合成气制天然气镍基催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用金属镍作为甲烷化反应催化剂的活性中心,对多种改进的催化剂进行了研究。通过考察不同载体制备的催化剂性能,优选出了MgO-Al2O3复合载体。实验得出最优NiO负载量为15%;微量的La203、Ce02能改善催化剂的稳定性、抗积碳和抗烧结的性能。
     实验发现沉淀剂的种类对制备镍基催化剂的理化性质和反应性能具有显著影响。通过XRD、H2-TPR、BET、TPD、TPO等方法对不同沉淀剂的催化剂进行表征,结果表明:采用尿素沉淀剂,颗粒的比表面达到223.55m2·g-1,具有较稳定的催化活性;氨水沉淀制备的催化剂颗粒粒径小,与载体结合力强,但稳定性不如碳酸铵沉淀。这主要是沉淀剂影响了催化剂活性组分晶相的形成、表面镍的分散程度和对H2的吸附能力。
     添加第二活性组分后,催化剂的性能会发生变化。添加助剂Cu会减小Ni的粒径,提高分散度,Ni-Cu之间的协同作用会减少高温下活性组分的流失。添加助剂Mn会降低催化剂的还原温度,这是由于Mn在还原过程中发生价态变化,并通过电子效应影响NiO的性能,在300~400℃时Ni-Mn催化剂活性明显高于Ni催化剂。
In this work high performance methanation catalysts were prepared with Ni as an activity center. Compared with kinds of carriers on the performance of methanation, MgO improved Al2O3 was chose as the carrier, the optimum nickel loading of the catalyst is about 15%. Additional La2O3、CeO2 in a trace of amount could improve the properties of stability, reduce carbon deposition and prevent from sintering.
     Different kinds of precipitants have a great impact on the catalysts'performance of methanation. The characterization of the catalysts were determined by XRD、H2-TPR、BET、TPO、TPD. Based on the results, the surface areas of the catalysts by urea preparation reached up to 223.55 m2·g-1, which suggested an stabilized catalytic activity; the catalyst prepared by ammonia precipitant possessed smaller partial diameter, combined more stable with carrier, but the stability for methane was lower than by ammonium carbonate precipitant. It was indicated that the precipitants mainly affected the crystal-phase formation process of the catalyst active component, the dispersion of active Ni on the catalyst surface and hydrogen adsorption capacity.
     The properties of catalyst changed while adding another metal components. Adding Cu will lead to the decrease of crystal mean particle size and the increase of distribution. Ni-Cu interaction could reduce the loss of active components especially at high temperature. The promoter Mn can reduce the reduction temperature. The activity is obviously higher than Ni-based catalysts at 300-400℃due to the electron effect resulted from the different oxidation-reduction potential of Mn.
引文
[1]朱学谦.天然气在我国能源结构中的战略意义[J_].中国科学院院刊,2009,(1):22-27
    [2]步学朋,王鹏,忻仕河.煤炭气化多联产生产代用天然气分析[J].煤化工,2007,(6):4-7
    [3]鲁芬,周博文.整体煤气化联合循环发电技术探讨[J].中国电力教育,2009,133(6):245-246
    [4]李晓梅.利用煤制取代用天然气[J].炼焦与制气,2005,95:35-40
    [5]于广锁,龚欣,刘海峰.多喷嘴对置式水煤浆气化技术[J].现代化工,2004,24(10):46-49
    [6]杨景标.催化剂添加量对褐煤焦水蒸气气化反应性的影响[J].燃料化学学报,2008,36(1): 15-22
    [7]付鹏,向军,张安超,徐朝芬,胡松.生物质空气——水蒸气催化气化制氢技术[J].化工时刊,2006,(11):55-60
    [8]Energy GreatPoint. Commercializing Hydro-Methanation technology to produce pipeline quality natural gas from low cost coal, petroleum coke and biomass[EB]. http://www. great-pointenergy.com/, 2009-03
    [9]路兵.煤加氢生产代用天然气技术[J].煤炭转化,1998,21(1):25-29
    [10]伏义路,李锡青,徐小云.镍基催化剂上变换一甲烷化反应机理的研究[J].催化学报,1985,6(4):306-311
    [11]范崇正,唐曦白.活泼表面碳的存在寿命及CO甲烷化反应机理的探讨[J].催化学报,1990,(1):51-56
    [12]陈刚,朱卓群.J105Ni催化剂上CO歧化反应的过渡应答研究[J].催化学报,1990,(1):1-9
    [13]Alberton Andre L, Souza Mariana M. V. M, Schmal Martin. Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts[J]. Catalysis Today,2007, 123(1-4):257-264
    [14]Kopyscinski Jan, Schildhauer Tilman J, Vogel Fr6d6ric, Biollaz Serge M. A, Wokaun Alexander. Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation[J]. Journal of Catalysis, 2010,271(2):262-279
    [15]Zhang J. Q, Young D. J. Coking and dusting of Fe-Ni alloys in CO-H2-H2O gas mixtures[J]. Oxidation of Metals,2008,70(3-4):189-211
    [16]Jozwiak W. K, Maniecki T. P. The activity of metal (Co, Ni, Ru, Pd) catalysts in the methanation of carbon dioxide[C].4th Congress on Chemical Technology,2003,714-716
    [17]Eckle S, Denkwitz Y. Behm R. J. Activity, selectivity, and adsorbed reaction intermediates/reaction side products in the selective methanation of CO in reformate gases on supported Ru catalysts[J]. Journal of Catalysis,2010,269(2):255-268
    [18]Claridge John B, Green Malcolm L. H, Tsang Shik Chi, York Andrew P. E, Ashcroft Alexander T, Battle Peter D. A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas[J]. Catalysis Letters,1993,22(4):299-305
    [19]Loviat F, Czekaj I, Wambach J, Wokaun A. Nickel deposition on y-Al2O3 model catalysts: An experimental and theoretical investigation[J]. Surface Science,2009,603(14): 2210-2217
    [20]Struis R. P. W. J, Schildhauer T. J, Czekaj I, Janousch M, Biollaz S. M. A, Ludwig C. Sulphur poisoning of Ni catalysts in the SNG production from biomass:A TPO/XPS/XAS study[J]. Applied Catalysis A:General,2009,362(1-2):121-128
    [21]严前古,罗春容,翁维正,杨乐夫.甲烷在Ni/TiO2催化剂表面的活化[J].物理化学报,2001,17(8):733-738
    [22]Eric D. Rodeghiero, Jungi Chisaki P, Giannelis Emmanuel. Microstructural control of Ni/Al2O3 and Ni/NiAlO4 composites from layered double hydroxides[J]. Chem. Mater, 1997,9(2):478-484
    [23]Gunji Isao, Teraishi Kazuo, Endou Akira, Miura Ryuji, Yin Xilin, Yamauchi Ryo, Kubo Momoji, Chatterjee Abhijit, Miyamoto Akira. Molecular dynamics study on the stability of y-Al2O3 surfaces[J]. Applied Surface Science,1998,130-132(2):549-554
    [24]Pan Yun-xiang, Liu Chang-jun. Ge Qingfeng. Effect of surface hydroxyls on selective CO2 hydrogenation over Ni4/y-Al2O3:A density functional theory study [J]. Journal of Catalysis,2010,272(2):227-234
    [25]Hou P.Y, Paulikas A.P, Veal B.W. Growth strains and stress relaxation in alumina scales during high temperature oxidation[J]. Materials Science Forum,2004,461-464:671-680
    [26]Chatterjee M, Enkhtuvshin D, Siladitya B, Ganguli D. Hollow alumina microspheres from boehmite sols[J]. Journal of Materials Science,1998,33(20):4937-4942
    [27]QIU Yejun, CHEN Jixiang, ZHANG Jiyan. Effects of MgO promoter on properties of Ni/Al2O3 catalysts for partial oxidation of methane to syngas [J]. Frontiers of Chemical Engineering in China,2007,1(2):450-456
    [28]Zhao long Zhang, Xenphon E.Verykios, M.MacDonald Susan. Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts[J]. J.Phys.Chem,1996,100(2):744-754
    [29]程伟,李玉敏,王日杰,张继炎.Mo-Ni/Al2O3催化剂的TPR特性与加氢脱硫性能[J].化学工业与工程,1998,(4):30-35
    [30]Nichio N, Casella M. L, Santori G. F, Ponzi E. N, Ferretti O. A. Stability promotion of Ni/α-Al2O3 catalysts by tin added via surface organometallic chemistry on metals application in methane reforming processes[J]. Workshop on catalytic technologies for environmentally benign processes,2000,62(2-3):231-240
    [31]Xu Jiahui, Yeung Connie M. Y, Ni Jun, Meunier Frederic, Acerbi Nadia, Fowles Martin, Tsang Shik Chi. Methane steam reforming for hydrogen production using low water-ratios without carbon formation over ceria coated Ni catalysts[J]. Applied Catalysis A: General,2008,345(2):119-127
    [32]Ramaroson E, Tempere J. F, Guilleux M. F, Vergand F, Roulet H, Dufour G. Spectroscopic characterization and reactivity study of ceria-supported nickel catalysts[J]. Journal of the Chemical Society, Faraday Transactions,1992,88(8): 1211-1218
    [33]Sehested-Jens. Four challenges for nickel steam-reforming catalysts[J]. Catalysis Today, 2006,111(1-2):103-110
    [34]陈吉祥.镍基气凝胶催化CH4-CO2重整制取合成气反应的研究Ⅲ.影响催化剂积碳性能因素的探讨[J].燃料化学学报,2002,30(5):65-69
    [35]Rasmussen Frank B, Sehested Jens, Teunissen Herman T, Molenbroek Alfons M, Clausen Bjerne S. Sintering of Ni/Al2O3 catalysts studied by anomalous small angle X-ray scattering[J]. Applied Catalysis A:General,2004,267(1-2):165-173
    [36]Song Quansheng, Tang Zhiyuan, Guo Hetong, Chan S. L. I. Structural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH values[J]. Journal of Power Sources,2002,112(2):428-434
    [37]郑维庆,陈燕馨,徐恒泳,李文钊.氨分解反应纳米镍基催化剂的研究[J].天然气化工:C1化学与化工,2007,32(6):31-36
    [38]Soler-Illia Galo J. de A. A, Jobbagy Matias, Regazzoni Alberto E, Blesa Miguel A. Synthesis of nickel hydroxide by homogeneous alkalinization precipitation mechanism[J]. Chemistry of Materials,1999,11(11):3140-3146
    [39]Yuanyuan Luo. One-step synthesis of spherical a-Ni(OH)2 nanoarchitectures [J]. Nanotechnology,2006,17(16):4278-4783
    [40]Ni Xiaomin, Zhao Qingbiao, Zhang Yongfeng, Song Jimei, Zheng Huagui, Yang Kai. Large scale synthesis and electrochemical characterization of hierarchical β-Ni(OH)2 flowers[J]. Solid State Sciences,2006,8(11):1312-1317
    [41]Xia Bin, Lenggoro I. Wuled, Okuyama Kikuo. Nanoparticle separation in salted droplet microreactors[J]. Chemistry of Materials,2002,14(6):2623-2627
    [42]徐琼.纳米W03·NiO·0.33H20光催化剂的结构与性能[J].化工进展,2010,29(2):35-42
    [43]陈吉祥.镍基气凝胶催化CH4-C02重整制取合成气反应的研究Ⅱ.制备方法对Ni/CeO2-Al2O3催化剂反应性能的影响[J].燃料化学学报,20.02,30(1):45-46
    [44]周树田.微乳法制备的负载型铑催化剂粒子大小对CO加氢反应性能的影响[J].催化学报,2006,27(6):一474-478
    [45]杨书廷.PEMFC用稀土系La-Ni-Pt纳米合金催化剂的制备与性质[J].稀土,2006,27(6):41-43
    [46]邢涛.Cr/y-Al2O3对乙酸乙酯的催化燃烧[J].环境化学,2009,28(6):64-70
    [47]姜瑞霞,谢在库.镁铝尖晶石的制备及在催化反应中的应用[J].工业催化,2003,11(1):47-51
    [48]陈铜.MgO和CaO助剂在Fe-K催化剂中的作用[J].催化学报,2008,29(5):447-452
    [49]王玉和.NiO-MgO固溶体的形成对Ni/MgO-AN催化CO2重整CH4反应活性和稳定性的影响[J].催化学报,2005,26(12):1117-1121
    [50]宫立倩.焙烧温度对甲烷催化部分氧化Ni/MgO-Al2O3催化剂结构和性能的影响[J].燃料化学学报,2005,33(2):224-228
    [51]陈吉祥.La203和Ce02对CH4-C02重整Ni/MgO催化剂结构和性能的影响[J].物理化学学报,2004,20(1):76-80
    [52]Wang M. W, Luo L. T, Li F. Y, Wang J. J. Effect of La2O3 on methanation of CO and CO2 over Ni-Mo/y-Al2O3 catalyst [J]. Journal of Rare Earths,2000,18(1):22-26
    [53]Li Guo-jun, Huang Xiao-xian, Guo Jing-kun. Fabrication and mechanical properties of Al2O3-Ni composite from two different powder mixtures[J]. Materials Science and Engineering A,2003,352(1-2):23-28
    [54]李春义.Ni/Al2O3催化剂上CH4部分氧化制合成气反应积碳的原因[J].催化学报,2001,22(4):377-382
    [55]邱业君.Ce02、CaO助剂对甲烷部分氧化制合成气Ni/MgO-Al2O3催化剂结构和性能的影响[J].燃料化学学报,2007,35(1):76-79
    [56]Zhao L. L, Liew K. Y. Li J. L. Effect of La2O3 on a Precipitated Iron Catalyst for Fischer-Tropsch Synthesis[J]. Chinese Journal of Catalysis,2009,30(7):637-642
    [57]Wang L. H, Zhang S. X. LiuY. A. Reverse water gas shift reaction over co-precipitated Ni-CeO2 catalysts[J]. Journal of Rare Earths,2008,26(1):66-70
    [58]Woods Matthew P, Gawade Preshit, Tan Bing, Ozkan Umit S. Preferential oxidation of carbon monoxide on Co/CeO2 nanoparticles[J]. Applied Catalysis B:Environmental, 2010,352(03):4104-4110
    [59]Levan T., Che M., Tatibouet J. M.. Kermarec M. Infrared Study of the Formation and Stability of La2O2CO3 During the Oxidative Coupling of Methane on La2O3[J]. Journal of Catalysis,1993,142(1):18-26
    [60]Paulenova A, Creager S. E, Navratil J. D, Wei Y. Redox potentials and kinetics of the Ce3+/Ce4+redox reaction and solubility of cerium sulfates in sulfuric acid solutions [J]. Journal of Power Sources,2002,109(2):431-438
    [61]Frusteri F, Freni S, Chiodo V, Donato S, Bonura G, Cavallaro S. Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts[J]. International Journal of Hydrogen Energy,2006,31(15):2193-2199
    [62]吕景煜,董舒雯.沉淀条件对合成气镍基催化剂活性的影响[J].化学工程师,2008,22(2): 15-17
    [63]陈吉祥,王日杰.不同镍盐前驱物对CH4-CO2重整Ni/y-Al2O3催化剂性能的影响[J].燃料化学学报,2001,29(6):494-498
    [64]Molina R, Poncelet G. a-Alumina-Supported Nickel Catalysts Prepared from Nickel Acetylacetonate:A TPR Study[J]. Journal of Catalysis,1998,173(2):257-267
    [65]Wang Jun, Dong Lin, Hu Yuhai, Zheng Guishan, Hu Zheng, Chen Yi. Dispersion of NiO Supported on y-Al2O3 and TiO2/y-Al2O3 Supports[J]. Journal of Solid State Chemistry, 2001,157(2):274-282
    [66]Eβann R. Hydrogen bonding in hexamminenickel(II) salts [Ni(NH3)6]X2(X-= Cl-, Br-, I-, NO-2, NO-3, BF-4, ClO-4) acceptor strength of anions[J]. Journal of Molecular Structure, 1995,351:87-90
    [67]任世彪,邱金恒,王春燕,许波连,范以宁,陈懿.镍盐前体对Ni/y-Al2O3催化剂催化加氢活性的影响[J].催化学报,2007,28(7):651-656
    [68]Qihai Liu, Xinfa Dong, Xinman Mo. Selective catalytic methanation of CO in hydrogen-rich gases over Ni/ZrO2 catalyst[J]. Journal of Natural Gas Chemistry,2008, 1(7):269-270
    [69]王哲,赵曦,万海勤,朱捷,刘斌,董林.焙烧温度对CuO在γ-Al2O3载体上的分散和催化CO完全氧化性能的影响[J].无机材料学报,2008,23(3):454-458
    [70]汪俊锋,常杰,阴秀丽,吕鹏梅.尿素水解均匀沉淀法制Cu/ZnO/Al2O3甲醇合成催化剂[J].燃料化学学报,2004,32(3):378-380
    [71]邓祥义,吴高安.氨水沉淀法制备纳米NiO[J].化学研究与应用,2002,14(5):577-579
    [72]Cheng D G, Zhu X L, Ben Y H. Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma[J]. Catal.Today,2006,115(1-4):205-210
    [73]陈吉祥,王日杰.镍基气凝胶催化CH4-C02重整制取合成气反应的研究Ⅲ.影响催化剂积碳性能因素的探讨[J].燃料化学学报,2002,30(5):448-453
    [74]Zhao Y. L, Wang J. M, Chen H, Pan T, Zhang J. Q, Cao C. N. Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea[J]-. International Journal of Hydrogen Energy,2004,29(8):889-896
    [75]Deabate S, Henn F. Structural modifications and electrochemical behaviour of the β(Ⅱ)-Ni(OH)2/β(Ⅲ)-NiOOH redox couple upon galvanostatic charging/discharging cycling[J]. Electrochimica Acta,2005,50(14):2823-2835
    [76]Zhang Jian, Xu Hengyong, Jin Xianglan, Ge Qingjie, Li Wenzhao. Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition[J]. Applied Catalysis A:General,2005,290(1-2):87-96
    [77]Kustov A.L, Frey A.M, Larsen K.E, Johannessen T, N(?)rskov J.K, Christensen C.H. CO methanation over supported bimetallic Ni-Fe catalysts:From computational studies towards catalyst optimization[J]. Applied Catalysis A:General,2007,320:98-104
    [78]Zhao Lihong, Fang Kegong, Jiang Dong, Li Debao, Sun Yuhan. Sol-gel derived Ni-Mo bimetallic carbide catalysts and their performance for CO hydrogenation[J]. CatalysisToday,2010,158(3-4):490-495
    [79]罗永春,焦高峰,阎汝煦,王大辉,康龙,陈剑虹.快速凝固非化学计量比储氢合金LaNi4.75Mn1.25晶体结构和电化学性能[J].稀有金属材料与工程,2005,34(3):447-451
    [80]王晓蕾,潘相敏,林瑞,寇素原,邹卫兵,马建新.Cu-Ni/γ-Al2O3双功能催化剂上二甲醚水蒸气重整制氢[J].物理化学学报,1296,2010(5):1296-1304

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700