细乳液法制备无机/聚合物纳米复合微球
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细乳液聚合作为一种新型的聚合方法,在最近几十年的发展中,已得到了充分的认可和广泛的推广,在国外,细乳液聚合方法已经运用到工业化生产中。随着细乳液聚合机理逐渐被人们所深度发掘,其优点也逐渐显现出来。相比较于常规乳液聚合,细乳液聚合能够将乳胶粒的粒径进一步减小到50-500nm,这在要求小粒径的产品领域,将是一个很大的突破。另外,随着各国环保法规的日趋严格和人们环保意识的加强,乳液聚合中表面活性剂的使用量已成为人们关注的一个重要要素。常规乳液聚合中需使用较大量的表面活性剂,这在最终的产品使用中不仅影响产品的性能,而且较多的表面活性剂会造成对环境的污染。而细乳液聚合工艺能使表面活性剂的使用量降到最低限度,却不影响其乳液的稳定性,并且保证了粒子的较小粒径。尤其是可聚合高分子表面活性剂在细乳液中的应用,使得细乳液聚合在某种程度上,可以称为绿色聚合工艺。
     本文第一章以细乳液聚合为主线,分别介绍了细乳液法制备无机/聚合物复合微球的研究进展,另外还介绍了WPU表面活性剂在细乳液聚合中的应用进展,以及细乳液聚合制备仿生材料的研究进展。
     本文第二章介绍了SiO2/PMMA复合微球的细乳液法制备。采用异佛尔酮二异氰酸酯(IPDI)、聚醚二元醇N210和二羟甲基丙酸(DMPA)为主要反应原料,合成出羧酸型水性聚氨酯,并以甲基丙烯酸羟乙酯(HEMA)对其进行C=C封端,然后使用该水性聚氨酯作为可聚合表面活性剂,采用双原位细乳液法,不同引发剂体系引发聚合,制备出Si02/聚甲基丙烯酸甲酯复合微球。通过TEM、FTIR和TGA等测试方法对所得产物进行了表征分析。结果表明,使用水性聚氨酯表面活性剂所制备的Si02/聚甲基丙烯酸甲酯复合微球形貌,不同于传统小分子表面活性剂所制得产物的形貌,而且引发剂类型对Si02/聚甲基丙烯酸甲酯复合微球形貌有较大影响。
     本文第三章介绍了nHA/PMMA复合微球的细乳液原位仿生合成方法。采用细乳液法合成出表而功能化的聚合物纳米粒子,并以其为模板,利用纳米粒子表面的离子对Ca2+的静电吸附作用,在一定的pH条件下,进行水相中纳米羟基磷灰石(nHA)在聚合物纳米粒子表面的原位仿生矿化,制备出nHA/聚合物复合微球。通过FT-IR、XRD和TEM等测试对所得产物进行了表征分析,并考察了nHA/聚合物复合微球对水杨酸药物的吸附作用。结果表明,复合微球上的无机组分为类似于人骨生物磷灰石的nHA,同时复合微球能够对水杨酸产生吸附作用,并且吸附性能随着水杨酸初始浓度的增大而增加,吸附速度快,5h即达到吸附平衡,这为骨组织再生、药物传递以及载药骨材料提供了潜在的应用可能性。
     本文第四章介绍了一种窄粒径分布的SiO2/PAM杂化中空微球的双原位反相细乳液法制备。首先使用丙烯酰胺(AM)和二乙烯苯(DVB)的原位反相细乳液共聚合,制备出交联的聚合物纳米胶囊作为模板,通过硅酸乙酯(TEOS)的原位界面水解和沉淀,制备出窄粒径分布的杂化中空微球。通过使用SPAN-80和CTAB作为表面活性剂经均化器制备出pH可控的亲水性反相细乳液液滴,TEOS直接加入到反相细乳液的连续相中。由于二氧化硅通过界面溶胶凝胶过程,沉积在聚合物纳米胶囊表面形成了二氧化硅壳层。杂化中空微球形貌通过透射电子显微镜(TEM)直观观察,动态光散射(DLS)考察了粒径及粒径分布,热性能及Si02含量通过热分析(TGA)测试确定。结果表明制备出的杂化中空微球粒径分布较窄,大小为230-350nm,并且具有空心和双层壳结构,聚合物层为30nm, SiO2层为20nm。
As a novel method, miniemulsion polymerization has gained sufficient ratification and extensive spread in late decades. It has applied in industry abroad. Its advantages appear gradually, with the mechanism of miniemulsion being explored. Compared with common emulsion polymerization, miniemulsion has a smaller size of50-500nm, which is a great breakthrough in the area of smaller size. Moreover, as the more strict requirements of environmental protection and enhanced environment protecting consciousness, the amount of surfactant used in emulsion polymerization has been an important factor. A mass of surfactant used in emulsion polymerization affects the property of the final products, and pollutes the environment. But miniemulsion uses the least amount of surfactant, and guarantees the stability of latex. Especially, the polymerizable macromolecule surfactant used in miniemulsion makes it being green polymerization.
     In the first chapter, the research process of preparation of inorganic/polymer composite microsphere via miniemulsion is introduced, with miniemulsion polymerization as the main clues. Applied process of waterborne polyurethane as surfactants in miniemulsion polymerization, together with miniemulsion preparation of biomimetic materials are also introduced.
     In the second chapter, the preparation of SiO2/PMMA composite microspheres via miniemulsion polymerization was introduced. The carboxylic waterborne polyurethane was synthesized with isophorone diisocyanate(IPDI), polyether glycol(N210) and2,2-bis(hydroxymethyl)propionic acid(DMPA) as the major materials, and terminated by C=C from β-hydroxyethyl methacrylate(HEMA). SiO2/PMMA composite microspheres were prepared with different type of initiators by double in situ miniemulsion polymerization, in which the waterborne polyurethane was used as a polymerizable surfactant. The prepared products were characterized by TEM, FTIR and TGA, respectively. The results indicate that morphologies of the SiO2/PMMA composite microsphere prepared by waterborne polyurethane surfactant are different from those prepared by conventional micromolecule surfactants. The type of initiators affects significantly on the morphologies of the SiO2/PMMA.
     In the third chapter, the method of in situ biomimetic synthesis of nHA/PMMA composite microspheres was introduced. nHA/polymer composite microspheres with the size of250nm were in situ biomimetic synthesized in the aqueous phase at37℃for7days by using the surface-functionalized polymeric nanoparticles as templates. A miniemulsion process was adopted to prepare the cross-linked templates via the co-polymerization of methyl methacrylate (MMA) and methyl acrylic acid (MAA). The functional groups (-COOH) were bound on the surface of polymeric nanoparticles. By utilizing the-COOH groups absorbing Ca+followed by HPO42-in certain pH conditions, hydroxyapatite (HA) crystal nucleus formed and grew up to be rod-like crystals on the surface in this system. Thus, nHA/polymer composite microspheres are successfully obtained, and studied by Fourier transform-infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). The morphology of the polymeric nanoparticles and composite microspheres was investigated by (TEM). In the TEM images of polymeric templates, plenty of nanoparticles about200nm were observed. And some unsmooth nanoparticles with the larger size of250nm were presented in the TEM images of composite microspheres. The inorganic component, increased in size of the50nm in composite microspheres, confirmed to be low crystallized HA in nanoscale by XRD, which is similar to that of skeleton. Together with FT-IR, they showed that nHA was fabricated on the surface of polymer microspheres. Also, its adsorption studies on salicylic acid (SA) are investigated. The composite microspheres were dispersed in SA solution under constant stirring. After the SA adsorbed by the composite microspheres in certain time, the content of residual SA was detected using UV. It's also revealed that SA can be absorbed by composite microspheres. The intensity of absorption increases with the increase of the initial concentration of SA, and the absorption reaches equilibrium after5h at a fast speed. These nHA/polymer composite microspheres have great potential in bone tissue regeneration, drug delivery and bone materials loaded with drugs.
     In the fourth chapter, the preparation of narrowly size-distributed hybrid hollow microspheres via double in-situ inverse miniemulsion polymerization and interfacial sol-gel process was introduced. Hybrid hollow microspheres with a narrow size distribution were successfully prepared via in-situ interfacial hydrolysis and condensation reactions of tetraethoxysilane (TEOS) based on the templates of cross-linked polymer nanocapsules, which were synthesized via in-situ inverse miniemulsion copolymerization of acrylamide (AM) and divinylbenzene (DVB). The inverse miniemulsions containing pH-controlled hydrophilic droplets were first prepared via homogenizer by using Span-80and cetyltrimethylarnmonium bromide (CTAB) as surfactants. TEOS was directly introduced to the continuous phase of an inverse miniemulsion. The silica shell was formed via interfacial sol-gel process by the deposition of silica on the surface of polymer nanocapsules. The formation of hybrid hollow microspheres morphology was confirmed by transmission electron microscopy (TEM), and the size and size distribution were measured by dynamic light scattering (DLS). The thermal performance and SiO2content were verified by thermogravimetric analysis (TGA). The results show that the prepared hybrid hollow microspheres have narrow size distributions in range of230-350nm. And they have a real empty core and a two-layer shell structure, with a thickness of30nm of the polymer layer and20nm of the silica layer.
引文
[1]武鹏,桑晓明,于守武,等.细乳液聚合的研究进展[J].塑料工业,2010,38:22-26.
    [2]Landfester K, Bechthold N, Tiarks F, et al. Formulation and stability mechanisms of polymerizable miniemulsions [J]. Macromolecules,1999,32:5222-5228.
    [3]Landfester K. Recent developments in miniemulsions formation and stability mechanisms [J]. Macromol Symp,2000,150:171-179.
    [4]李如,于良民,高丙娟.高分子微球的制备及应用研究进展[J].广州化工,2010,39(4):14-18.
    [5]Mitsuru W, Toshiyuki T. Acrylic polymer/silica organic-inorganic hybrid emulsions for coating materials:role of the silane coupling agent [J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(16):4736-4742.
    [6]陈娟,李长生,李国伟,等.SiO2空心微球的制备表征及摩擦性能[J].复合材料学报,2011,28(5):46-51.
    [7]Erdem B, Sudol E D, Dimon IE V L, et al. Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using OLOA370 as stabilizer [J]. J Polym Sci Part A:Polym Chem,2000,38(24):4419-4430.
    [8]Eredm E, Sudol E D, Dimon IE V L. Encapsulation of inorganic particles via miniemulsion polymerization. Ⅱ. Preparation and characterization of styrene miniemulsion droplets containing TiO2 particles [J]. Polym Sci Polym Chem, 2000,38:4431-4440.
    [9]Eredm E, Sudol E D, Dimon IE V L. Encapsulation of inorganic particles via miniemulsion polymerization. Ⅲ. Characterization of encapsulation [J]. Polym Sci Polym Chem,2000,38:4441-4450.
    [10]Zhang S W, Zhou S X, Weng Y, et al. Synthesis of SiO2/polystyrene nanocomposite particles via miniemulsion polymerization [J]. Langmuir,2005, 21:2124-2128.
    [11]杨蓓蓓,杨建军,张建安,等.磁性SiO2/PSt中空复合微球的细乳液法制备及表征[J].化学学报,2013,71:392-396.
    [12]Kobitskaya E, Ekinci D, Manzke A, et al. Narrowly size distributed zinc-containing poly(acrylamide) latexes via inverse miniemulsion polymerization [J]. Macromolecules 2010,43:3294-3305.
    [13]Yang S, Liu H, Zhang Z. A facile route to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via inverse miniemulsion polymerization [J]. Journal of Polymer Science:Part A:Polymer Chemistry, 2008,46:3900-3910.
    [14]Xu Z Z, Wang C C, Yang W L, et al. Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization [J]. Journal of Magnetism and Magnetic Materials,2004,277:136-143.
    [15]Kickelbick, G. Introduction to Hybrid Materials; Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim,2007.
    [16]Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. J Mater Chem 2005,15, 3559-3592.
    [17]Landfester, K.; Weiss, C. In Advances in Polymer Science; Springer: Berlin/Heidelberg,2010; 1-49.
    [18]Bourgeat-Lami, E.; Duguet, E. In Functional Coatings; Ghosh, S. K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim,2006; 85-152.
    [19]Bourgeat-Lami, E.; Lansalot, M. In Hybrid Latex Particles; Springer: Berlin/Heidelberg,2011; 53-123.
    [20]Landfester, K. In Functional Coatings; Ghosh, S. K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim,2006; 29-66.
    [21]Nabih N.; Landfester K; Taden A. Water-based inorganic/polymer hybrid particles prepared via a multiple miniemulsion process[J]. Journal of Polymer Science Part A:Polymer Chemistry 2011,49,5019-5029.
    [22]何方岳.浙江化工,2005,11:25.
    [23]董阳,金勇,魏德卿.化学通报,2005,68:1.
    [24]Chern C S. Prog. Polym. Sci,2006,31:433.
    [25]Sugano S, Shigeyoshi K. Macromol Symp.2006,239:51.
    [26]陈养民,李文安.水性聚氨酯合成工艺研究进展[J].化工时刊,2006,20(2):70-73.
    [27]Yang Dong, Yong Jin, Deqing Wei. Surface activity and solubilization of a novel series of functional polyurethane surfactants [J]. Polymer International,2007,56: 14-21.
    [28]Yuanchang Shi, Youshi Wu, Zhang Li. Synthesis and properties of nonionic polyurethane surfactants [J]. Polymer Materials Science and Engineering,2003, 19(6):70-75.
    [29]Min Jiang, Xiuli Zhao, Xiaobin Ding, et al. A novel approach to fluorinated polyurethane by macromonomer copolymerization [J]. European Polymer Journal,2005,41:1798-1803.
    [30]Sang Eun Shim, Hyejun Jung, Kangseok Lee, et al. Dispersion polymerization of methyl methacrylate with a novel bifunctional polyurethane macromonomer as a reactive stabilizer [J]. Journal of Colloid and Interface Science,2004,279: 464-470.
    [31]Guixi Zhang, Zhicheng Zhang, Changqi Xu, et al. Preparation of monodisperse polystyrene particles by radiation-induced dispersion polymerization using waterborne polyurethane as a stabilizer [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2006,276:72-77.
    [32]In-Woo Cheong, Mamoru Nomura, Jung Hyun Kim. Water-soluble polyurethane resins as emulsifiers in emulsion polymerization of styrene:nucleation and particle growth [J]. Macromol. Chem. Phys.2001,202:2454-2460.
    [33]Guixi Zhang, Zhicheng Zhang, Zhongqing Hu, et al. Seeded-emulsion polymerization of styrene with waterborne polyurethane stabilizer via 60Co gamma ray [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2005,264: 37-42.
    [34]W. Ming, Y. Zhao, S. Fu, F.N. Jones. In-situ FTIR investigation on chain conformation change upon heating for pauci-chain polystyrene microspheres made by microemulsion polymerization [J]. Polym. Mater. Sci. Eng.1999,80: 556-557.
    [35]M. Li, E.S. Daniels, V. Dimonie, et al. Preparation of polyurethane/acrylic hybrid nanoparticles via a miniemulsion polymerization process [J]. Macromolecules, 2005,38:4183-4192.
    [36]J. Liu, C.H. Chew, L.M. Gan, et al. Synthesis of monodisperse polystyrene microlatexes by emulsion polymerization using a polymerizable surfactant [J]. Langmuir,1997,13:4988-4994.
    [37]C.D. Anderson, E.D. Sudol, M.S. El-Aasser.50 nm polystyrene particles via miniemulsion polymerization [J]. Macromolecules,2002,35:574-576.
    [38]J.Y. Kwon, E.Y. Kim, H.D. Kim. Reparation and properties of waterborne-polyurethane coating materials containing conductive polyaniline[J]. Macromol. Res.,2004,12:303-310.
    [39]Y.S. Kwak, S.W. Park, H.D. Kim. Preparation and properties of waterborne polyurethane-urea anionomers-influences of the type of neutralizing agent and chain extender [J]. Colloid Polym. Sci.,2003,281:957-963.
    [40]A.J. Dong, G.L. Hou, D.X. Sun. Properties of amphoteric polyurethane waterborne dispersions. II. Macromolecular self-assembly behavior [J]. J. Colloid Interf. Sci.2003,266:276-281.
    [41]T.C. Wen, Y.J. Wang, T.T. Cheng,et al. The effect of DMPA units on ionic conductivity of PEG-DMPA-IPDI waterborne polyurethane as single-ion electrolytes [J]. Polymer,1999,40:3979-3988.
    [42]Shijie Wang, Guixi Zhang, Zhicheng Zhang, et al. Gamma-ray initiated miniemulsion polymerization of styrene stabilized by waterborne polyurethane [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,298:158-162.
    [43]Tao Liu, Zhonghui Li, Qiufang Wu, et al. Synthesis of nanocolorants with crosslinked shell by miniemulsion polymerization stabilized by waterborne polyurethane [J]. Polym. Bull.,2010,64:511-521.
    [44]Li JJ, Chen YP, Yin YJ, et al. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ [J]. Biomaterials,2007,28(5): 781-790.
    [45]Ren T, Ren J, Jia X, et al. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds [J]. J Biomed Mater Res A,2005,74A(4): 562-569.
    [46]Du C, Cui FZ, Zhang W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix [J]. J Biomed Mater Res A, 2000,50(4):518-527.
    [47]Ager JW, Balooch G, Ritchie RO. Fracture, aging, and disease in bone [J]. J Mater Res,2006,21(8):1878-1892.
    [48]Li X, Chang J. Preparation of bone-like apatite-collagen nanocomposites by a biomimetic process with phosphorylated collagen [J]. J Biomed Mater Res A, 2008,85A(2):293-300.
    [49]Narayan R, editor. Biomedical Materials. USA:Springer; 2009.
    [50]Ahmed I, Parsons AJ, Palmer G, Knowles JC, Walkers GS, Rudd CD. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite [J]. Acta Biomater,2008,4(5):1307-1314.
    [51]Fan YB, Xiu KH, Duan H, et al. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing [J]. Clin Biomech,2008,23:S7-S16.
    [52]Kobayashi HYLS, Brauer DS, Russel C. Mechanical properties of a degradable phosphate glass fibre reinforced polymer composite for internal fracture fixation [J]. Mat Sci Eng C-Bio S,2010,30(7):1003-1007.
    [53]Anitha Ethirajan, Ulrich Ziener, Andrey Chuvilin, et al. Biomimetic Hydroxyapatite Crystallization in Gelatin Nanoparticles Synthesized Using a Miniemulsion Process [J]. Adv. Funct. Mater.2008,18:2221-2227.
    [54]Yuuka Fukui, Keiji Fujimoto. Bio-inspired nanoreactor based on a miniemulsion system to create organic-inorganic hybrid nanoparticles and nanofilms [J]. J. Mater. Chem.,2012,22:3493-3499.
    [55]Anitha Ethirajan, Ulrich Ziener, Katharina Landfester. Surface-Funclionalized Polymeric Nanoparticles as Templates for Biomimctic Mineralization of Hydroxyapatite [J]. Chem. Mater.2009,21:2218-2225.
    [56]Anitha Ethirajan, Anna Musyanovych, Andrey Chuvilin, et al. Biodegradable Polymeric Nanoparticles as Templates for Biomimetic Mineralization of Calcium Phosphate [J]. Macromol. Chem. Phys.2011,212:915-925.
    [1]Chern C.S.. Emulsion polymerization mechanisms and kinetics[J]. Progress In Polymer Science,2006,31(5):443-486.
    [2]Li Wenwen, Min Ke, Krzysztof Matyjaszewski, et al. PEO-based block copolymers and homopolymers as reactive surfactants for AGET ATRP of butyl acrylate in miniemulsion[J]. Macromolecules,2008,41(17):6387-6392.
    [3]Ni Peihong, Zhang Mingzu, Ma Liheng, et al. Poly(dimethylamino)ethyl methacrylate for use as a surfactant in the miniemulsion polymerization of styrene[J]. Langmuir,2006,22(14):6016-6023.
    [4]Li Wenwen, Krzysztof Matyjaszewski, Krystyna Albrecht, et al. Reactive surfactants for polymeric nanocapsules via interfacially confined miniemulsion ATRP[J]. Macromolecules,2009,42(21):8228-8233.
    [5]Wang Shijie, Zhang Guixi, Zhang Zhicheng, et al. Gamma-ray initiated miniemulsion polymerization of styrene stabilized by waterborne polyurethane[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007, 298(3):158-162.
    [6]Liu Tao, Li Zhonghui, Wu Qiufang, et al. Synthesis of nanocolorants with crosslinked shell by miniemulsion polymerization stabilized by waterborne polyurethane[J]. Polymer Bulletin,2010,64(5):511-521.
    [7]Sang Eun Shim, Hyejun Jung, Kangseok Lee, et al. Dispersion polymerization of methyl methacrylate with a novel bifunctional polyurethane macromonomer as a reactive stabilize[J]. Journal of Colloid and Interface Science,2004, 279(2):464-470.
    [8]Hyejun Jung, Kangseok Lee, Sang Eun Shim, et al. Novel macromonomer as a reactive stabilizer in the dispersion polymerization of methylmethacrylate[J]. Macromolecular Research,2004,12(5):512-518.
    [9]Zhang Guixi, Zhang Zhicheng, Xu Changqi, et al. Preparation of monodisperse polystyrene particles by radiation-induced dispersion polymerization using waterborne polyurethane as a stabilizer[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006,276(1-3):72-77.
    [10]Zheng Jie, Luo Jianxin, Zhou Dewen, et al. Preparation and properties of non-ionic polyurethane surfactants[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,363(1-3):16-21.
    [11]Dong Yang, Jin Yong, Wei Deqing. Surface activity and solubilization of a novel series of functional polyurethane surfactants [J]. Polymer International,2007, 56(1):14-21.
    [12]林东恩,胡守印,张逸伟.新型磺酸盐聚氨酯表面活性剂的制备及性能[J].华南理工业大学学报(自然科学版),2011,39(3):32-36.
    [13]Zhang Guixi, Zhang Zhicheng, Hu Zhongqing, et al. Seeded-emulsion polymerization of styrene with waterborne polyurethane stabilizer via 60Co gamma ray[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,264(1-3):37-42.
    [14]Inwoo Cheong, Mamoru Nomura, Jung Hyun Kim. Water-Soluble Polyurethane Resins as Emulsifiers in Emulsion Polymerization of Styrene:Nucleation and Particle Growth[J].Macromolecular Chemistry and Physics,2001, 202(11):2454-2460.
    [15]Hansjiirgen Adler, Karsten Jahny, Bettina Vogtbirnbrich. Polyurethane macromers-new building blocks for acrylic hybrid emulsions with outstanding performance[J]. Progress in Organic Coatings,2001,43(4):251-257.
    [16]Mitsuru Watanabe, Toshiyuki Tamai. Sol-gel reaction in acrylic polymer emulsions:the effect of particle surface charge[J]. Langmuir,2007, 23(6):3062-3066.
    [17]Mitsuru Watanabe, Toshiyuki Tamai. Acrylic polymer/silica organic-inorganic hybrid emulsions for coating materials:role of the silane coupling agent[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006, 44(16):4736-4742.
    [18]李永超,张毅,金日光.分散聚合法制备二氧化硅/聚苯乙烯单分散复合微球[J].复合材料学报,2005,22(2):21-26.
    [19]陈娟,李长生,李国伟,等.Si02空心微球的制备表征及摩擦性能[J].复合材料学报,2011,28(5):46-51.
    [20]蔡小烨,梁小清,尚嘉兰.Si02空心微球复合材料力学性能的实验研究[J].复合材料学报,1994,11(4):69-75.
    [21]Syuji Fujii, Steven P Armes. Stimulus-responsive particulate emulsifiers based on lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgels[J]. Langmuir,2006,22(16):6818-6825.
    [22]Liu Yingling, Chihyuan Hsu, Yuhuei Su, et al. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions[J]. Biomacromolecules, 2005,6(1):368-373.
    [1]Ferraz, M. P.; Monteiro, F. J.; Manuel, C. M. J. Appl. Biomater. Biom.2004,2, 274.
    [2]Murugan, R.; Ramakrishna, S. Compos. Sci. Technol.2005,65,2385.
    [3]Wahl, D. A.; Czernuszka, J. T. Eur. Cell. Mater.2006,11,43.
    [4]Fan, G.-D.; Chen, C.-L.; Zhang, C.-M.; Wang, Q. Inorganic Chemicals Industry 2010,42,15 (in Chinese).(樊国栋,陈春兰,张春梅,王强,无机盐工业,2010,42,15.)
    [5]Chen, Q. Z.; Wong, C. T.; Lu, W. W.; Cheung, K. M.; Leong, J. C.; Luk, K. D. Biomaterials 2004,25,4243.
    [6]Yang, P. P.; Quan, Z. W.; Li, C. X.; Kang, X. J.; Lian, H. Z.; Lin, J. Biomaterials 2008,29,4341.
    [7]Queiroz, A. C.; Santos, J. D.; Monteiro, F. J.; Gibson, I. R.; Knowles, J. C. Biomaterials 2001,22,1393.
    [8]Ethirajan, A.; Schoeller, K.; Musyanovych, A.; Ziener, U.; Landfester, K. Biomacromolecules 2008,9,2383.
    [9]Ethirajan, A.; Ziener, U.; Chuvilin, A.; Kaiser, U.; Colfen, H.; Landfester, K. Adv. Funct. Mater.2008,18,2221.
    [10]Xu, A. W.; Ma, Y. R.; Coelfen, H. J. Mater. Chem.2007,17,415.
    [11]Wang, H.; Li, Y.; Zuo, Y.; Li, J.; Ma, S.; Cheng, L. Biomaterials 2007,28,3338.
    [12]Ethirajan, A.; Ziener, U.; Landfester, K. Chem. Mater.2009,21,2218.
    [13JNandi, S. K.; Mukherjee, P.; Roy, S.; Kundu, B.; De, K. D.; Basu, D. Mat. Sci. Eng. C-Mater.2009,29,2478.
    [14]Stigter, M.; Groot, K.; Layrolle, P. Biomaterials 2002,23,4143.
    [15]Stigter, M.; Bezemer, J.; Groot, K.; Layrolle, P. J. Control. Release.2004,99, 127.
    [16]Zeng, L.-P.; Cao, L.-Y.; Huang, J.-F.; Guo, S. Acta Materiae Compositae Sinica 2009,26,68(in Chinese).(曾丽平,曹丽云,黄剑锋,郭申,复合材料学报,2009,26,68.)
    [17]Wang, Y.; Zhang, X.; Yan, J.; Xiao, Y.; Lang, M. Appl. Surf. Sci.2011,257,6233.
    [18]Lam, W. M.; Pan, H. B.; Fong, M. K.; Cheung, W. S.; Wong, K. L.; Li, Z. Y.; Luk, K. D. K.; Chan, W. K.; Wong, C. T.; Yang, C.; Lu, W. W. J. Biomed. Mater. Res. B 2011,96,76.
    [19]Tian, D.; Chu, X. H.; Yu, D. H.; Yue, Y. Z.; Zhao, P.; Sun, X. L.; Liu, W. L. Ind. Eng. Chem. Res.2011,50,6109.
    [20]Socol, G.; Macovei, A. M.; Miroiu, F.; Stefan, N.; Duta, L.; Dorcioman, G.; Mihailescu, I. N.; Petrescu, S. M.; Stan, G. E.; Marcov, D. A.; Chiriac, A.; Poeata, I. Mater. Sci. Eng. B-Adv.2010,169,159.
    [21]Goncalves, G.; Cruz, S. M. A.; Ramalho, A.; Gracioa, J.; Marques, P. A. A. P. Nanoscale 2012,4,2937.
    [22]Navarro, C. H.; Moreno, K. J.; Chavez-Valdez, A.; Louvier-Hernandez, F.; Garcia-Miranda, J. S.; Lesso, R.; Arizmendi-Morquecho, A. Wear 2012, 282-283,76.
    [23]Albano, C.; Parra, C.; Gonzalez, G. Macromol. Symp.2010,290,95.
    [24]Kwon, S. Y.; Kim, Y. S.; Woo, Y. K.; Kim, S. S.; Park, J. B. Bio-med. Mater. Eng. 1997,7,129.
    [25]Vallo, C. I.; Montemartini, P. E.; Fanovich, M. A.; Porto Lopez, J. M.; Cuadrado, T. R. J. Biomed. Mater. Res. A 1999,48,150.
    [1]S. Schacht, Q. Huo, I.G VoigtMartin, et al. Oil-water interface templating of mesoporous macroscale structures [J]. Science,1996,273:768.
    [2]J.M. Lee, Y.G. Lee, D.W. Kim, et al. Colloid Surf. A,2007,301:48.
    [3]J.H. Park, S.Y. Bae, S.G. Oh. Chem. Lett.,2003,598.
    [4]H.J. Hah, J.S. Kim, B.J. Jeon, et al. Chem. Commun.2003,1712.
    [5]Morganm T, Carnahanm A, Immoos C E, et al. Dendritic molecular capsules for hydrophobic com-pounds [J]. J. Am Chem Soc,2003,125:15485-154891.
    [6]Zhu YF, Shi JL, Dong X P, et al. A facilemethodto synthesize novelhollowmesoporous silica spheres andadvanced storage property [J]. Microporous and Meso-porous Materials,2005,84:218-2221.
    [7]Yang X L, Yao K, Zhu Y H. Fabrication and sus-tained release property of nanostructured hollow silicamicrospheres [J]. Journal of Inorganic Materials, 2005,20(6):1403-14081.
    [8]Zhu Y F, Shi JL. A mesoporous core-shell structure for pH-controlled storage and release of water-soluble drug [J]. Microporous and Mesoporous Materials,2007, 103:243-2491.
    [9]Wang JX, Chen JF. Development of a simple method for the preparation of novel egg-shell type Pt catalysts using hollow silica nanostructures as supportingprecursors [J]. Materials Research Bulletin,2008,43(4):889-8961.
    [10]顾文娟,廖俊,吴卫兵,等.中空二氧化硅微球的制备方法研究进展[J].有机硅材料,2009,23(4):258.
    [11]Ugelstad J, El-Aasser M S, Vanderhoff J W, et al. Emulsion polymerization: Initiation of polymerization in monomer droplets [J]. Polym Sci Polym Lett, 1973,11:503-513.
    [12]Katharina Landfester, Nina Bechthold, Franca Tiarks, et al. Formulation and stability mechanisms of polymerizable miniemulsions [J]. Macromolecules,1999, 32(16):5222-5228.
    [13]M. Antonietti, K. Landfester. Prog. Polym. Sci.,2002,27:689.
    [14]K. Landfester. Macromol. Rapid Commun.,2001,22:896.
    [15]K. Ouzineb, C. Graillat, T.F. McKenna. J. Appl. Polym. Sci.2005,97:745.
    [16]J.C. Ramirez, J. Herrera-Ordonez, V.A. Gonzalez. Polymer,2006,47:3336.
    [17]N. Lazaridis, A.H. Alexopoulos, E.G. Chatzi, et al. Chem. Eng. Sci.,1999,54: 3251.
    [18]Q. Zhou, M.J. Rosen. Langmuir,2003,19:4555.
    [19]A.S. Kabalnov, E.D. Shchukin. Adv. Colloid Interface Sci.,1992,38:69.
    [20]I. Capek. Adv. Colloid Interface Sci.2004,107:125.
    [21]Zhang G, Yu Y, Chen X, et al. Silica nanobottlestemplated from functional polymer spheres [J]. Journal of Colloid and Interface Sci,2003,263:467-4721.
    [22]Decher G, Hong JD. Build up of ultrathin multilayer films by a self-assembly process:Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces [J]. J. Macromol. Chem. Macromol. Symp,1991,46:321-3271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700