黄河口潮间带沉积物水及溶质优先迁移的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
优先流是土体在整个入流边界上接受补给,但补给只通过少部分土体的快速运移。如今,近海水域的污染问题越来越严重,从陆源带来的大量污染物质在波浪引起的水体运动和渗流作用下,在潮滩沉积物中发生着入渗、迁移和转化,而生物洞穴引发的优先流则加快了这些物质的迁移转化,加大了近海水域的污染。因此研究生物洞穴造成的优先流路径对污染物质在沉积物中的迁移转化规律具有重要的理论意义和实际应用价值。
     本文首先通过均质土柱与人工模拟大孔隙土柱的对比试验来揭示土壤优先水流的特征并初步研究非吸附性溶质优先迁移的运动,进一步研究土壤初始水分含量、粘粒含量、溶质施加方式、进水浓度、不同价态阳离子等对溶质优先迁移过程的影响,最后通过二维土槽试验来研究溶质优先迁移的时空分布规律。
     通过对比均质土柱和人工模拟大孔隙土柱的硝态氮穿透曲线,较早的初始穿透、峰值出现时间早和较高的回收率都说明人工模拟大孔隙土柱中存在优先水流。土壤优先水流的特征表现为能够快速穿透土体,其穿透曲线表现出不对称性、拖尾和出流速率具有较大的波动性。
     干土条件使得大孔隙对水流和溶质运移的贡献更大,减少了水流与基质间的相互作用,溶质优先运移的特征更明显;粘粒含量对溶质优先运移的影响也很大,随着粘粒含量的降低,初始穿透时间变早,出现峰值的时间也越早,峰值越大,优先流的各项特征越明显;在间歇式溶质施加方式的间隙阶段,在低渗透性介质中的溶质可以向优先流通道的边界扩散,在下一循环开始的时候可以恢复成向下渗透的水流的一部分,从而相比连续式溶质施加方式,溶质的回收率得到提高;进水浓度增大,溶质运移过程中的溶质势增大,导致出流变快,总时间变短,同时加快了溶质在土壤中的运移速度,从而使出流时间提前,达到平衡和完成运移的时间也大大缩短;硝态氮在供试土样中的迁移受不同价态阳离子的影响极小。
     利用二维土槽进行溶质优先迁移试验,研究了溶质优先迁移过程中非吸附性溶质(NO3-N)和吸附性溶质(H2PO4-P)的时空分布规律。NO3-N在沉积物中迁移时,表层硝态氮浓度随时间而降低,表明水及溶质随时间向下迁移了,硝态氮的浓度分布随时间变得越来越均匀,随着深度的增加在横剖面上的分布越来越不均匀;H2P04-在土样中运移时被土颗粒吸附,因此表层总磷浓度较高,到开挖土壤剖面的第二层,浓度明显降低,以下各层浓度都较低。与硝态氮的运移规律相似,总磷的浓度分布也是随着时间的推移越来越均匀,随深度越来越不均匀。由二维图像可以更直观地看出硝态氮和总磷在土槽中的浓度分布。
Preferential flow is the rapid migration that the inflow boundary in the soil to accept the supplies, but the supplies only by a small part of the soil. Nowadays, the pollution problems of the offshore waters become more and more serious, the serious pollution caused by land-based sources of material is occuring infiltration, migration and transformation under the wave induced motion of water and seepage in intertidal sediments, and preferential flow caused by biological caves accelerates migration and transformation of these substances, increases pollution of coastal waters. So the study on preferential flow path caused by the biological cave has important theoretical and practical value for the transformation and migration law of contaminants in sediments.
     Firstly, we revealled the characteristics of the preferential flow in the soil and took preliminary study on the preferential transport of non-adsorption solute through homogeneous soil columns and columns with artificial macropores comparative test, and further studied the effects of the initial soil water content, clay content, solute application method, influent concentration, different valence cations on the solute preferential transport process, and finally reserched the spatial and temporal distribution law of solute preferential transport through the two-dimensional soil bin tests.
     By comparing nitrate breakthrough curves of the homogeneous soil column and soil column with artificial macropore, earlier initial penetration time, earlier peak times and higher recovery rates show that preferential flow presents in soil column with artificial macropores. Soil preferential flow is characterized by penetrating the soil quickly, the breakthrough curves show asymmetry, tailing and the flow rate has large fluctuation.
     Dry soil conditions make more contributions of large pores to water flow and solute transport, and reduce the interactions between the flow and the matrix, and make the characteristics of solute preferential transport clearer; clay content also has great effects on the transport of water and solute. With the decrease of clay content, the initial penetration time becomes earlier, as well as the time when the solute concentration reach the peak value. Moreover, the peak value gets bigger.the more obvious of the characteristics of preferential flow; in the gap phase of the intermittent solute application method, solute in low-permeability medium can diffuse to preferential flow channel boundary, when the next cycle starts, it can be resumed a part of the downward infiltration of water, then gets a higher solute recovery rates compared to the continuous solute application method; the bigger the influent concentration, the bigger the solute potential of solute transport process, resulting in faster flow, shorter total time, while speeding up the solute transport rate in the soil, Thus advances the effluent time, reduces the time to balance and complete the migration; the migration of nitrate in the soil samples is little affected by the cations of different valence.
     Using two-dimensional soil tank to study solute preferential transport, we investigated the temporal and spatial distribution law of the preferential migration of the non-adsorption solute (NO3-N) and adsorption solute (H2PO4-P).When NO3-N transported in the sediment, surface nitrate concentrations decreased with time, which indicated that water and solutes moved downward over time, and nitrate concentration become more uniform with time, andwith the depth increase the distribution is more uneven in the cross section; H2PO4- was adsorpted by soil particles when migrated in soil samples, so surface total phosphorus concentration was higher, when to the second layer of the soil profile, total phosphorus concentrations were lower, and so do the others. Be similar to the Nitrate transport law, total phosphorus concentration is more uniform over time, and more uneven with depth. By the two-dimensional image we can seen nitrate and total phosphorus concentration distribution in the soil tank more directly.
引文
[1]李伟莉,金昌杰,王安志,等.土壤大孔隙流研究进展.应用生态学报,2007,18(4):888-894.
    [2]White R E. Transport of chloride and non-diffusible solutes in soils. Irrigation Science,1985, 6:3-10.
    [3]Isensee A R, Helling C S, Gish T J, et al. Grounwater residues of atrazine, alachlor and cyanazine under no-tillage practices. Chemosphere,1988,17:165-174.
    [4]Beck A J, Lam V, Henderson D E, et al. Movement of water and the herbicides atrazine and iso proturon through a large structured clay soil core. J Contamin Hydrol,1995,19:237-260.
    [5]Li Y M and Masound G. Preferential transport of solute through soil columns containing constructed macropores. Soil Sci. Soc. Am. J.,1997,61:1308-1317.
    [6]Kladivko E J, Van Scoyoc G E, Monke E J, et al. Pesticides and nutrient movement into tile drain on a silt loam soil in Indiana. J.Environ Qual.,1991,20:264-270.
    [7]Prieksat M A, Kaspar T C, Ankeny M D. Positional and temporal changes in ponded infiltration in a corn field. Soil Sci. Soc.Am J,1994,58:181-184.
    [8]Beven K, Germann P. Macropores and water flow in soils. Water Resour. Res.,1982,18: 1311-1325.
    [9]Bouma J. Influence of soil macroporosity in environmental quality. Advanced in Agronomy, 1991,46:137.
    [10]Brusseau M 1, Rao P S C. Modeling solute transport in structured soils. Geoderma,1990,46: 169-192.
    [11]Czapar G F, Horton R, Fawcett R S. Herbicide and tracer movement in soil columns containing an artificial macropores.1992.
    [12]Southwick LM, W illis GH, Johnson DC,et al. Leaching ofnitrate, atrazine and metribuzin from sugarcane in Southern Louisiana. Journal of Environmental Quality,1995,24:684-690.
    [13]Kamau PA, EllsworthTR, BoastCW,et al. Tillage and cropping effects on preferential flow and solute transport.SoilScience,1996,161(9):549-561.
    [14]BodhinayakeW, Si BC, NoborioK. Determination of hydraulic properties in sloping landscapes from tension and double-ring infiltrometers. SoilScience Society of America Journal,2004,3:964-970.
    [15]W illiamsAG, Dowd JF,et al. Preferential flow variability in a well-structured soi.lSoil Science Society of America Journal,2003,67:1272-1281.
    [16]Dekker L W, Ritsema C J. Uneven moisture patterns in water repellent soils. Geoderma,1996, 70:87-99.
    [17]Flury M et al. Pesticide transport through unsaturated field soils:Preferential flow (a research report).1994.
    [18]Bouma J, Dekker L W. A case study on infiltration into dry clay soil. I Morphological observations. Geoderma,1978,20:27-40.
    [19]Edwards W M, Shipitalo M J, Dick W A, Owens L B. Rainfall intensity affects transport of water and chemicals through macropores in notill soil. Soil Sci Soc. Am. J,1992,56: 52-58.
    [20]Gang-Ling Ren., Izadi B, King B, Dowding E. Preferential transport of bromide in undisturbed cores under different irrigation methods. Soil Sci,1996,161(4):214-225.
    [21]Baker R S, Hillel D. Laboratory tests of a theory of fingering during infiltration into layered soils. Soil Sci.Soc. Am. J,1990,54:20-30.
    [22]Edwards W M, Shipitalo M J, Owens L B, Dick WA. Factors affecting preferential flow of water and atrazine through earthworm burrows under continuous notill corn. J. Environ. Qual,1993,22:453-457.
    [23]Essington M E, Tyler D D, Witson G V. Fluometuron behavior in long term tillage plots. Soil Sci,1995,160(6):405-414.
    [24]Piyush Singh, Kan war R S. Preferential solute transport through macropores in large undisturbed saturated soil columns [J]. J Environ Qual,1991,20:295-300.
    [25]Li Yimin, Masoud Ghodrati. Preferential transport of solute through soil columns containing constructed macropores [J]. Soil Sci Soc Am J,1997,61:1308-1317.
    [26]Shipitalo M J, Edwards W M, Dick W A, et al. Initial storm effects on macropore transport of surface-applied chemicals in notilled soil[J]. Soil Sci Soc Am J,1990,54:1530-1536.
    [27]Shipitalo M J, Edwards W M. Effects of initial water content on macropore/matrix flow and transport of surface-applied chemical [J]. J Environ Qual,1996,25:662-670.
    [28]Leaney F W, Smettem K R J, Chittleborough D J. Estimating the contribution of preferential flow to subsurface runoff from a hillslope using deuterium and chloride [J]. J Hydrol,1993, 147:83-103.
    [29]Espeby, Bengt. Tracing the origin of natural waters in a glacial till slope during snowmelt [J]. J Hydrol,1990,118:107-127.
    [30]Van Genuchten M T, Wierenga P J. Mass transfer studies in sorbing porous media, Ⅰ. Analytical solutions [J]. Soil Sci Soc Am J,1976,40:473-480.
    [31]Van Genuchten M T, Wierenga P J. Mass transfer studies in sorbing porous media, Ⅱ. Experimental evaluation with tritium (3H2O) [J]. Soil Sci Soc Am J,1977,41:272-278.
    [32]Gwo J P, Jardine P M, Wilson G V, et al. A multiple-pore-region conceptto modeling mass transfer in subsurface media [J]. J Hydrol,1995,164:217-237.
    [33]Durner W, Fluhler H. Multi-domain model for pore-size dependent transport of solutes in soils [J]. Geoderma,1996,70:281-297.
    [34]Jurg Hosang. Modelling preferential flow of water in soils—a two-phase approach for field conditions [J]. Geoderma,1993,58:149-163.
    [35]Montas H J, Eigel J D, Engel B A, et al. Deterministic modelling of solute transport in soils with preferential flow pathways, Part 1.model development [J]. American Society of Agricultural Engineers,1997,40(5):1245-1256.
    [36]唐立松,张佳宝,程心俊等.GIS与土壤溶质运移模型结合研究进展[J].干旱区地理,2002,25(2):176-182.
    [37]成国栋,薛春亭.黄河三角洲沉积地质学.北京:地质出版社,1997.
    [38]Li G X,Wei H L.Sedimentation in the Yellow River delta,part Ⅱ suspended sediment dispersal and deposition on the subaqueous delta.Marine Geology,1998,149:113-131.
    [39]赵东波.黄河三角洲刁口叶瓣海岸的侵蚀研究.青岛:中国海洋大学,2004.
    [40]杨作升,王涛.埕岛油田勘探开发海洋环境.青岛海洋大学出版社.1993:92-101,527-540.
    [41]姜在兴,王留奇等,1994.黄河三角洲现代沉积研究,石油大学出版社,26-35.
    [42]成国栋等.黄河三角洲现代沉积作用及模式.海洋地质研究所,1991,19-31.
    [43]李广雪,成国栋,李绍全.现代黄河三角洲海岸动态演化规律.海洋地质与第四纪地质,1987,7(增刊):81-88.
    [44]冯秀丽,林霖,庄振业,等.现代黄河水下三角洲全新世以来土层岩土工程参数与沉积环境之间关系.海岸工程,1999,18(4):1-7.
    [45]臧运启等.黄河三角洲近岸泥砂.北京:海洋出版社,1996,10-85.
    [46]何起祥,李绍全,周永青,等.中国海洋沉积地质学.北京:海洋出版社,2006:240-245.
    [47]胡再强,沈珠江,谢定义.结构性黄土的变形特性.岩石力学与工程学报,2004,23(24):4142-4146.
    [48]成国栋,薛春亭.黄河三角洲沉积地质学[M].北京:地质出版社,1997.
    [49]杨作升,王涛等,1993.埕岛油田勘探开发海洋环境,青岛:青岛海洋大学出版社,527-540.
    [50]Watson K W, Luxmoore R J.Estimating macroporosity in a forest watershed by use of tension inflitrometer.Soil Sci Soc Am J,1986,50:578-582.
    [51]倪余文,区自清.土壤优先水流及污染物优先迁移的研究进展.土壤与环境,2000,9(1):60-63.
    [52]倪余文,区自清,应佩峰.土壤优先水流及溶质优先迁移的研究.应用生态学报,2001,12(1):103-107.
    [53]赵景波.黄土的本质与形成模式.沉积学报,2003,21(2):198-204.
    [54]国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法.北京:中国环境科学出版社,2002:243-248.
    [55]Singh P and Kanwar RS.1991.Preferential solute transport through macropores in large undisturbed saturated soil column.J Environ Qual,20:295-300.
    [56]区自清,贾良清,金海燕,等.大孔隙和优先水流及其对污染物在土壤中迁移行为的影响.土壤学报,1999,36(3):341-347.
    [57]Quisenberry V L, Phillips R E, Zeleznik J M. Spatial distribution of water and chloride macropore flow in a well2structured soil. Soil Sci Soc. Am. J,1994,58:1294-1300.
    [58]Wildenschild D, Jensen K H, Villholth K, and Illangasekare TH. A laboratory analysis of the effect of macropores on solute transport. Ground Water.1994,32:381-389.
    [59]De Rooij G H, and Stagnitti F. Spatial variability of solute leaching:Experimental validation of a quantitative parameterization. Soil Sci. Soc. Am. J,2000,64:499-504.
    [60]牛健植,余新晓,张志强.优先流研究现状及发展趋势.生态学报,2006,26(1):231-243.
    [61]Gang-Ling Ren, Iadi B, King B, Dowding E. Preferential transport of bromide in undisturbed cores under different irrigation methods. Soil Sci,1996,161(4):214-225.
    [62]Edward W M, Shipitalo M J, Dick W A, and Owens L B. Rainfall intensity affects transport of water and chemicals through macropores in no-till soil. Soil Sci.Soc.Am,1992,56:52-58.
    [63]Burcar S, Miller W W, Tyler S W, and Johnson D W. Seasonal preferential flow in two Sierra Nevada soils under forested and meadow cover. Soil Sci. Soc. Am.,1994,58:1555-1561.
    [64]Shipitalo M J, Edwards W M, Dick W A, and Owens L B. Initial storm effects on macropore transport of surface-applied chemicals in no-till soil. Soil Sci. Soc. Am,1990,54:1530-1536.
    [65]Seyfried M S, Rao P S C. Solute transport in undisturbed columns of an aggregated tropical soil:Preferential flow effects [J]. Soil Sci. Soc. Am,1987,51:1434-1444.
    [66]Kluitenberg G J, Horton R. Effect of solute application method on preferential transport of solute in soil. Geoderma,46:283-297.
    [67]SHIPITALO M J, EDWARDS W M. Effects of initial water content on macropore/matrix flow and transport of surface-applied chemicals. Environ. Qual,1996,25:662-670.
    [68]BOUMA J, ANDERSON J K. Water and chloride movement through soil columns simulating pedal soil.Soil Sci Soc Am J,1977,41:766-770.
    [69]国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法.北京:中国环境科学出版社,2002:243-248;266-268.
    [70]Ritsema Coen J, Nieber John L, Dekker Louis W, et al. Stable or unstable wetting front in water repellent soils-effect of antecedent soil moisture content. Soil&Tillage Research,1998, 47:111-123.
    [71]李韵珠,李保国.土壤溶质运移.北京:科学出版社,1998:113-114.
    [72]郝振纯,冯杰.水及溶质在大孔隙土壤中运移的实验研究进展.灌溉排水,2002,21(1):67-71.
    [73]Ren G L, Izadi B, King B, et al. Preferential transport of bromide in undisturbed cores under different irrigation methods. Soil Sci,1996,161(4):214-225.
    [74]Kirkby C A, Smythe L J, Cox J W, Chittleborough D J. Phosphorus movement down a toppsequence from a landscape with texture contrast soils. Aust. J. Soil Res.,1997, 35:399-417.
    [75]吴华山,陈效民,沃飞,等.太湖地区水稻土的硝态氮穿透曲线及影响因素.土壤通报,2006,37(6):1129-1133.
    [76]陈效民,邓建才,柯用春,等.硝态氮垂直运移过程中的影响因素研究.水土保持学报,2003,17(2):12-15.
    [77]曹红霞,康绍忠.溶质施加方式对土壤溶质迁移的影响.灌溉排水学报,2003,22(2):5-8.
    [78]Cote C.M, Bristow K.L, Ross P.J.Increasing the efficiency of solute leaching:impacts of flow interruption with drainage of the "preferential flow paths". Journal of Contaminant Hydrology,2000,43:191-209.
    [79]Dahiya I.S., Malik R.S., Maharaj S. Field studies on leaching behaviour of a highly saline-sodic soil under two modes of water application in the presence of crops. Agric. Sci., 1981,97:383-389.
    [80]McLay C.D.A., Cameron K.C., McLaren R.G. Effect of time of application and continuity of rainfall on leaching of surface-applied nutrients. Aust. J. Soil. Res.,1991,29:1-9.
    [81]Brusseau M.L., Hu Q., Srivastava R., Using flow interruption to identify factors causing nonideal contaminant transport. Contam. Hydrol,1997,24:205-219.
    [82]Reedy O.C., Jardine P.M., Wilson G.V.Quantifying the diffusive mass transfer of non-reactive solutes in columns of fractured saprolite using flow interruption. Soil Sci. Soc. Am. J.,1996,60:1376-1384.
    [83]White R E, Dyson J S, Gerstl Z. Leaching of herbicides through undisturbed cores of a structured clay soil.Soil Sci.Soc.Am.J.,1986,50:277-283.
    [84]Czapar G F, Horton R, Fawcett R S.Herbicide and tracer movement in soil columns containing an artificial macropore. J Environ.Qual,1992,21(1):110-115.
    [85]Hatfield K K, Warner G S, Guillard K. Bromide and FD & Blue No.1 dye movement through intact and packed soil columns.American Society of Agricultural Engineers,1997,40(2): 309-315.
    [86]Kookana R S, Schuller R D,Aylmore L A G.Simulation of simazine transport through soil columns using time-dependent sorption data measured under flow condition.J Cont.Hydrol.,1993,14:93-115.
    [87]Krzyszowska A J,Allen R D, Vance G F.Assessment of the fate of two herbicides in a Wyoming rangeland soil:column studies.J Env.Qual,1994,23:1051-1058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700