脉冲强磁场下电输运和磁测量系统及其(La_(1-x)Bi_x)_(0.67)Ca_(0.33)MnO_3体系磁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要从强磁场对科学研究的意义以及脉冲强磁场发展现状出发,对磁化测量、电输运测量及其信号处理等方面进行介绍,特别对脉冲强磁场下的磁化测量系统和电输运测量系统进行了较系统的设计。在材料研究方面,运用固相反应法制备了钒酸盐体系化合物,对其电阻随温度的变化进行了测量,同时利用脉冲强磁场实验平台对(La1-xBix)0.67Ca0.33MnO3磁化特性进行了相关研究。论文主要内容如下:
     第一、介绍了强磁场下科学研究的意义;同时介绍了脉冲强磁场工程技术及其发展的现状;最后简单概述脉冲强磁场装置的基本组成。
     第二、详细的叙述了脉冲强磁场下磁化测量系统和电输运测量系统的基本原理;研究了磁化测量过程中如何处理在信号传输过程中由于外界的干扰所产生的噪音信号。
     第三、阐述了陶瓷材料的显微结构特征,介绍了钒酸盐体系化合物的制备和烧结方法。
     第四、研究了钒酸盐体系化合物的晶体结构以及相应的性质,其中包括绝缘体向金属的转变,自旋引起的G-type向C-type的转变等等。
     第五、重点研究(La1-xBix)0.67Ca0.33MnO3化合物在脉冲强磁场下磁特性,随着掺杂浓度以及温度的不同,其饱和磁化强表现出不同的变化,同时观察到掺杂浓度越高所引起的磁滞现象越明显。
In this paper, the science and technology of the pulsed high magnetic field are introduced. Based on the pulsed high magnetic field and low temperature system, we desigened the magnetization measurement and electrical transport measurement holders. At the same time, a digital filter was developed to deal with this measuring noise problem..Using the designed system, the magnetization characteristics of (La1-xBix)0.67Ca0.33MnO3 was measured. The thesis mainly contains following contents:
     First of all, an overview of the science and technology of pulsed high magnetic field and the base structure of pulsed high magnetic field was described. Secondly, the basic theory on magnetization measurements and electrical transport measurements were systematic introduced. At the same time, because there are a lot of high-frequency noises mixed into the signals due to the outside interference in the process of signal transmission, a new digital filter was developed.
     Thirdly, the crystal structure of vanadium and the corresponding properties were studied, including the metal-insulator transition、spin induced G-type to C-type transition and so on.
     Finally, the magnetic properties of (La1-xBix)0.67Ca0.33MnO3 was measured, the saturated magnetization was changed with magnetic field in different doping level and different temperature, an obvious hysteresis phenomenon was observed in the manganites with higher doping level.
引文
[1] O. G. Shpyrko, E. D. Isaacs , J. M. Logan, Yejun Feng, G. Aeppli, R. Jaramillo, H. C. Kim, T. F. Rosenbaum, P. Zschack, M. Sprung, S. Narayanan & A. R. Sandy,Direct measurement of antiferromagnetic domain fluctuation Nature 447, 565-568(2007).
    [2] Superconductivity at 25K in hole-doped (La(1-x)Sr4(x)) OFeAs, Wen HH, Mu G, Fang L, et al. EPL82,17009(2008).
    [3] X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen and D. F. Fang,Superconductivity at 43 K in Samarium-arsenide Oxides SmFeAsO1?xFx ,Nature453,761-762(2008).
    [4] Zhi-An Ren, Jie Yang, Wei Lu, Wei Yi, Xiao-Li Shen, Zheng-Cai Li, Guang-Can Che, Xiao-Li Dong, Li-Ling Sun, Fang Zhou and Zhong-Xian Zhao Superconductivity in the iron-based F-doped layered quaternary compound Nd[O1 ? x Fx]FeAs,EPL82,57002(2008).
    [5] T. Nuytten,M. Hayne,V. V. Moshchalkov,M. Henini, Temperature dependence of the photoluminescence of self-assembled InAs/GaAs quantum dots in pulsed magnetic fields, PRB 77,115348(2008).
    [6] B.Bansal, et al,APL 93,02113(2008).
    [7] D. Saurel,et al, APL 92,171101(2008).
    [8] Stümer. H. L, Chang. A and Tsui. D. C et al., Fractional Quantization of the Hall Effect, Phys. Rev. Lett , 50, 1953-1956(1983).
    [9] D.R.Luhman, W.Pan, D.C. Tsui, L.N.Pfeiffer,etal Observation of a Fractional Quantum Hall State at =1/4 in a Wide GaAs Quantum Well , PRL 101,266804(2008).
    [10] F.F. Balakirev, J.B.Betts, A.Migliori, I.Tsukada, Yvichi Ando, and G.S.Boebinger Quantum Phase Transition in the Magnetic-Field-Induced Normal State of Optimum-Doped High-Tc Cuprate Superconductors at Low Temperatures ,PRL102,017004 (2009).
    [11] High Magnetic Fields: Science And Technology (vol.1), Singapore: Word ScientificPublishing Co.Pte.Ltd, 981-238-976-8(2003).
    [12] Jana. S, Mukherjee. R. K, Generation and measurement of pulsed high magnetic field, J.Magn.Magn.Mater. 21, 234-242(2000).
    [13] N. F. Mott, Metal-Insulator Transitions Taylor and Francis, London (1990).
    [14] M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions,Rev. Mod. Phys. 70, 1039(1998).
    [15] Physical Properties of High Temperature Superconductors edited by D. M. Ginzburg World Scientific, Singapore, Vol. 3(1992).
    [16] Colossal Magnetoresistive Oxides, Vol. 2 of Advances in Condensed Matter Science, edited by Y. Tokura Gordon and Breach, Amsterdam, (2000).
    [17] Y. Tokura and N. Nagaosa, Orbital Physics in Transition-Metal Oxides, Science 228, 462(2000).
    [18] J.-S. Zhou et al. Unusual Evolution of the Magnetic Interactions versus Structural Distortions in RMnO3 Perovskites, Phys.Rev.Lett.96, 247202(2006).
    [19] J.-S. Zhou et al., Universal Octahedral-Site Distortion in Orthorhombic Perovskite Oxides,Phys.Rev.Lett.94, 065501(2005)
    [20] G.R. Blake et al, Neutron diffraction, x-ray diffraction, and specific heat studies of orbital ordering in YVO3,Phys.Rev.B 65, 174112(2002).
    [21] G.R. Blake et al, Transition between Orbital Orderings in YVO3,Phys. Rev. Lett. 87, 245501(2001).
    [22] M N Baibich et al, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices,Phys. Rev. Lett. 61, 2472(1998).
    [23] N. F. Mott, Metal-Insulator Transitions (Taylor & Francis, London, 1990).
    [24] For a review, see M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions,Rev. Mod. Phys. 70, 1039 (1998).
    [25] For a review, see M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions,Rev. Mod. Phys. 70, 1039 (1998).
    [26] S. Miyasaka et al., Metal-Insulator Transition and Itinerant Antiferromagnetism in NiS2-xSex Pyrite J. Phys. Soc. Jpn. 69, 3166 (2000).
    [27] Y. Taguchi et al., Critical behavior in LaTiO3+δ/2 in the vicinity of antiferromagneticinstability,Phys. Rev. B 59, 7917 (1999).
    [28] R. Chitra and G. Kotliar, Dynamical Mean Field Theory of the Antiferromagnetic Metal to Antiferromagnetic Insulator Transition,Phys. Rev. Lett. 83, 2386 (1999).
    [29] S. Miyasaka, T. Okuda, and Y. Tokura, Critical Behavior of Metal-Insulator Transition in La1-xSrxVO3,Phys. Rev. Lett. 85, 5388(2000).
    [30] F. Inaba, T. Arima, T. Ishikawa, T. Katsufuji, and Y. Tokura, Change of electronic properties on the doping-induced insulator-metal transition in La1-xSrxVO3,Phys. Rev. B 52, R2221(1995) .
    [31] For a review, M. Imada, A. Fujimori, and Y.tokura, Metal-insulator transitions,Rev. Mod. Phys. 70, 1039(1998).
    [32] Y. Tokura and N. Nagaosa, Orbital Physics in Transition-Metal Oxides,Science 288, 462(2000).
    [33] For a review, see, for example, Y. Tokura, Rep. Prog. Phys. 69,797(2006).
    [34] G. Khaliullin, P. Horsch, and A. M. Oles, Spin Order due to Orbital Fluctuations: Cubic Vanadates,Phys. Rev. Lett. 86, 3879(2001).
    [35] Y. Motome et al, One-Dimensional Confinement and Enhanced Jahn-Teller Instability in LaVO3,Phys. Rev. Lett. 90, 146602(2003).
    [36] B. Keimer et al., Spin Dynamics and Orbital State in LaTiO3,Phys. Rev. Lett. 85, 3946(2000).
    [37] C. Ulrichetal, Magnetic Neutron Scattering Study of YVO3: Evidence for an Orbital Peierls State,Phys. Rev. Lett.91, 257202(2003).
    [38] S. Miyasaka et al, One-Dimensional Orbital Excitations in Vanadium Oxides,Phys. Rev. Lett. 94, 076405(2005).
    [39] S. Miyasaka et al, Raman study of spin and orbital order and excitations in perovskite-type RVO3 (R=La, Nd, and Y), Phys. Rev. B73, 224436(2006).
    [40] S. Miyasaka, Y. Okimoto, M. Iwama, and Y. Tokura, Spin-orbital phase diagram of perovskite-type RVO3 (R=rare-earth ion or Y),Phys. Rev. B 68, 100406(2003)
    [41] V.G. Zubkov et al, Sov. Phys. Solid State 15, 1079 ~1973
    [42] H. Kawano et al., Magnetic Behavior of a Mott-Insulator YVO3,J. Phys. Soc. Jpn. 63, 2857 ~1994.
    [43] C. Ulrich et al, cond-mat/0211589 ~unpublished
    [44] The anomalies in the specific heats below 20 K are due to the ordering of the R31 moments.
    [45] Zener C,Interaction between the d-shell in the transition metal:Ferromagnetic Compounds of manganese with pervoskite structure, Phys.Rev. 82, 403-409(1951).
    [46] R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, 2331(1993).
    [47] C.N.R. Rao, R. Mahesh, A.K. Raychaudhuri, R. Mahendiran, J. Phys. Chem. Solids 59,487 (1998).
    [48] A. Moreo, S. Yunoki, E. Dagotto, Science 283, 2034(1995).
    [49] P. Schiffer, A.P. Ramirez, W. Bao, S.-W. Cheong, Phys. Rev. Lett. 75,3336(1995).
    [50] H.Y. Hwang, S.-W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Phys. Rev. Lett. 75, 91(1995).
    [51] C. Zener, Phys. Rev. 82 ,403 (1951).
    [52] C.N.R. Rao, A.K. Cheetham, R. Manesh, Chem. Mater. 8, 2421(1996).
    [53] L. Righi, J. Gutierrez, J.M. Barandiaran, J. Phys. Condens. Matter 11, 2831(1999).
    [54] Z.C. Xia, Y. Wang, H.R. Zeng, Q.X. Zhou, M.T. Hu, B.Dong, G. Liu, X.N. Feng, L.Liu, S.L. Yuan, C.Q. Tang, Solid State Communication 137, 216-220(2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700