings of the ISCAS '03, vol.2: II-836 - II-839, 25-28 May 2003.
    [14] Y. Fan, Z. Qian, Z. Wenwu, and Z. Ya-Qin, "An end-to-end TCP-friendly streaming protocol for multimedia over wireless Internet," presented at Proceedings of the ICME'03, vol.2: - 429-432, 6-9 July, 2003
    [15] W. Dapeng, Y. T. Hou, and Z. Ya-Qin, "Scalable video transport over wireless IP networks," presented at Proceedings of the 11th IEEE PIMRC, vol.2, pp.1185 - 1191, 18-21 Sept. 2000.
    [16] A. Vetro, J. Xin, and S. Huifang, "Error resilience video transcoding for wireless communications," Wireless Communications, IEEE [see also IEEE Personal Communications], vol. 12: 14-21, 2005.
    [17] W. Yao and Z. Qin-Fan, "Error control and concealment for video communication: a review," Proceedings of the IEEE, vol. 86: 974-997, 1998.
    [18] W. Yao, S. Wenger, W. Jiantao, and A. K. Katsaggelos, "Error resilient video coding techniques," Signal Processing Magazine, IEEE, vol. 17: 61-82, 2000.
    [19] R. Talluri, "Error-resilient video coding in the ISO MPEG-4 standard," Communications Magazine, IEEE, vol. 36: 112-119, 1998.
    [20] J. Liebeherr, "A framework for analyzing networks with deterministic and statistical QoS," in Comet Group Seminar, vol. Columbia University, New York, 2000.
    [21] C. E. SHANNON, "A Mathematical Theory of Communication," The Bell System Technical Journal, vol. 27: 379-423, 623-656, 1948.
    [22] L. Chiariglione, "MPEG and multimedia communications," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 7: 5-18, 1997.
    [23] ITU-TH.261, Video codec for audiovisual services at p 64 kbit/s, 1990.
    [24] ITU-TH.263, "Video coding for low bit rate communication," 1996.
    [25] ITU-TH.263+(Draft), "Video coding for low bit rate communication," 1998.
    [26] G. Cote, B. Erol, and M. Gallant, "H.263+," IEEE Trans. Circuits System and Video Technology: 849-866, 1998, 8.
    [27] ITU-T.Q15-I-06, "Ad Hoc Report: H.263++ Development," 1999.
    [28] ITU-T, "Draft for "H.263++" annexes U, V, and W to recommendation H.263," 2000.
    [29] ISO/IEC11172, " Information technology coding of moving pictures and associated audio for digital storage media at up to about 1.5Mbit/s."
    [30] ISO/IEC13818, "Information technology-generic coding of moving pictures and associated audio."
    [31] ISO/IEC14496-3, "Information technology-generic coding of audio-visual object-part 3: audio," Vancouver Canada, 1999.
    [32] ISO/IECJTC1/SC29/WG11N2330, "MPEG-7 Draft Proposal Package Description (PPD)," 1998.
    [33] ISO/IECJTC1/SC29/WG11N3162, "First ideas on defining a Multimedia Framework (version 0.2)," 1999.
    [34] JVT, "Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 |ISO/IEC 14496-10 AVC)," J.-G. Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG., Ed., 2003.
    [35] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra, "Overview of the H.264/AVC video coding standard," IEEE Transactions on Circuits and Systems for Video Technology, vol. 13: 560-576, 2003.
    [36] H. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, "Low-complexity transform and quantization with 16-bit arithmetic for H.26L," presented at Proceedings of International Conference on Image Processing, vol.2: II-489-II-492, 2002.
    [37] Y. Wang, B. Yin, and D. Kong, "Adaptive video coding in loop filterbased on content," presented at Proceedings of the International Conference on Neural Networks and Signal Processing, vol.2: 1189-1192, 2003.
    [38] D. Marpe, H. Schwarz, and T. Wiegand, "Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13: 620-636, 2003.
    [39] T. Ozcelebi, M. R. Civanlar, and A. M. Tekalp, "Minimum Delay Content Adaptive Video Streaming over Variable Bitrate Channels with a Novel Stream Switching Solution," presented at IEEE International Conference on Image Processing, vol.1: 209-212, 2005.
    [40] B. Vucetic, "An adaptive coding scheme for time-varying channels," Communications, IEEE Transactions on, vol. 39: 653-663, 1991.
    [41] Y. Yue and C. Chang Wen, "SNR scalable transcoding for video over wireless channels," 2000.
    [42] T. Shanableh and M. Ghanabari, "Multilayer transcoding with format portability for multicasting of single-layered video," Multimedia, IEEE Transactions on, vol. 7:1-15, 2005.
    [43] V. A. Vaishampayan, "Design of multiple description scalar quantizers," Information Theory, IEEE Transactions on, vol. 39: 821-834, 1993.
    [44] V. Stankovic, R. Hamzaoui, and X. Zixiang, "Robust layered multiple description coding of scalable media data for multicast," Signal Processing Letters, IEEE, vol. 12: 154-157, 2005.
    [45] K. Ming and M. S. Alouini, "Transmission of multiple description codes over wireless channels using channel balancing," Wireless Communications, IEEE Transactions on, vol. 4: 2070-2075, 2005.
    [46] 王锋, 梁雨平. 非扩展性与可扩展性视频编码流式技术[J],中国有线电视: 33-37, 2004, 9/10.
    [47] G. Shaoshuai and T. Guofang, "Early resynchronization, error detection and error concealment for reliable video decoding," presented atProceedings of the ICCT, vol.2: 1133-1136, 2003.
    [48] F. Tao and C. Lap-Pui, Optimal resynchronization for layered video over wireless channel, presented at Proceedings of the ISCAS, Vol. 6: 6070-6073, 2005.
    [49] F. Tao and C. Lap-Pui, "Efficient content-based resynchronization approach for wireless video," Multimedia, IEEE Transactions on, vol. 7: 1021-1027, 2005.
    [50] F. Tao and C. Lap-Pui, "A novel resynchronization marker positioning approach for robust video transmission," presented at Proceedings of the ISCAS '04, Vol.3: III-801-4, 2004.
    [51] P. Haskell and D. Messerschmitt, "Resynchronization of motion compensated video affected by ATM cell loss," presented at Proc. ICASSP, vol. 3: 545–548, 1992.
    [52] ISO/IECJTC1/SC29/WG11, MPEG-4 video verification model version13.3. MPEG99/4960, Melbourne, 1999.
    [53] ISO/IEC, Information Technology-Coding of Audio-Visual Objects: Visual. CD14496-2, 1998.
    [54] L. Yew-San, K. K. Ong, and L. Chen-Yi, "Error-resilient image coding (ERIC) with smart-IDCT error concealment technique for wireless multimedia transmission," IEEE Transactions on Circuits and Systems for Video Technology, vol. 13: 176-181, 2003.
    [55] A. V. S. Mantravadi, M. Bansal, and L. P. Kondi, Robust transmission of packet-based H.264/AVC video with data partitioning over DS-CDMA wireless channels, presented at Visual Communications and Image Processing 2006, San Jose, CA, USA, 2006.
    [56] K. Wittig, Y. Chen, and M. van der Schaar, Combined data partitioning and fine granularity scalability for channel adaptive video transmission," presented at Image and Video Communications and Processing 2005, San Jose, CA, USA, 2005.
    [57] D. W. Redmill and N. G. Kingsbury, The EREC: an error-resilienttechnique for coding variable-length blocks of data, Image Processing, IEEE Transactions on, vol. 5: 565-574, 1996.
    [58] R. Zhang, S. L. Regunathan, and K. Rose, "Video coding with optimal inter/intra-mode switching for packet loss resilience," Selected Areas in Communications, IEEE Journal on, vol. 18: 966-976, 2000.
    [59] K. Stuhlmuller, N. Farber, M. Link, and B. Girod,Analysis of video transmission over lossy channels,Selected Areas in Communications, IEEE Journal on, vol. 18: 1012-1032, 2000.
    [60] L. H. Kieu and K. N. Ngan, Cell-loss concealment techniques for layered video codecs in an ATM network, Image Processing, IEEE Transactions on, vol. 3: 666-677, 1994.
    [61] L. Pei-Jun and C. Mei-Juan, Robust error concealment algorithm for video decoder, Consumer Electronics, IEEE Transactions on, vol. 45: 851-859, 1999.
    [62] S. Aign and K. Fazel, Temporal and spatial error concealment techniques for hierarchical MPEG-2 video codec, presented at Proceedings of the ICC'95, vol.3: 1778-1783, 1995.
    [63] S. Aign,Error concealment, early re-synchronization, and iterative decoding for MPEG-2, presented at Proceedings of the ICC 97, Montreal, vol.3: 1654-1658, 1997.
    [64] T. Tsung Han, L. Yu Xuan, and L. Yu Fong, "Video error concealment techniques using progressive interpolation and boundary matching algorithm," presented at Proceedings of the ISCAS '04, Vol.5: V-433-V-436, 2004.
    [65] F. Hartanto and H. R. Sirisena, "Hybrid error control mechanism for video transmission in the wireless IP networks," presented at the IEEE 10th Workshop Local and Metropolitan Area Networks(LANMAN’99), Sydney, Australia, Nov. 1999.
    [66] V. Stankovic, R. Hamzaoui, and X. Zixiang, "Product code error protection of packetized multimedia bitstreams," presented at in Proc.IEEE ICIP, Barcelona, Spain: I77-I80, Sept. 2003.
    [67] N. Ohta, PacketVideo: Modeling and Signal Processing. Norwood, MA: Artech House, 1994.
    [68] ITU-T, Multiplexing Protocol for Low Bitrate Multimedia Communication, ITU-T Recommendation H.223, 1995.
    [69] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Application. Englewoor Cliffs, Prentice Hall, 1983.
    [70] P. G. Sherwood and K. Zeger, "Progressive image coding for noisy channels," Signal Processing Letters, IEEE, vol. 4: 189-191, 1997.
    [71] P. G. Sherwood and K. Zeger, Error protection for progressive image transmission over memoryless and fading channels, IEEE Transactions on Communications, vol. 46: 1555-1559, 1998.
    [72] Q.-F. Zhu and L. Kerofsky, Joint source coding, transport processing, and error concealment for H.323-based packet video, presented at Visual Communications and Image Processing '99, San Jose, CA, USA, 1998.
    [73] Q.-F. Zhu, Y. Wang, and L. G. Shaw,Joint source coding and packetization for video transmission over ATM networks, presented at Visual Communications and Image Processing '92, Boston, MA, USA, 1992.
    [74] T. Turletti and C. Huitema, "Videoconferencing on the Internet," IEEE/ACM Transactions on Networking, vol. 4: 340-351, 1996.
    [75] L. Shu, D. Costello, and M. Miller, Automatic-repeat-request error-control schemes," Communications Magazine, IEEE, vol. 22: 5-17, 1984.
    [76] Z. Qian, T. F. Wong, and J. S. Lehnert, "Performance of a type-II hybrid ARQ protocol in slotted DS-SSMA packet radio systems," IEEE Transactions on Communications, vol. 47: 281-290, 1999.
    [77] C. Jianfei and C. Chang Wen, "Robust joint source-channel coding for image transmission over wireless channels," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 10: 962-966, 2000.
    [78] H. Zhihai, C. Jianfei, and C. Chang Wen, Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding, Circuits and Systems for Video Technology, IEEE Transactions on, vol. 12: 511-523, 2002.
    [79] J. Hagenauer and T. Stockhammer, Channel coding and transmission aspects for wireless multimedia, Proceedings of the IEEE, vol. 87: 1764-1777, 1999.
    [80] W. Feng, Z. Guangxi, Z. Zhenming, and H. Yejun, "Joint source-channel rate allocation and unequal error protection for dependent video transmission," presented at Wireless Communications, Networking and Mobile Computing, 2005. Proceedings. 2005 International Conference on, Vol.2: 1275 - 1280, Sept. 23-26, 2005.
    [81] F. Zhai, Y. Eisenberg, T. N. Pappas, R. Berry, and A. K. Katsaggelos, "Joint source-channel coding and power allocation for energy efficient wireless video communications," presented at Proc. 41st Allerton Conf. Communication, Control, and Computing, Monticello, IL, Oct. 2003.
    [82] L. P. Kondi, F. Ishtiaq, and A. K. Katsaggelos, "Joint source-channel coding for motion-compensated DCT-based SNR scalable video," Image Processing, IEEE Transactions on, vol. 11: 1043-1052, 2002.
    [83] L. P. Kondi, S. N. Batalama, D. A. Pados, and A. K. Katsaggelos, "Joint source-channel coding for scalable video over DS-CDMA multipath fading channels," presented at in Proc. IEEE Int. Conf. Image Processing, vol. 1: 994–997, 2001.
    [84] C. Qingyu and K. P. Subbalakshmi, "Joint source-channel decoding for MPEG-4 video transmission over wireless channels," Selected Areas in Communications, IEEE Journal on, vol. 21: 1780-1789, 2003.
    [85] G. Feideropoulou, B. Pesquet-Popescu, and J. C. Belfiore, "Joint source-channel coding of scalable video," presented at Global Telecommunications Conference, 2004. GLOBECOM '04. IEEE, Vol.4: 2599 - 2603, 29 Nov.-3 Dec. 2004.
    [86] Y. Fan, Z. Qian, Z. Wenwu, and Z. Ya-Qin, "End-to-end TCP-friendly streaming protocol and bit allocation for scalable video over wireless Internet," Selected Areas in Communications, IEEE Journal on, vol. 22: 777-790, 2004.
    [87] Z. Qian, Z. Wenwu, and Z. Ya-Qin, "Channel-adaptive resource allocation for scalable video transmission over 3G wireless network," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 14: 1049-1063, 2004.
    [88] Packet Switched Conversational Multimedia Applications: Default Codecs, 3GPP Technical Specification. 3GPP TR 26.235.
    [89] "Transparent End-to-End Packet Switched Streaming Service (PSS): RTP Usage Model," 3GPP Technical Specification. 3GPP TR 26.937.
    [90] H. M. Radha, M. van der Schaar, and C. Yingwei, "The MPEG-4 fine-grained scalable video coding method for multimedia streaming over IP," IEEE Transactions on Multimedia, vol. 3: 53-68, 2001.
    [91] 史翠竹, 余松煜, 王嘉. "FGS 视频流的码率分配算法研究," 计算机仿真, vol. 21, 2004,6.
    [92] 钟玉琢, 王琪, 赵黎等. 运动图像压缩编码国际标准及 MPEG 的新进展[M]. 北京: 清华大学出版社, 2002.
    [93] L. Weiping, L. Fan, and C. Xuemin, "Fine granularity scalability in MPEG-4 for streaming video," presented at Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, vol.1: 299 - 302, 28-31 May, 2000.
    [94] L. Weiping, "Overview of fine granularity scalability in MPEG-4 video standard," IEEE Transactions on Circuits and Systems for Video Technology, vol. 11: 301-317, 2001.
    [95] W. Li,Bit_Plane Coding of DCT Coefficients for Fine Granularity Scalability,ISO/IEC JTC1/SC29/WG11,MPEG98/M3989, October, 1998.
    [96] F. Ling, W. Li, and H. Sun, "Bitplane coding of DCT coefficients for image and video compression," presented at Visual Communications andImage Processing '99, San Jose, CA, USA, 1998.
    [97] W. Feng, L. Shipeng, and Z. Yu-Qin, "DCT-prediction based progressive fine granularity scalable coding," presented at Proceedings the International Conference on Image Processing, Vancouver, vol 3: 556-559, 10-13 Sept. 2000
    [98] W. Feng, L. Shipeng, and Z. Ya-Qin, "A framework for efficient progressive fine granularity scalable video coding," IEEE Transactions on Circuits and Systems for Video Technology, vol. 11: 332-344, 2001.
    [99] S. Xiaoyan, W. Feng, L. Shipeng, G. Wen, and Z. Ya-Qin, Macroblock-based progressive fine granularity scalable video coding, presented at Proceeding of the IEEE International Conference on Multimedia and Expo: 245-348, 2001.
    [100] S. Xiaoyan, W. Fang, L. Shipeng, G. Wen, and Z. Ya-Qin, "Macroblock-based progressive fine granularity scalable (PFGS) video coding with flexible temporal-SNR scalablilities," presented at Proceedings of the International Conference on Image Processing, Vol. 2: 1025 - 1028, 7-10 Oct. 2001.
    [101] G.-g. Ding and B.-l. Guo, "Improvement to progressive fine granularity scalable video coding," presented at Proceedings of the ICCIMA: 249-253, 2003.
    [102] H. Yuwen, W. Feng, L. Shipeng, Z. Yuzhuo, and Y. Shiqiang, H.26L-based fine granularity scalable video coding, presented at Proceedings of the ISCAS, vol.4: IV-548-IV-551, 2002.
    [103] W. Qi, X. Zixiang, W. Feng, and L. Shipeng, "Optimal rate allocation for progressive fine granularity scalable video coding," Signal Processing Letters, IEEE, vol. 9: 33-39, 2002.
    [104] B. Schuster, "Fine Granular Scalability With Wavelets Coding," ISO/IEC JTC1/SC29/WG11, MPEG98/M4021, October,1998.
    [105] Y. Chen, H. Radha, and R. A.Cohen, "Results of experiment on fine granular scalability with wavelet encoding of residuals," ISO/IECJTC1/SC29/WG11, MPEG98/M3988, October,1998.
    [106] J. Lian, J. Yu, Y. Wang, M. Srinath, and M. zhou, "Fine Granularity Scalable Video Coding using Combination of MPEG4 Video Objects and StillTexture Objects," ISO/IEC JTC1/SC29/WG11,MPEG98/M4025, October,1998.
    [107] S.-c. S. Cheung and A. Zakhor, "Mztching Pursuits Residual Coding for Fine Granular Video Scalability," ISO/IEC JTC1/SC29/WG11, MPEG98/ M3991, October,1998.
    [108] MPEG, "ISO/ IEC 14496 - 5/PDAM3 ( FGS Reference Software )," MPEG 2001/N3906, Jan 2001.
    [109] C. Lianji, Z. Wenjun, and C. Li, Rate-distortion optimized unequal loss protection for FGS compressed video, Broadcasting, IEEE Transactions on, vol. 50:126-131, 2004.
    [110] C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol. 27(7): 379-423, 623-656, 1948.
    [111] G. J. Sullivan and T. Wiegand, Rate-Distortion Optimization, IEEE Signal Processing Magazine, vol. 15: 74-90, Nov. 1998.
    [112] H. M. Hang and J. J. Chen, Source model for transform video coder and its application - Part I : Fundamental theory, IEEE Trans. Circuits System and Video Technology:287 - 298, 1997.7.
    [113] H.-M. H. Jiann-Jone Chen, Source Model for Transform Video Coder and Its Application-Part II: Variable Frame Rate Coding, IEEE Transactions On Circuits And Systems For Video Technology, vol. 7: 299-311, April 1997.
    [114] L. Wang, "Rate Control for MPEG Video Coding," Signal Processing: Image Communication, vol. 15(3): 493-511, 2000.
    [115] B. Tao, H. A. Peterson, and B. W. Dickinson, "A Rate-quantization Model for MPEG Encoders," presented at Proceedings of ICIP:338-341, 1997.
    [116] K. H. Yang, A. Jacquin, and N. S. Jayant, "A Normalized Rate-distortionModel for H.263 Compatible Coders and Its Application to Quantizer Selection," presented at Proceedings of ICIP:41~44, 1997.
    [117] G. Cote, B. Erol, M. Gallant, and F. Kossentini, "H.263+: Video Coding at Low Bit Rates," IEEE Trans. on CSVT, vol. 8(11), pp. 849-866, 1998.
    [118] G. Cheung, T. Wai-tian, and T. Yoshimura, "Rate-distortion optimized application-level retransmission using streaming agent for video streaming over 3G wireless network," presented at in Proceedings IEEE Inf. Conf. Image Processing, Rochester, New York:529-532, Sept. 2002.
    [119] N. Celandroni and F. Pototi, " Maximizing single connection TCP good put by trading bandwidth for BER " Int. J. of Commun. Syst., vol. 16:63-79, Feb. 2003.
    [120] P. Zhishi, H. Yih-Fang, D. J. Costello, and R. L. Stevenson, On the tradeoff between source and channel coding rates for image transmission, 1998.
    [121] Z. Shengjie, X. Zixiang, and W. Xiaodong, "Optimal resource allocation for wireless video over CDMA networks," Mobile Computing, IEEE Transactions on, vol. 4:56-67, 2005.
    [122] W. Feng, L. Shipeng, and Z. Ya-Qin, "A framework for efficient progressive fine granularity scalable video coding," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 11: 332-344, 2001.
    [123] 阎蓉, 陶然, 王越, 吴枫, 李世鹏.精细的可伸缩性视频编码中容错技术的研究, 电子学报, vol. 30:102-104, 2002.
    [124] J. Hagenauer, "Rate-compatible punctured convolutional codes (RCPC codes) and their applications," Communications, IEEE Transactions on, vol. 36:389-400, 1988.
    [125] V. Stankovic, R. Hamzaoui, and X. Zixiang, "Product code error protection of packetized multimedia bitstreams," presented at in Proc. IEEE ICIP, Barcelona, Spain: I77–I80, Sept. 2003.
    [126] T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice Hall,1984.
    [127] G. Feideropoulou, B. Pesquet-Popescu, and J. C. Belfiore, "Joint source-channel coding of scalable video on a Rayleigh fading channel," presented at Multimedia Signal Processing, 2004 IEEE 6th Workshop on, pp.303 - 306, 29 Sept.-1 Oct. 2004.
    [128] P. A. Chou and A. Sehgal, "Rate-distortion Optimized Receiver-driven Streaming over Best-effort Networks," presented at Proc. Packet Video Workshop, Pittsburg, PA, April 2002.
    [129] L. Qian, Joint Source-Channel Video Transmission, in PhD. Thesis of University of Illinois at Urbana-Champaign, 2001.
    [130] T. Stockhammer and M. M. Hannuksela, "H.264/AVC video for wireless transmission," Wireless Communications, IEEE [see also IEEE Personal Communications], vol. 12: 6-13, 2005.
    [131] T. Stockhammer, M. M. Hannuksela, and T. Wiegand, "H.264/AVC in wireless environments," IEEE Trans. Circuits Syst. Video Technol, 2003.
    [132] 王曜 ,信源 -信道联合视频编码研究 (博士论文 ),华中科技大学 . 武汉 , 2003.
    [133] 肖东亮, 孙洪, 江森, 苏祥芳, 茹国宝. "信源/信道联合编码技术在移动通信中的应用," 武汉大学学报(理学版): 89-93, 2002.1.
    [134] W. Guijin and L. Xinggang, "Error protection for scalable image over 3G-IP network," presented at Proceedings of International Conference on Image Processing, vol.2:II-733 - II-736, 22-25 Sept. 2002.
    [135] K. Sayood and J. C. Borkenhagen, "Use of residual redundancy in the design of joint source/channel coders," IEEE Trans. Commun, vol. 39: 838-846, 1991.
    [136] H. Jafarkhani and N. Farvardin, "Channel-Matched Hierarchical Table-Lookup Vector Quantization," IEEE Transactions On Information Theory, vol. 46: 1121-1125, May 2000.
    [137] 周炯槃, 信息理论基础. 北京: 人民邮电出版社, 1983.
    [138] K. Ramchandran, A. Ortega, and M. Vetterli, "Bit allocation fordependent quantization with applications to multiresolution and MPEG video coders," Image Processing, IEEE Transactions on, vol. 3: 533-545, 1994.
    [139] M. Bystrom and T. Stockhammer, "Dependent source and channel rate allocation for video transmission," Wireless Communications, IEEE Transactions on, vol. 3:258-268, 2004.
    [140] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding. New York: McGraw-Hill, 1979.
    [141] B. Girod and N. F?rber, "Feedback-based error control for mobile video transmission," Proc. IEEE, vol. 87:1703-1723, 1999.
    [142] F. Marx and J. Farah, "A novel approach to achieve unequal error protection for video transmission over 3G wireless networks," Signal Processing: Image Communication: 313-323, 19, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700