典型作物根际土壤溶液硝态氮浓度及淋失特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国北方典型农田体系田间状态下作物根系区域及不同根际部位土壤溶液氮浓度特征研究甚少,田间原位测定根系土壤溶液技术尚不成熟。本研究选择华北平原棚室蔬菜与小麦/玉米体系为研究对象,采用抖土法和提取法测定根际土壤溶液氮浓度,探讨作物在不同生育期根际与非根际土壤溶液氮浓度变化,同时在氮素最大效率期对不同根系部位土壤溶液氮浓度进行比较,明确不同氮素条件下土壤溶液硝态氮的时空变化规律,并通过分析厚不饱和层土壤氮素淋失特征,为探明两种种植体系氮素淋失机制,降低硝态氮淋溶损失及预防地下水污染提供理论依据。主要研究结果如下:
     (1)玉米在生长季耕层土壤溶液受氮素输入的影响,三叶期与大喇叭口期根际氮浓度显著高于非根际,表明根系对NO3--N吸收较弱,氮素向根表富集;其他时期低于非根际,表明根系对NO3--N吸收较高,NO3--N向根表迁移较低。大喇叭口期土壤剖面根际氮浓度高于非根际,浓度范围分别为0.98-5.34和0.51-0.67 mmol/L;抽雄吐丝期根际、非根际土壤溶液氮浓度均低于2 mmol/L;成熟期根际氮浓度低于非根际,分别在0.62-1.37和0.89-2.35 mmol/L之间波动。在氮素最大效率期,各轮根区域氮浓度随着土壤深度的增加呈降低趋势;不同根际部位变化趋势为:根际>根区>非根际。
     (2)小麦整个生育期耕层土壤溶液随着氮源的补充,苗期、拔节期与孕穗扬花期根际氮浓度高于非根际,表明根际对NO3--N的吸收能力降低;其他时期显著低于非根际,表明根系对氮素的吸收显著高于氮素的迁移,导致氮素在非根际中富集。从整个土壤剖面来看,拔节期根际氮浓度在2.14-6.57 mmol/L之间,高于非根际;孕穗扬花期在0-60 cm根际氮浓度高于非根际,60 cm以下根际、非根际氮浓度逐渐降低且相差不大;成熟期根际氮浓度均低于非根际,范围分别为0.60-1.39和1.02-3.08 mmol/L。
     (3)番茄耕层根际氮浓度除开花期外,苗期、座果期、采收期与成熟期均显著高于非根际,表明根际对NO3--N的吸收能力降低。座果期整个土壤剖面根际氮浓度高于非根际,范围分别为2.46-7.48和2.41-6.44 mmol/L;采收期1根系区域氮浓度均有所上升,范围分别为2.50-15.71和2.55-7.50 mmol/L;成熟期根际浓度在2.54-14.61 mmol/L范围内波动,高于非根际。番茄在氮素最大效率期随着土壤深度的增加,各根系区域氮浓度依次降低;不同根际部位氮浓度高低顺序为:侧根根际>主根根际>根区>非根际。采收期1根系区域氮浓度高于座果期,更具有向深层淋溶的风险。
     (4)小麦/玉米根系在施肥灌水期依赖于低亲和力转运系统,养分存在淋溶风险,多数生育期都是高亲和力转运系统运转,并且随着土壤深度的增加,根系同样以高亲和力转运系统为主,淋溶风险较小;番茄在整个生育期根系主要依赖于低亲和力转运系统,使根系区域保持较高的氮浓度,养分易淋洗移出根区,对地下水造成污染。
     (5)两种种植体系下,棚室蔬菜土壤硝态氮含量显著高于农田,且淋溶到10米以下;小麦/玉米农田土壤剖面硝态氮主要集中0-3 m土层,3 m以下没有明显累积。棚室蔬菜土壤对地下水的威胁性远大于农田,且地下水埋深越浅越容易受硝酸盐污染。
The study on typical crop root area and different rhizosphere area in the field and NO3--N concentration at different rhizosphere area are lacking, and the technique of assay root NO3--N concentration in situ is still not mature. This study was conducted for the two typical cropping systems of greenhouse and wheat/corn in North China Plain. Using measures of shaking up soil and soil solution in soil multi-layers to determinate NO3--N concentration of rhizosphere soil solution, it explored crop rhizosphere and the non-rhizosphere soil solution nitrogen change at different growth stages. The study also took comparison analysis on the NO3--N concentration of soil solution at different root part during maximum efficiency period, cleared the dynamics and spatial variation regularity under different nitrogen concentrationin of soil solution. Moreover, it analysised the leaching characteriristics of nitrogen in deep soil to explore the greenhouse vegetables leaching mechanism, providing theoretical basis for reducing the leaching of nitrate loss and prevention of groundwater pollution. The main results are as follows:
     (1)Topsoil solution of corn was influenced by nitrogen input. The rhizosphere was significantly higher than non-rhizosphere in the trilobites period and large bugle stage, indicating that the root absorption of NO3--N was weak, the nitrogen was enriched into root top; the nitrogen rhizosphere was lower than non-rhizosphere in the other stages, indicating that the root absorption of was high, movement to top root of NO3--N was lower. At the large bugle stage the rhizosphere concentration of soil profile was higher than non-rhizosphere, fluctuating with the range of 0.98-5.34 mmol/L and 0.51-0.67 mmol/L. The rhizosphere and non-rhizosphere soil solution concentration of soil profile were both lower 2 mmol/L at pollination and tasselling; rhizosphere soil solution concentration of soil profile was lower than non-rhizosphere, fluctuating with the range of 0.62-1.37 mmol/L and 0.89-2.35 mmol/L respectively at the adult stages. Along with the soil depth increasing when the corn was at the nitrogen maximum efficiency period, NO3--N concentration of root area trended to decrease. The trend of NO3--N concentration of soil solution at different rhizosphere part was: rhizosphere>root area>non-rhizosphere.
     (2)With the nitrogen source added into the wheat topsoil solution, the rhizosphere was higher than non-rhizosphere at the seeding, elongation and flowering stage, reaching significant level at the seeding and flowering stage, indicating that the root absorption of NO3--N was lower; the rhizosphere at the other stages was significantly lower than non-rhizosphere, indicating that the root absorption of NO3--N was significantly higher than the nitrogen movement and resulting in the nitrogen enrichment in the non-rhizosphere. From the total soil profile, rhizosphere nitrogen concentration was fluctuated with the range of 2.14-6.57 mmol/L and higher than rhizosphere. The rhizosphere concentration of soil profile 0-60 cm at flowering stage was higher than the non-rhizosphere. The rhizosphere and non-rhizosphere concentration was gradually reducing below soil profile 60 cm, and varied slightly. The rhizosphere concentration at adult stage was lower than non-rhizosphere, fluctuating with the range of 0.60-1.39 mmol/L and 1.02-3.08 mmol/L.
     (3)The tomatoes topsoil solution rhizosphere nitrogen concentration at the seedling and fruit-set period, harvest time 1, 2 and adult stages was significantly higher than non-rhizosphere except blooming time,indicating that the root absorption of NO3--N was lower. The rhizosphere nitrogen of all soil profile at fruit-set period was higher than non rhizosphere, fluctuating with the range of 2.46-7.48 mmol/L and 2.41-6.44 mmol/L respectively; as the tomatoes frequently were fustigating rhizosphere nitrogen, the rhizosphere nitrogen concentration of root area at the harvest time 1 gradually increased with the range of 2.50-15.71 mmol/L and 2.55-7.50 mmol/L; the rhizosphere nitrogen of soil profile 0-100 cm at adult stages was higher than non-rhizosphere, fluctuating with the range of 2.54-14.61 mmol/L. Along with the soil depth increasing when tomatoes were at the nitrogen maximum efficiency period, NO3--N concentration of root area trended to decrease orderly. The NO3--N concentration trend of soil solution at different rhizosphere part was: The lateral root rhizosphere was the first, main root rhizosphere area was the second, the root area was third and the last was non-rhizosphere. The rhizosphere nitrogen of harvest time 1 was higher than at fruit-set period, when there was deep leaching risk.
     (4)During water filled time wheat/corn root was depended low affinity transportation system, there were nutriment leaching risks. During most of crop growth and development period high affinity transportation system run and with the increasing of soil depth, rhizosphere relied mainly by high affinity transportation system, and the leaching risk was lower; tomato was depended low affinity transportation system during the whole crop growth and development period. If the root area kept higher NO3--N concentration, nutriment was easily leaching out of root area, which leading to groundwater pollution.
     (5) Under two cropping systems, topsoil solution concentration in greenhouse was significantly higher than in the farmland and leaching depth reached 10 m; NO3--N concentration of wheat/corn profile soil solution mainly centered at 0-3 m depth and there was not significantly accumulation below 3 m. The risk of greenhouse soil to groundwater was greatly higher than farmland, and the deeper the easily polluted by nitrates.
引文
[1]赵荣芳,陈新平,张福锁.华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡[J].土壤学报,2009,46(4):684-697.
    [2]Chen Q, Zhang X S, Zhang H Y, et al. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region[J]. Nutrient Cycling in Agroecosystems, 2004, 69: 51-58.
    [3]何飞飞.设施番茄生产体系的氮素优化管理及其环境效应研究[D].北京:中国农业大学博士论文, 2006.
    [4]高中强.山东省设施蔬菜发展现状、问题及对策建议[J].中国果菜,2010,2:12-14.
    [5]刘兆辉,江丽华,张文君,等.山东省设施蔬菜施肥量演变及土壤养分变化规律[J].土壤学报,2008,45(2):296-303.
    [6]周建斌,陈竹君,唐莉莉,等.日光温室土壤剖面矿质态氮的含量、累积及其分布特性[J].植物营养与肥料学报,2006,12(5):675-680.
    [7]雷宝坤,陈清,范明生,等.寿光设施菜田碳、氮演变及其对土壤性质的影响[J].植物营养与肥料学报,2008,14(5):914-922. [ 8 ]曹兵,贺发云,徐秋明,等.南京郊区番茄地中氮肥的效应与去向[J].应用生态学报,2006,17(10):1839-1844.
    [9]范亚宁,李世清,李生秀.半湿润地区农田夏玉米氮肥利用率及土壤硝态氮动态变化.应用生态学报,2008,19(4):799-806.
    [10]Jégoa G, Martínezb M, Antigüedadb I, et al. Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil-crop model[J]. Science of the Total Envoronment, 2008, 394: 207-221.
    [11]Choi W J, Han G H, Lee S M, et al. Impact of land-use types on nitrate concentration andδ15N in unconfined groundwater in rural areas of Korea[J]. Ecosystems and Environment, 2007, 120: 259-268.
    [12]Bouwman A F, Drecht G V, Hoek V D. Global and Regional Surface Nitrogen Balance in Intensive Agriculture Production Systems for the Period 1970-2030[J]. Pedosphere, 2005, 15(2): 137-155.
    [13]张学军.节水控氮对宁夏不同土壤-蔬菜体系中氮素平衡及NO3--N淋溶的影响[D].武汉:华中农业大学博士学位论文,2008.
    [14]寇长林,巨晓棠,张福锁.三种集约化种植体系氮素平衡及其对地下水硝酸盐含量的影响[J].应用生态学报,2005,16(4):660-667.
    [15]Ju X T, Kou C L, Christie P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2007, 145: 497-506.
    [16]叶灵,巨晓棠,刘楠,等.华北平原不同农田类型土壤硝态氮累积及其对地下水的影响[J].水土保持学报,2010,24(2):165-168,178.
    [17]Owen A G., Jones D L. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of acids in plant N acquisition[J]. Soil Biol.Biochem, 2001, 33: 651-657.
    [18]张玉铭,张佳宝,胡春胜,等.华北太行山前平原农田土壤水分动态与氮素的淋溶损失[J].土壤学报,2006,23(1):17-25.
    [19]张学军,赵营,任福聪,等.滴灌条件下施氮量对黄瓜-番茄种植体系中土体NO3--N淋洗的影响[J].干旱地区农业研究,2007,25(4):157-162.
    [20]吉艳芝.填闲作物阻控设施蔬菜土壤硝态氮累积和淋失的研究[D].河北:河北农业大学博士论文,2010.
    [21]史振侠.集约化粮田作物根际土壤溶液中硝态氮浓度的动态研究[D].北京:中国农业大学硕士论文,2010.
    [22]张福锁,申建波,冯固.根际生态学[M].北京:中国农业大学出版社,2008.
    [23]Wang Y, Mi G, Chen F, et al. Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize[J]. Plant Nutri, 2004, 27(12): 2189-2202.
    [24]2009年中国农业统计年鉴[M].北京:中国农业年鉴编委会,2010.
    [25]寇长林,巨晓棠,高强,等.两种农作体系施肥对土壤质量的影响[J].生态学报,2004,24(l1):2548-2556.
    [26]杜连风,赵同科,张成军,等.京郊地区3种典型农田系统硝酸盐污染现状调查[J].中国农业科学,2009,42(8):2837-2843.
    [27]陈清,张福锁.蔬菜养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2007.
    [28]张维理,徐爱国,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析[J].中国农业科学,2004,37(7):1026-1033.
    [29]张福锁,马文奇.肥料投入水平与养分资源高效利用的关系[J].土壤与环境,2000,9(2):36-38.
    [30]张义军.冬小麦/夏玉米套种模式下的养分状况及优化管理-以山东桓台为例.[D].北京:中国农业大学硕士论文,2008.
    [31]闵炬,施卫明,王俊儒.不同施氮水平对大棚蔬菜氮磷钾养分吸收及土壤养分含量的影响[J].土壤,2008,40(2):226-231.
    [32]Zhang L J, Ju X T, Gao Q, et al. Recovery of 15N-labeled nitrate injected into deep subsoil by maize in a calcareous alluvial soil on North China Plain[J]. Communications in Soil Science and PlantAnalysis, 2007, 38: 1563-1577.
    [33]Jégoa G, Martínezb M, Antigüedadb I, et al. Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil-crop model[J]. Science of the Total Environment, 2008, 394: 207-221.
    [34]高伟,朱静华,高宝岩,等.天津市设施蔬菜不同种植年限土壤及地下水养分特征[J].华北农学报,2010,25(2):206-211.
    [35]杨丽霞,杨桂山,苑韶峰,等.影响土壤氮素径流流失的因素探析[J].中国生态农业学报,2007,15(6):190-194.
    [36]金雪霞,范晓晖,蔡贵信,等.菜地土壤N2O排放及其氮素反硝化损失[J].农业环境科学学报,2004,23(5):861-865.
    [37]章圣强,郭瑞英,曹靖,等.白银市日光温室土壤养分累积特征及重金属污染现状评价[J].农业环境科学学报,2010,29(4):711-716.
    [38]姜慧敏,张建峰,杨俊诚,等.不同氮肥用量对设施番茄产量、品质和土壤硝态氮累积的影响[J].农业环境科学学报,2010,29(12):2338-2345.
    [39]古巧珍,杨学云,孙本华,等.日光温室蔬菜地土壤主要养分含量及其累积特征分析[J].西北农林科技大学学报(自然科学版),2008,36(3):129-134.
    [40]陆安祥,赵云龙,王纪华,等.不同土地利用类型下氮、磷在土壤剖面中的分布特征[J].生态学报,2007,27(9):3923-3929.
    [41]姚春霞,陈振楼,陆利民,等.上海市蔬菜地土壤硝态氮状况研究[J].生态环境,2005,14(2):220-223.
    [42]唐莉莉,陈竹君,周建斌.蔬菜日光温室栽培条件下土壤养分累积特性研究[J].干旱地区农业研究,2006,24(2):70-74.
    [43]刘晓晨,汪仁,孙占祥.辽宁省三种类型作物产区饮用水硝态氮污染状况研究[J].灌溉排水学报, 2008,27(5):9-13.
    [44]赵露露.高强度降雨及灌水对土壤累积硝态氮移动的影响[D]北京:中国农业大学硕士学位论文,2007.
    [45]胡晓霞,丁洪,张玉树,等.菜地氮素循环及其环境效应研究进展[J].中国农学通报,2010,26(10):287-294.
    [46]吉艳芝,刘辰琛,巨晓棠,张丽娟,冯万忠,刘树庆.根层调控对填闲作物消减设施蔬菜土壤累积硝态氮的影响[J].中国农业科学,2010,43(24):5063-5072.
    [47]王凌,张国印,孙世友,等.河北省蔬菜高产区化肥施用对地下水硝态氮含量的影响[J].河北农业科学,2008,12(10):75-77.
    [48]朱建华.蔬菜保护地氮素去向及其利用研究[D].北京:中国农业大学博士论文,2002.
    [49]黄东风,王果,李卫华,等.菜地土壤氮磷面源污染现状、机制及控制技术[J].应用生态学报, 2009,20(4):991-1001.
    [50]Bouwman A F, Drecht G V, Hoek V W K. Global and regional surface nitrogen balance in intensive agriculture production systems for the period 1970-2030[J]. Pedosphere, 2005, 15(2): 137-155.
    [51]Liu G D, Wu W L, Zhang J. Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China[J]. Agriculture, Ecosystems and Environment, 2005, 107: 211-220.
    [52]Kraft G J, Stites W. Nitrate impacts on groundwater from irrigated-vegetable systems in a humid north-central US sand plain[J]. Agriculture, Ecosystems and Environment, 2003, 100: 63-74.
    [53]Thorburn P J, Biggs J S, Weie K L, et al. Nitrate in groundwater of intensive agricultural areas in coastal Northeastern Australia[J]. Agriculture, Ecosystems and Environment, 2003, 94: 49-58.
    [54]Chen J Y, Taniguchi M, Liu G Q, et al. Nitrate pollution of groundwater in the Yellow River delta,China[J]. Hydrogeology Journal, 2007, 15: 1605-1614.
    [55]张丽娟,巨晓棠,刘辰琛.北方设施蔬菜种植区地下水硝酸盐来源分析—以山东省惠民县为例[J].中国农业科学,2010,43(21):4427-4436.
    [56]Ju X T, Kou C L, Zhang F S, et al. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2006, 143: 117-125.
    [57]赵新锋,陈法锦,陈建耀,等.城市地下水硝酸盐污染及其成因分析—以珠海香洲区为例[J].水文地质工程地质,2008,35(3):87-92.
    [58]董章杭,李季,孙丽梅,等.硝酸盐污染影响的研究—以“中国蔬菜之乡”山东省寿光市为例[J].农业环境科学学报,2005,24(6):1139-1144.
    [59]张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计控制对策Ⅰ.21世纪初中国农业面源污染的形势估计[J].中国农业科学,2004,7(7):1008-1017.
    [60]赵同科,张成军,杜连凤,等.环渤海七省(市)地下水硝酸盐含量调查[J].农业环境科学学报, 2007,26(2):779-783.
    [61]巩建华,柯遵伟,李季.河北省藁城市蔬菜种植区化肥施用与地下水硝酸盐污染研究[J].农村生态环境,2004,(20):56-59.
    [62]张新明,李华兴,吴文良.氮素肥料对环境与蔬菜的污染及其合理调空途径[J].土壤通报,2002,33(6):471-475.
    [63]余德辉.中国湖泊富营养化防治状况及存在问题[A].国家环境保护总局科技标准司.中国湖泊富营养化及其防治研究[C].北京:中国环境科学出版,2001:1-7.
    [64]邢光熹.中国农田N2O排放的分析估算与减缓对策[J].农村生态环境,2000,16(4):1-6.
    [65]高强,刘淑霞,王宇,等.施肥对农业生态环境的影响[J].吉林农业大学学报,2002,22:106-112.
    [66]施振香,柳云龙,尹骏,等.上海城郊不同农业用地类型土壤硝化和反硝化作用[J].水土保持学报,2009,23(6):99-103.
    [67]刘真贞.不同施氮措施对菜地N2O排放的影响[D].武汉:华中农业大学硕士论文,2007.
    [68]梁东丽,同延安,Ove Emteryd,等.菜地不同施氮量下N2O逸出量的研究[J].西北农林科技大学学报,2002,30(2):73-77.
    [69]张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29(3):239-250.
    [70]张福锁,申建波,冯固.根际生态学-过程与控制[M].北京:中国农业大学出版社,2009.
    [71]郭朝晖,张杨珠,黄子蔚.根际微域营养研究进展(一) [J].土壤通报,1999,30(1):46-48.
    [72]Glass A D M. Nitrate uptake by plant roots[J]. Botany, 2009, 87: 659-667.
    [73]Touraine B, Glass A D M. NO3- and ClO3- fluxes in the chl1-5 mutant of Arabidopsis thaliana[J]. Plant Physiol, 1997, 114: 137-144.
    [74]Siddiqi M Y , Anthony D M, Thomas J R, et al. Studies of the uptake of Nitrate in Barley[J]. Plant Physiol, 1990, 93: 1426-1432.
    [75]肖焱波,李文学,段宗颜,等.植物对硝态氮的吸收及其调控[J].中国农业科技导报,2002, 4(2):56-59.
    [76]吴巍,赵军.植物对氮素吸收利用的研究进展[J].中国农学通报,2010,26(13):75-78.
    [77]童依平,蔡超,刘全友,等.植物吸收硝态氮的分子生物学进展[J].植物营养与肥料学报,2004,10(4):433-440.
    [78]李宝珍,范晓荣,徐国华.植物吸收利用铵态氮和硝态氮的分子调控[J].植物生理学通讯,2009,45(1):80-88.
    [79]赵首萍,赵学强,施卫明.高等植物氮素吸收分子机理研究进展[J].土壤,2007,39(2):173-180.
    [80]李春俭.高级植物营养学[M].北京:中国农业大学出版社,2008.
    [81]门中华,李生秀.水培硝态氮浓度对冬小麦幼苗氮代谢的影响[J].广西植物,2010,30(4):544-550.
    [82]李霞,阎秀峰.氮素浓度对黄檗幼苗生长及氮代谢相关酶类的影响[J].东北林业大学学报,2010,38(6):40-42.
    [83]Riley D and Barber S A. Salt accumulation at the soybean root-soil interface[J]. Soil Sci Soc, 1970, 34: 154-155.
    [84]许衡,杨和生,徐英,等.果树根际微域环境的研究进展[J].山东农业大学学报(自然科学版),2004(3):476-480.
    [85]詹媛媛,薛梓瑜,任伟,等.干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征[J].生态学报,2009,29(1):59-66.
    [86]云鹏,高翔,陈磊,等.冬小麦-夏玉米轮作体系中不同施氮水平对玉米生长及其根际土壤氮的影响[J].植物营养与肥料学报,2010,16(3):567-574.
    [87]董兆佳,孟磊.海南蕉园根际与非根际土壤氮素含量特征[J].中国农学通报,2010,26(6):309-312.
    [88]侯杰,叶功富,张立华,等.木麻黄湿地松混交林的根际土壤养分和酶活性研究[J].亚热带水土保持,2006,18(4):1-3.
    [89]金剑,王光华,刘晓冰,等.利用根箱法解析大豆幼苗氮磷吸收及其在根际分布的特征[J].大豆科学,2005,24(4):281-290.
    [90]吴龙华,张素君,刘兰民,等.不同土壤类型和肥力玉米地土壤养分根际效应研究[J].应用生态学报,2000,11(4):545-548.
    [91]钦绳武,刘芷宇.土壤-根系微区养分状况的研究Ⅵ.不同形态肥料氮素在根际的迁移规律[J].土壤学报,1989,26(2):117-123.
    [92]石英,沈其荣,茆泽圣,等.旱作水稻根际土壤铵态氮和硝态氮的时空变异[J].中国农业科学,2002,35(5):520-524.
    [93]王震宇,温胜芳,罗先香,等. 2种水生植物根际溶液磷素时空变异及有机酸分泌[J].环境科学,2009,30(8):2248-2252.
    [94]Kirk G. J, Kronzucker H J. The potential for nitrification and uptake in the rhizosphere of wetland plants:A modeling study[J]. Annal of botany, 2005, 96: 639-646.
    [95]Zhang H, Forde B G. AnArabidopsisMADS box gene that con-trols nutrient-induced changes in root architecture [J]. Science, 1998, 279(5349): 407-409.
    [96]Walch-Liu P, Forde B G. Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture[J]. Plant, 2008, 54: 820-828.
    [97]郭亚芬,米国华,陈范骏,等.硝酸盐供应对玉米侧根生长的影响[J].植生理与分子生学报,2005,31(1):90-96.
    [98]赵荣芳.冬小麦-夏玉米轮作体系中水氮的优化管理及可持续评价[D].北京:中国农业大学博士论文,2006.
    [99]Gollary H T, Bloom P R, Schumacher T E. Rhizosphere soil-water collection by immiscible displacement-centrifugation technique[J]. Plant and Soil, 1997, 188: 59-64.
    [100]宋静,骆永明,赵其国.土壤溶液采集技术进展[J].土壤,2000,2:201-601.
    [101]Giesler R, Lundstrom U S, Grip H. Comparison of soil solution chemmistry assessment using zero-tension lysimeter or centrifugation[J]. European Journal of Soil Science, 1996, 47: 395-405.
    [102]Litaor M I. Review of soil solution samplers[J]. Water Resources Research, 1988, 24(5): 727-733.
    [103]陈同斌,陈世庆.土壤水压榨取样技术及其土壤样品采集与保存的研究[J].植物营养与肥料学报,1997,3(1):60-65.
    [104]吴龙华,骆永明.根际土壤溶液取样器[J].土壤,1999,1:45-66.
    [105]陈宝,颜朝阳,范迪福,等.用土壤溶液提取器采集土壤溶液方法与效果[J].江苏地质,2004,28(3):151-154.
    [106]张玉铭,毛任钊,胡春胜.太行山前平原土壤养分分布特征与肥料精准管理研究[J].中国生态农业学报,2005,13(4):111-120.
    [107]鲍士旦.土壤农化分析[M].中国农业科学出版社.1999. [ 108 ]高利平,乌兰巴特尔,樊明寿.燕麦根系对缺磷胁迫的适应性反应[J].中国农学通报,2006,22(11):221-223.
    [109]任图生.土壤物理测定与分析[M].北京:中国农业大学,2007.
    [110]Oenema O, Kros H, Vries W. Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies[J]. European Journal of Agronomy, 2003, 20: 3-16.
    [111]Eerdt V , Fong P K N. The monitoring of nitrogen surpluses from agriculture[J]. Environmental Pollutioon, 1998, 102(1): 227-233.
    [112]郑洁,张继宗,翟丽梅,等.洱海流域农田土壤氮素的矿化及其影响因素[J].中国环境科学,2010,30:35-40.
    [113]Calderon J F, Louise E J, Scow K M, et al. Microbial response to simulated tillage in cultivated and uncultivated soils[J]. Soil Biol Biochem, 2000, 32: 1547-1559.
    [114]Powell G T, Gaines S T. Soil Texture Effect on Nitrate Leach ing in Soil Percolates[J]. Comm Soil Sc, 1994, 25 (13,14) : 2561-2570.
    [115]吴永成,周顺利,王志敏,等.华北地区夏玉米土壤硝态氮的时空氮的时空动态与残留[J].生态学报,2004,25(7):1620-1626.
    [116]袁丽金,巨晓棠,张丽娟,等.设施蔬菜土壤剖面氮磷钾积累及对地下水的影响[J].中国生态农业学报,2010,18(1):14-19.
    [117]Hinsinger P, Gobran G R, Gregory P J,et al. Rhizosphere geometry and heterogeneity arising fromroot-mediated physical and chemical processes[J]. New Phytol, 2005, 168(2): 293-303.
    [118]高祖明,张春兰,倪金应,等.黄瓜等九种蔬菜与NO3--N亲和力的研究[J].南京农业大学学报,1990,13(1):75-79.
    [119]Fraisier V, Gojon A, Tillard P, et al. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source[J]. Plant , 2000, 23: 489-496.
    [120]唐国勇,黄道友,同成立,等.土壤氮素循环模型及其模拟研究进展[J].应用生态学报,2005,l6(11): 2208-2212.
    [121]张相松,刘兆辉,江丽华,等.设施菜地土壤硝态氮淋溶防控技术的研究[J].青岛农业大学学报, 2009,26(2):207-211.
    [122]闵炬.太湖地区大棚蔬菜地化肥氮利用和损失及氮素优化管理研究[D].北京:西北农林科技大学硕士论文,2007.
    [123]袁丽金,巨晓棠,张丽娟,等.设施蔬菜土壤剖面氮磷钾积累及对地下水的影响[J].中国生态农业学报,2010,18(1):14-19.
    [124]杨荣,苏永中.农田利用方式和冬灌对沙地农田土壤硝态氮积累的影响[J].应用生态学报,2009,20(3):615-623.
    [125]杜连凤,吴琼,赵同科,等.北京市郊典型农田施肥研究与分析[J].中国土壤与肥料,2009(3):75-78.
    [126]苏涛,王朝辉,李生秀.黄土高原地区农田土壤的硝态氮残留及其生态效应[ J ].农业环境科学学报,2004,23(2):411-414.
    [127]杨荣,苏永中.不同施肥对黑河中游边缘绿洲沙地农田玉米产量及土壤硝态氮积累影响的初步研究[J].中国沙漠,2010,30(1):110-115.
    [128]吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1): 8-15.
    [129]李韵珠,李保国.土壤溶质运移[M ].北京:科学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700