不同玉米自交系ZmNAS1和ZmNAS2基因和启动子的克隆与序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是植物生长发育过程中必须营养元素之一,在干旱半干旱的石灰性土壤上,铁素主要以不溶性难被植物吸收的固态形式存在,所以缺铁现象较为普遍。玉米等禾本科植物能够由根系分泌麦根酸类物质,也叫植物铁载体来活化螯合土壤中难以被植物吸收利用的铁,使之易于被植物吸收利用,从而解决自身铁营养缺乏问题。在植物铁载体合成过程中,烟酰胺合成酶(NAS)是这一过程的限速酶。本研究的主要研究结果如下:
     1、克隆了24份玉米自交系ZmNAS1和ZmNAS2基因编码区序列,并分析了材料间基因的多态性。24份材料间ZmNAS1基因编码区DNA序列的一致性为99.43%,共有38个变异位点,约占总位点数的3.9%,平均26 bp有一个变异位点;其中单一信息位点16个,简约信息位点22个;无插入和缺失。氨基酸同义突变17个,错义突变21个。ZmNAS1基因编码区核苷酸多样性PI值为0.00884,单倍型多样性(HD)为0.938±0.00155,24条序列共定义了17种单倍型。24份材料间ZmNAS2基因编码区DNA序列的一致性为99.16%;共发现变异位点60个,占总位点数的1.66%,平均30 bp一个变异位点,其中单变异位点9个,简并位点51个,无插入和缺失;氨基酸同义突变35个,错义突变25个。ZmNAS2基因编码区核苷酸多样性PI值为0.01191,24条序列共定义了17种单倍型,单倍型多样性指数(HD)为0.964±0.00057。与前人研究相比,总的来说,两个ZmNAS基因编码区的单核苷酸变异率较高。ZmNAS1基因较ZmNAS2相比,存在较多的低频SNP。
     2、克隆了24份材料ZmNAS1基因启动子序列,分析了材料间的多态性。相同引物所扩增的24份材料ZmNAS1基因启动子区的相似度92.05%,扩增序列最长为2315bp,最短为1741 bp,单一信息位点5个,简约信息位点65个;缺失插入位点9个,共574bp。核苷酸多样性指数(PI)为0.01359。共定义了13种单倍型,单倍型多样性指数(HD)值为0.917。与编码区相比,启动子变异更活跃。
     3、通过Tajima’s D值与Fu和Li’s D*与F*值进行中性检测,结果表明:ZmNAS1基因编码区及启动子与ZmNAS2基因编码区在群体中均未偏离中性进化,说明它们的变异受自然选择影响较小。
     4、利用生物信息学软件对ZmNAS1和ZmNAS2基因启动子元件进行分析预测并比较材料间差异。结果表明:ZmNAS1和ZmNAS2基因启动子均具有一些与光调控、激素诱导、响应逆境胁迫等有关的顺式作用元件,但在基因间与材料间元件的种类和数目存在一定差异;此外,不同类材料的两个基因启动子上都有一定数目的缺铁诱导元件的核心序列。根据启动子元件分析,初步判断ZmNAS1和ZmNAS2基因除受缺铁诱导表达外,还可能受到其它多种信号的共同调控,是一个复杂的调控过程。基因启动子在不同材料间差异,推测基因在不同材料间受到的表达调控水平也不相同。
     5、利用扩增玉米自交系ZmNAS1基因编码区序列的引物对水稻、高粱、大麦、小麦、黑麦、燕麦、青稞等作物的ZmNAS1基因编码区进行了同源克隆。包括玉米,8种禾本科植物的NAS1基因DNA编码区序列一致性高达99.58%,甚至超过了24份玉米自交系材料之间的一致性,说明NAS1基因在种属间进化比较保守。出现的一些变异位点也出现在不同的玉米自交系之间,这说明这些变异位点的在种属分化之前就已存在。
Iron is one of necessary nutrient elements in plant growth process. Iron element is existed by not soluble and difficult to be absorbed form in calcareous soils. Therefore, iron deficiency is more prevalent. Graminaceous species can enhance iron(Fe) acquisition from sparingly soluble inorganic Fe(Ⅲ)compounds by release of phytosiderophores(PS) which mobilize Fe(Ⅲ) by chelating, such as corn. ZmNAS is a key enzyme in phytosiderophore synthetic pathway in maize. The main results of this study as follows:
     1. 24 inbred lines' ZmNAS1 and ZmNAS2 sequence of coding area were cloned, The consistency of ZmNAS1 coding area DNA sequence is 99.43%. There were 38 variable sites, accounted for about 3.9% of total sites and a variable site every 26 bp sites on average. In which single information site is 16, and parsimony-informative site is 22. There is no insertion and deletion. The numember of amino acids synonymous mutations are 17 and missense mutations are 21. The PI of ZmNAS1 coding areas nucleotide diversity is 0.00884, and the HD(haplotype diversity index) is 0.938±0.00155. 17 kinds of haplotype are defined by 24 sequence. The consistency of ZmNAS2 DNA encoding region sequence among the 24 materials can reach up to 99.16%; and the variable sites were founded 60 in all, Average 30 bp appear a variable site. In these variable sites, 9 single variable sites, 51 parsimony-informative sites, no insert and deletion. 35 amino acids synonymous mutations, 25 missense mutations. The PI value of the nucleotide diversity of the encoding region of ZmNAS2 gene is 0.01191 and the HD(haplotype diversity index) is 0.964±0.00057. 17 kinds of haplotype are defined by 24 sequence. Compared with previous studies, in general, single nucleotide mutation rate of two ZmNAS coding region is higher. ZmNAS1 encoding region have more low-frequency SNP than ZmNAS2.
     2. ZmNAS1gene promoter sequence were cloned in 24 maize inbred lines, According to the sequence of the promoter of the ZmNAS1 gene of 24 materials, analyzed the gene polymorphism among the different maize inbred lines. The similarity of the promoter region reach 92.05%, the longest is 2315 bp and the shortest is 1741 bp. There are 5 single information sites, 65 parsimony-informative sites, deletion and insertion 587 bp. The value of PI is 0.01359. 13 kinds of haplotype is defined. HD (haplotype diversity index) is 0.917. Compared with coding region, the promoter mutation were more active.
     3. The test of natural evolution by Tajima's D value、Fu and Li's D* and F* values,results show that coding regions and promoter of ZmNAS1 and coding regions of ZmNAS2 were not deviating from the neutral evolution ,It shows that they less affected by natural selection.
     4. Use bioinformatics software to analyze ZmNAS1 and ZmNAS2 gene promoter elements and compare the differences among materials. The results show that ZmNAS1 and ZmNAS2 gene promoter have some cis-acting elements related to light regulation, hormone induction, response stresses and so on. But there is some different number. In addition, there are a certain number core sequence of the iron-deficiency induction elements on the two gene promoter of different materials. According to promoter elements analysis, we pre-judge that ZmNAS1 and ZmNAS2 gene expression is a complex control process. It may be controlled by many other signals besides the iron deficiency. We speculate that regulating level on expression is also different in Various materials according to the difference of gene promoter.
     5. Homology cloning on the ZmNAS1 genetic encoding area of the rice, sorghum, barley, wheat, rye, oats and hullessbarley by the primer of cloned gene of ZmNAS1 encoding region in maize inbred line. Including corn ,The consistency of encoding region sequence of NAS1 gene among the eight species can reach up to 99.58%, It is even exceed the consistency of 24 maize inbred lines. It shows that the gene of NAS1 is highly conversed in the species evolution. The variation site also appears in the different maize inbred line. It shows that the variation sites have been existed before the species differentiation.
引文
崔彬彬,王海祥,朱维红,李云.增强子与增强子样的研究进展.保定师范专科学校学报,2005,18: 71-74
    陈智勇.外源基因转化冷季型草坪草培育抗除草剂、抗旱新种质的研究.湖南农业大学博士学位论文,2006
    邓明军.转OsNAS基因提高烟草抗逆性的研究.河南农业大学硕士学位论文,2006,p 24-25
    杜玮南,孙红霞,方福德.单核苷酸多态性的研究进展.中国医学科学院学报,2000,4: 392-394
    郝岗平,吴忠义,陈茂盛,曹鸣庆.拟南芥CBF4基因位点的单核苷酸多态性(SNP)变化与抗旱表型的相应性.农业生物技术学报,2004,12: 122-131
    胡廷章,罗凯,甘丽萍,石汝杰.植物基因启动子的类型及其应用.湖北农业科学,2007,46(1): 99-103
    金亚波,韦建玉,王军.植物铁营养研究进展Ⅰ:生理生化.安徽农业科学,2007,35(32): 10215-10219
    李昊文,赵军.非生物逆境信号转导的分子机制.中国农业科技导报,2008,10(S1): 1-6
    李一琨,王金发.高等植物启动子研究进展.植物学通报,1998,15(增刊): 1-6
    陆海峰,潘英华,卿冬进,任振胜,李有志.缺水和缺铁胁迫对玉米光合作用特性和根生长的影响.广西农业生物科学,2007,26: 45-49
    孙鏖,易自力,蒋建雄,陈智勇.转NAS基因冷季型草坪草的生长及抗旱性研究.生物技术通报,2008,04: 123-124
    汪李平.植物的铁素营养及缺铁症的防治(综述).安徽农业大学学报,1995,22(1): 17-22
    王维婷.玉米麦根酸代谢评价体系的建立及缺铁胁迫相关代谢基因片段的克隆.山东农业大学博士学位论文,2008
    王育花,陈芬,储成才,肖国樱.转大麦烟酰胺合成酶基因提高水稻逆境胁迫耐受性的研究.广西农业生物科学,2008,27: 25-30
    魏春红,李毅.植物总DNA的提取.现代分子生物学实验,北京:高等教育出版社,2006
    张洪映,毛新国,景蕊莲,谢惠民,昌小平.小麦TaPK7基因单核苷酸多态性与抗旱性的关系.作物学报,2008,34(9): 1537-1543
    邹春琴,张福锁,毛达如.铁对玉米体内氮代谢的影响.中国农业大学学报,1998,3(5): 45-49
    Abe H., Urao T., Ito T., Seki M., Shinozaki K. and Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63-78
    Banerji J., Rusconi S. and Schaffner W. Expression of aβ-globin gene is enhanced by remote SV40 DNA sequences. Cell, 1981, 27(12): 299-308
    Barrera-Saldana H., Takahashi K., Vigneron M., Wildeman A., Davidson I and Chambon P. All six GC-motifs of the SV40 early upstream element contribute to promoter activity in vivo and in vitro. The EMBO Journal, 1985, 4: 3839-3849
    Buckler ES., Thornsberry JM. and Kresovich S. Molecular diversity, structure and domestication of grasses. Genet. Res., Camb, 2001, 77: 213-218
    Bundock PC., Christopher JT., Eggler P., Ablett G., Henry RJ.and Holton TA. Single nucleotide polymorphisms in cytochrome P450 genes from barley. Theoretical And Applied Genetics Theoretische Und Angewandte Genetik, 2003, 106: 676-682
    Dancis A., Roman DG., Anderson GJ., Hinnebuschand AG and Klausner RD. Ferric reductase of Saccharomyces cerevisiae: Molecularcharacterization, role in iron uptake, and transcriptional control by iron. Proc. Natl. Acad. Sci. USA Biochemistry, 1992, 89: 3869-3873
    Dubouzet JG., Sakuma Y., Ito Y., Kasuga M., Dubouzet EG., Miura S., Seki M., Shinozaki K., and Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-,salt-,and cold-responsive gene expression. The Plant Journal, 2003, 33: 751-763
    Dynan WS. and Robert T. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell, 1983, 35: 79-87
    Dynan WS., Saffer JD., Lee WS. and Tjian R. Transcription factor Spl recognizes promoter sequences from the monkey genome that are similar to the simian virus 40 promoter. Proc. Nati. Acad. Sci. USA Biochemistry, 1985, 82(8): 4915-4919
    Edwards D., Murray H. and Smith AG. Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressd in Arabidopsis. Plant Physiology, 1998, 117: 1015-1022
    Eide D., Broderius M., Fett J. and Guerinot ML. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Science of USA, 1996, 93: 5624-5628
    Ellis JG., Llewellyn DJ., Walker JC., Dennis ES. and Peacock WJ. The ocs element: a 16 base pair palindrome essential for activity of the octopine synthase enhancer. The EMBO Journal, 1987, 6: 3203-3208
    Everett RD., Baty D and Chambon P. The repeated GC-rich motifs upstream from the TATA box are important elements of the SV40 early promoter. Nucleic Acids Research, 1983, 11: 2447-2464 Fox TC. and Guerinot ML. The molecular biology of cation trans port in plants. Annu . REV. Plant Physiol PlantMolBio, 1998, 49: 669-696
    Francisco JR., Esteban A., Manuel D. and Dela G. Ethylene Production by Fe-deficient Roots and its involvement in the regulation of Fe-deficiency stress responses by strategy I plants. Annals of Botany, 1999, 83: 51-55
    Gerald ZH. and Janet EM. The enhancer elements and GGGCGG Boxes of SV40 provide similar functions in bidirectionally promoting transcription. Virology, 1988, 163: 579-590
    Germano J. and Klein AS. Species-specific nuclear and chloroplast single nucleotide polymorphism stodis tinguish Picea glauca, Theoretical and Applied Genetics, 1999, 99: 37-49
    Guillet-Claude C., Birolleau-Touchard C., Manicacci D., Rogowsky PM., Rigau J., Murigneux A., Martinant JP. and Barrière Y. Nucleotide diversity of the ZmPox3 maize peroxidase gene: Relationships between a MITE insertion in exon 2 and variation in forage maize digestibility. BMC Genetics, 2004, 5(19): 1-11
    Hayashi K., Hashimoto N., Daigen M. and Ashikawa I. Development of PCR based SNP markers for rice blast resistance genes at the Piz locus. Theory Appl. Genet., 2004, 108: 1212-1220
    Herbik A., Koch G., Mock HP., Dushkov D., Czihal A., Thielmann J., Stephan UW. and BaumLein H. Isolation, characterization and cDNA cloning of nicotianamine synthase from barley, a key enzyme for iron homeostasis in plants. European Journal of Biochemistry, 1999, 265: 231-239
    Hirano HY., Eiguchim and Sano YA. Single base change altered the regulation of the uaxy gene at the post-ranscri ptional level during evolution of rice. Mol. Biol. Evol., 1998, 15: 978-987
    Higuchi K., Tani M., Nakanish H., Yoshiwara T., Goto F., Nishizawa NK. and Mori S. The expression of a barley nicotianamine synthase gene promoter-Gus fusion gene in transgenic tobacco is induced by Fe-deficiency in roots. Biosci. Biotechnol. Biochem., 2001, 7: 1692-1696
    Higuchi K., Watanabel S., Takahashi M., Kawasaki S., Nakanishi H., Nishizawa Nk. and Mori S. Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. The Plant Journal, 2001, 25(2): 159-167
    Higuchi K., Suzuki K., Nakanishi H., Yamaguchi H., Nishizawa NK. and Mori S. Cloning of nicotianamine synthase genes: Novel genes involved in the biosynthes is of phyto- siderophores. Plant Physiol., 1999, 119: 471-479
    Inoue H., Higuchi K., Takahashi M., Nakanishi H., Mori S. and Nishizawa NK. Three rice nicotianamine synthase gene OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. The Plant Journal, 2003, 36: 366-381
    Ince AG., Karaca M., Onus AN. and Bilgen M. Chloroplast matk gene Phylogeny of some important Species of plants. Akdeniz University ziraat Fakultesi Dergisi, 2005, 18(2): 157-162
    Ito S., Inoue H., Kobayashi T., Yoshiba M., Mori S., Nishizawa N. and Higuchi K. Interspecies compatibility of NAS1 gene promoters. Plant Physiology and Biochemistry, 2007, 45: 270-276
    Ito S., Inoue H., Kobayashi T., Yoshiba M., Mori S., Nishizawa N. and Higuchi K. Comparison of the functions of the barley nicotianamine synthase gene HvNAS1 and rice nicotianamine synthase gene OsNAS1 promoters in response to iron deficiency in transgenic tobacco.Soil Science and Plant Nutrition, 2009, 55: 277-282
    Jack JL., Richard HK. and Jaro S. An inverted TATA box directs downstream transcription of the bone sialo protein. Gene Biochem., 1995, 310: 33-40
    James CP. and Miller GW. The effect of iron and light treatments on chloroplast composition ultrastructure in iron-deficient Barley leaves. Journal of Plant Nutrition, 1982, 5(417): 311-321
    Joshi CP. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Research, 1987, 15(16): 6643-6653
    Kawai S., Itoh K., Takagi S., Iwashita T. and Nomoto K. Studies on phytosiderophore: biosynthesis of mugineic acid and 2-deoxymuginei acid in Hordeum vulgare L. var Minorimugi. Tetrahedron Lett., 1988, 29: 1053-1056
    Kobayashi T., Nakayama Y., Itai RN., Nakanishi H., Yoshihara T., Mori S. and Nishizawa NK. Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene
    promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. The Plant Journal, 2003, 36: 780-793
    Kobayashi T., Suzuki M., Inoue H., Itai RN., Takahashi M., Nakanishi H., Mori S. and Nishizawa NK. Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. Journal of Experimental Botany, 2005, 56: 1305-1316
    Kobayashi T., Ogo Y., Itai RN., Nakanishi H., Takahashi M., Mori S. and Nishizawa NK. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 19150-19155
    Kobayashi T., Itai RN., Ogo Y., Kakei Y., Nakanishi H., Takahashi M. and Nishizawa NK. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. The Plant Journal, 2009, 60: 948-961
    Le Jean M., Schikora A., Mari S., Briat JF. and Curie C. A loss of function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant Journal, 2005, 44: 769-782
    Lindsay WL. Role of chelation in micronutrient availability. In The Plant root and its environment. University Press of Virginia, Charlottesville, 1974, 507-524
    Lindsay WL. Iron oxide solubilization by organic matter and its effect on iron availability. Plant and Soil, 1991, 130: 27-34
    Ling HQ., Pich A., Scholz G. and Ganal MW. Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proceedings of the National Academy of Science of USA, 1999, 96: 7098-7103
    Mizuno D., Higuchi K., Sakamoto T., Nakanishi H., Mori S. and Nishizawa NK. Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiology, 2003, 132: 1989-1997
    Mori S. Iron acquisition by plants. Current Opinion in Plant Biology, 1999, 2: 250-253 Mori S and Nishizawa NK. Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant Cell Physiol, 1987, 28: 1081-1092
    Nagasaka S., Takahashi M., Nakanishi-Itai R., Bashir K., Nakanishi H., Mori S and Nishizawa NK. Time course analysis of gene expression over 24 hours in Fe-deficient barley roots. Plant Molecular Biology, 2009, 69: 621-631
    Nakagawa T., Takane K., Sugimoto T., Izui K., Kouchi H and Hata S. Regulatory regions and nuclear factors involved in nodule enhanced expression of a soybean phosphoenolpy –ruvate carboxylase gene: implications for molecular evolution. Mol. Genet. Gen., 2003, 269: 163-172
    Nagasaka S., Takahashi M., Nakanishi IR., Bashir K., Nakanishi H., Mori S. and Nishizawa NK. Time course analysis of gene expression over 24 hours in Fe-deficient barley roots. Plant Mol. Biol., 2009, 69: 621-631
    Nakanishi H., Yamaguchi H., Sasakuma T., Nishizawa NK. and Mori S. dioxygenase genes Ids3 and Ids2 from Hordeum vulgare are inolved in the biosynthes is of mugineic acid family phytosiderophores. Plant Mol. Biol., 2000, 44 (20): 199-207
    Negishi T., Nakanishi H. and Yazaki J. cDNA microarry analysis of gene expression during Fe-deficient stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barely roots. Plant Journal, 2002, 30(1): 83-94
    Nigel JR., Sadjuga JG. and Quentin JG. The froh gene family from Arabidopsis thaliana: putative iron chelate reductase. Plant Soil, 1997, 196: 245-248
    Nozoye T., Ital RN., Nagasaka S., Takahashi M., Nakanishi H., Mori S. and Nishizawa NK. Diurnal changes in the expression of Genes that participate in phytosiderophore synthesis in rice. Soil Sci. Plant Nutr., 2004, 50: 1125-1131
    Ogo Y., Itai RN., Nakanishi H., Inoue H., Kobayashi T., Suzuki M., Takahashi M., Mori S., and Nishizawa NK. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J. Exp. Bot. 2006, 57: 2867-2878
    Ogo Y., Itai RN., Nakanishi H., Kobayashi T., Takahashi M., Mori S and Nishizawa NK. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptakeunder Fe-deficient conditions. Plant J., 2007, 51: 366-377
    Ogo Y., Kobayashi T., Itai RN., Nakanishi H., Kakei Y., Takahashi M., Toki S., Mori S.and Nishizawa N.K. A novel NAC transcription factor IDEF2 that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. Biol. Chem., 2008, 283: 13407-13417
    Ogo Y., Itai RN., Kobayashi T., Aung MS., Nakanishi H. and Nishizawa NK. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol. Biol., 2011, 75: 593-605
    Reichman SM. and Parker DR. Probing the effects of light and temperature on diurnal rhythms of phytosiderophore release in wheat. New Phytologist, 2007, 174: 101-108
    Rickert AM., Kim JH., Meyer S., Nagel A., Ballvora A., Oefner PJ. and Gebhardt C. First generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnology Journal, 2003, 1: 399-410
    Roberts LA., Pierson AJ., Panaviens Z. and Walker EL.Yellow stripe1.expanded roles for the maize iron-phytosiderophore transporter. Plant Physiology, 2004, 135: 112-120
    Romheld V. and Marschner H. Evidence for a specific uptake system for iron phyto- siderophore in roots of grasses. Plant Physiology, 1986, 80: 175-180
    Sattarzadeh A., Achenbach U., Lübeck J., Strahwald J., Tacke E., Hofferbert HR., Rothsteyn T. and Gebhardt C. Single nucleotide polymorphism genotyping as basis for developing a PCR- based marker highly diagnistic for potato varieties with high resistance to pathotype 2/3. Molecular Breeding, 2006, 18: 301-312
    Suzuki K., Nakanish H., Nishizawa NK. and Mori S. Analysis of Upstream Region of Nicotianamine Synthase Gene from Arabidopsis Thaliana: Presence of Putative ERE-Like Sequence. Biosci. Biotechnol. Biochem., 2001, 12: 2794-2797
    Shattuck-Etdens DM., Bell RN., Neuhausen SL. and Helentjaris T. DNA sequence variation within maize and melon: observation from polymerase chain reaction amplification and direct sequencing. Genetics, 1990, 126: 207-210
    Shinozaki K. and Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol., 2000, 3: 217-223
    Suzuki K., Higuchi K., Nakanishi H., Nishizawa NK. and Mori S. Cloning of nicotianamine synthase genes from Arabidopsisthaliana. Soil Sci. Plant Nutr., 1999, 45: 993-1002
    Su LY. and Miller GW. Chlorosis in higher plants as related to organic acid content. Plant Physiology, 1961, 36: 415-420
    Salmaso M., Malacarne G., Troggio M., Faes G., Stefanini M., Grando MS. and Velasco R. Grapevine Genetic map integrating the Position of 139 expressed genes. Theor. Appl. Genet., 2008, 116: 1129-1143
    Takahashi M., Yamaguchi H. and Suzuki K. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition(StrategyⅡ) in graminaceous plants. Plant Physiol., 1999, 121(3): 947-956
    Takahashi M., Nakanishi H. and Suzuki K. Enhanced tolerance of rice to low iron availability in alkaline soils us ing barley nicotianamine amin transferase genes. Nat. Biotechnol., 2001, 19(5): 466-469
    Tanya P., Srinives P., Toojinda T., Vanavichit A., Ha BK., Bae JK., Moon JK. and Lee SH. Evaluation of Genetiec Diversity among Soybean Genotypes Using SSR and SNP. Korean J. Crop Sci., 2001, 46(4): 334-340
    Terry N. Limiting factors in photosynthesis. I. Use of iron stress to control photo chemical capacity in vivo. Plant Physiology, 1980, 65: 114-120
    Terry N. Effects of sulfur on the photosynthesis of intact leaves and isolated chloroplasts of sugar beets. Plant Physiology, 1975, 55: 923-927 Tenaillon MI., Sawkins MC., Long AD., Gaut RL., Doebley JF. and Gaut BS. Patterns of
    DNA sequence polymorphism along chromosome 1 of maize(Zea mays ssp. mays L). PNAS, 2001, 9 (16): 9161-9166
    Torigoe T., Izumi H., Wakasugi T. and Niina I. DNA topoisomerase poison TAS-103 transactivates GC-box dependent transcription via acetylation of Sp1. Biol. Chem., 2005, 280(2): 1179-1185
    Ueno D., Rombola A., Washita T., Nomoto K., and Ma JF. Identification of two novel phytosiderophores secreted from perennial grasses. New Phytologist, 2007, 174: 304-310
    Ueno D., Yamaji N and Jian Feng M. Further characterization of ferric phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley. Journal of Experimental Botany, 2009, 60: 3513-3520
    Verdaguer B., Kochko AD., Charles IF., Roger N. Beachy and Claude F. Functional organization of the cassava vein mosaic virus(CVMV) promoter. Plant Mol. Biol., 1998, 37: 1055-1058
    Von WN., Peltier JB., Rouquie D., Rossignol M. and Briat JF. Four root plasmalemma polypeptides under-represented in the maize mutant ysl accumulate in a Fe-efficient genotype in response to iron-deficiency. Plant Physiol. Biochem., 1997, 35: 945-950
    Wang DG., Fan JB., Siao CJ., Berno A., Young P., Sapolsky R., Ghandour G., Perkins N., Winchester E., Spencer J., Kruglyak L., Stein L., Hsie L., Topaloglou T., Hubbell E., Robinson E., Mittmann M., Morris MS., Shen N., Kilburn D., Rioux J., Nusbaum C., Rozen S., Hudson TJ., Lipshutz R., Chee M. and Lander ES. Large scale identification, mapping and genotyping of single nucleotide polymorphisms in the human genome. Science, 1998, 280: 1077-1082
    Water BM., Blevins DG. and Eide DJ. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisiti on. Plant Physiol, 2002, 129(1): 85-94
    Waters BM., Chu HH., Roberts LA., Eisley RB., Lahner B., Salt DE. and Waler EL. Mutations in Arabidopsis yellow stripe-like 1 and yellow stripe-like3 reveal their roles in metal iron homeostasis and loading of metal ions in seed. Plant Physiology, 2006, 141: 1446-1458
    Werr W., Frommer WB., Maas C. and Starlinger P. Structure of the sucrose synthase gene on chromosome 9 of Zea mays L. The EMBO Journal, 1985, 4: 1373-1380
    Yamanak AS., Nakamura I. and Watannbe KN. Identification of SNPs in the waxy gene among glutinous rice cultlvars and their evolutionary significance during the domestication process of rice. Theor Appl Genet, 2004, 108(7): 1200-1204
    Zhu Q., Dabi T. and Lamb C. TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. Plant Cell, 1995, 7: 1681-1689
    Zhang ZX. and Zheng YZ. Overexpression of Nicotianamine synthase(nas) gene results in enhanced drought tolerance in perennial ryegrass. Biotechnol & Biotechnol, 2008, 04: 938-941
    Zhu YL., Song QJ., Hyten DL., Van Tassell CP., Matukumalli LK., Grimm DR., Hyatt SM., Fickus EW., Young ND. and Cregan PB. Single-nucleotide polymorphisms in soybean. Genetics, 2003, 163: 1123-1134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700