双重PCR和竞争性PCR检测马铃薯环腐病菌和黑胫病菌技术体系建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯是世界上仅次于水稻、小麦和玉米的第四大粮食作物,我国为世界第一大马铃薯生产国。马铃薯环腐病(Clavibacter michiganensis subsp. Sepedonicus, Cms)和黑胫病(Pectobacterium atroseptica, Eca)是影响马铃薯生产的两个重要的种薯传播细菌性病害,能够快速、准确、灵敏、可靠地检测这两种病害对降低种薯带菌减轻病害发生具有重要意义。本研究建立了双重PCR检测黑胫病菌和环腐病菌技术和竞争性PCR定量检测黑胫病菌技术。
     主要研究结果如下:
     1.根据GenBank上发表的马铃薯环腐病菌pCS1质粒上纤维素酶A基因序列,对比近缘种及马铃薯上几种重要病原细菌的核苷酸序列,设计并合成了一对特异性引物CMS1/CMS2,利用引物CMS1/CMS2扩增出了一条913bp的马铃薯环腐病菌特异性条带,而马铃薯环腐病菌近缘种和马铃薯上的重要病原菌均未扩增出任何条带,特异性很高。检测灵敏度在DNA水平上达100fg/μL,在细菌数量上达10~5CFU/mL。
     2.将设计的引物CMS1/CMS2与已发表的PCR检测马铃薯黑胫病菌特异性引物ECA1f/ECA2r结合,经过条件优化后,成功建立了双重PCR技术体系。利用该双重PCR体系对马铃薯环腐病菌和黑胫病菌进行扩增,可获得913bp和690bp的2条特异性条带,而15种对照菌株均未扩增出任何条带,检测灵敏度在DNA水平上达600fg/μL,在细菌数量上达5×10~5CFU/mL。应用该体系对患环腐病和(或)黑胫病的薯块进行了检测,能够检测到环腐病菌和(或)黑胫病菌的存在。实现了同时对马铃薯环腐病菌和黑胫病菌的快速可靠检测。
     3.应用黑胫病菌特异性引物ECA1f/ECA2r扩增黑胫病菌DNA,将扩增产物克隆测序。根据扩增产物序列和引物ECA1f/ECA2r序列,设计了新引物ECA3f,与ECA2r组合扩增黑胫病菌DNA,制备竞争性模板。将竞争性模板插入pEASY-T1克隆载体,导入Trans1-T1感受态细胞进行克隆操作,构建内参照菌(E.coli 3f)。将已知数量的E.coli 3f加入到含Eca的无菌水或马铃薯皮提取物中,通过比较马铃薯黑胫病菌与E.coli 3f的扩增产物间的亮度比率能够估计马铃薯黑胫病菌的数量。
Potato is the fourth food crop in the world, which is behind rice, wheat and corn. China is the world’s biggest producer of potato. Potato ring rot (Clavibacter michiganensis subsp. Sepedonicus, Cms) and Potato blackleg (Pectobacterium atroseptica ,Eca) are the two important seed transmitted bacterial disease which impact on the potato production. Fast, accurate, sensitive and reliable detection of these two diseases is of great significance on reducing the percentage of infected seed tubers and the occurrence of the diseases. A duplex PCR assay for detecting of Clavibacter michiganensis subsp. sepedonicus and Pectobacterium atroseptica and a competitive PCR assay for quantification of Pectobacterium atroseptica were established. The results were as follows.
     1. Choosing the cellulose A gene sequence encoded by the native plasmid pCS1 of C. michiganensis subsp. sepedonicus which was published on the GenBank and comparing it with the nucleotide sequence of closely-related species and some pathogens of potato, a specific pair of primers, CMS1/CMS2, was designed and synthesized. Using CMS1/CMS2 primers, a single unique PCR band of 913 bp was amplified from C. michiganensis subsp. sepedonicus. The detection sensitivity was 100fg/μL of DNA and 10~5 CFU/mL of bacteria.
     2. A duplex PCR technology had been established under the optimized PCR parameters using the combining primers CMS1/CMS2 and ECA1f/ECA2r which was a specific pair of PCR primers to detect Pectobacterium atroseptica. Under the duplex PCR system, the 913 bp PCR band from Clavibacter michiganensis subsp. sepedonicus and 690 bp PCR band from P. atroseptica could be specifically amplified. The detection sensitivity was 600fg/μL of DNA and 5×10~5CFU/mL of bacteria. The duplex PCR technology also can be used to detect the tuber suffered from Clavibacter michiganensis subsp. sepedonicus and(or) Pectobacterium atroseptica and achieved good results. The two pathogens could be simultaneously and rapidly detected by the duplex PCR system.
     3. Eca genomic DNA was amplified using Eca specific primers ECA1f/ECA2r. The amplification product was cloned and sequenced. Using the DNA sequence of the amplification product and the sequences of specific primers ECA1f/ECA2r, a new forward primer, ECA3f, was designed and synthesized. Eca genomic DNA was amplified using new specific primers ECA3f/ECA2r, the amplification product is competitor PCR template. The competitor template was cloned into pEASY-T1 Clong Vector and transformed into Trans1-T1 competent cell, and internal control (E.coli 3f) was constructed for competitive PCR. Predetermined numbers of E.coli 3f were added to sterile water or potato peel extract both of which have Eca, and Eca numbers estimated by comparing the ratio of products generated Eca and E.coli 3f following PCR.
引文
[1] Schaad N W, Berthier-Schaad Y, Sechler A, et al. Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by BIO-PCR and an automated real-time fluorescence detection system[J]. Plant Disease.1999, 83(12): 1095-1100.
    [2] De Boer S H, Slack S A. Current status and prospects for detecting and controlling bacterial ring rot of potatoes in North America[J]. Plant Disease.1984, 68(10): 841-844.
    [3]韩学俭.马铃薯环腐病的危害及其防治[J].蔬菜. 2003: 22-23.
    [4] Franc G D. Persistence and latency of Clavibacter michiganensis subsp. sepedonicus in field-grown seed potatoes[J]. Plant Disease. 1999, 83(3): 247-250.
    [5] Pérombelon M. Potato blackleg: epidemiology, host-pathogen interaction and control[J]. European Journal of Plant Pathology. 1992, 98: 135-146.
    [6] de Haan E G, Dekker-Nooren T, van den Bovenkamp G W, et al. Pectobacterium carotovorum subsp. carotovorum can cause potato blackleg in temperate climates[J]. European Journal of Plant Pathology. 2008, 122(4): 561-569.
    [7] Czajkowski R, de Boer W J, Velvis H, et al. Systemic Colonization of Potato Plants by a Soilborne, Green Fluorescent Protein-Tagged Strain of Dickeya sp. Biovar 3[J]. Phytopathology. 2010, 100(2): 134-142.
    [8] van der Merwe J J, Coutinho T A, Korsten L, et al. Pectobacterium carotovorum subsp. brasiliensis causing blackleg on potatoes in South Africa[J]. European Journal of Plant Pathology. 2010, 126(2): 175-185.
    [9] B L M. Bacteria soft rot of potatoes in plant pathogens[G]. New York: NewYork Academic Press, 1979.
    [10]高虹,方晓宇,郐作真.马铃薯黑胫病的发生及防治[J].现代化农业. 2004(3): 15-16.
    [11]董金皋.农业植物病理学[M].北京:中国农业出版社, 2001.
    [12] GB 18133-2000,马铃薯脱毒种薯[S].
    [13]谢云陆,何礼远.马铃薯环腐病鉴定和检测技术的初步研究[J].植物病理学报. 1987, 17(4): 22-24.
    [14]徐玲,张世,姬厂海.云南省马铃薯环腐细菌鉴定[J].云南农业大学学报. 2004, 19(6): 658-660, 704.
    [15] Lelliott R A, Sellar P W. The Detection of Latent Ring Rot (Corynebacterium sepedonicum [Spiek. et Kotth.] Skapt. et Burks.) in Potato Stocks1[J]. EPPO Bulletin. 1976, 6(2): 101-106.
    [16]谢云陆,何礼远.马铃薯环腐病种薯检验技术程序[J].植物保护. 1987, 4: 31-32.
    [17] Slack S A, Kelman A, Perry J B. Comparison of three serodiagnostic assays for detection of Corynebacterium sepedonicum[J]. Phytopathology. 1979, 69(2): 186-189.
    [18] Gudmestad N C, Baer D, Kurowski C J. Validating immunoassay test performance in the detection of Corynebacterium sepedonicum during the growing season[J]. Phytopathology. 1991, 81(4): 475-480.
    [19]谢云陆,何礼远.应用间接酶联免疫吸附试验检测马铃薯环腐病[J].中国马铃薯. 1987, 3.
    [20]胡林双,王晓丹,闵凡祥,等.马铃薯环腐病菌快速检测方法(NCM-ELISA)的建立[J].中国马铃薯. 2007, 21(3).
    [21] De Boer S H, Wieczorek A, Kummer A. An ELISA test for bacterial ring rot of potato with a newmonoclonal antibody[J]. Plant Disease. 1988, 72(10): 874-878.
    [22] Baer D, Gudmestad N C. Serological detection of nonmucoid strains of Clavibacter michiganensis subsp. sepedonicus in potato[J]. Phytopathology. 1993, 83(2): 157-163.
    [23] PánkováI, Koko KováB. Sensitivity and Specificity of Monoclonal Antibody Mn-Cs1 for Detection[J]. Plant Protection Science. 2002, 38(4): 117-124.
    [24] Johansen I E, Rasmussen O F, Heide M. Specific identification of Clavibacter michiganense subsp. sepedonicum by DNA-hybridization probes[J]. Phytopathology. 1989, 79(10): 1019-1023.
    [25] Drennan J L, Westra A, Slack S A, et al. Comparison of a DNA hybridization probe and ELISA for the detection of Clavibacter michiganensis subsp. sepedonicus in field-grown potatoes[J]. Plant Disease. 1993, 77(12): 1243-1247.
    [26]高荣凯,苏国富.免疫捕捉PCR技术及其应用[J].国际免疫学杂志ISTIC PKU. 2006, 29(4).
    [27] Baer D, Mitzel E, Pasche J, et al. PCR detection of Clavibacter michiganensis subsp. sepedonicus-infected tuber samples in a plate capture assay[J]. American Journal of Potato Research. 2001, 78(4): 269-277.
    [28] Mills D, Russell B W. Parameters for specific detection of Clavibacter michiganensis subsp. sepedonicus in potato stems and tubers by multiplexed PCR-ELISA[J]. American Journal of Potato Research 2003, 80(4): 223-233.
    [29] Mullis K B, Faloona F A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction[J]. Methods in Enzymology. 1987, 155: 335.
    [30] Schneider B J, Zhao J L, Orser C S. Detection of Clavibacter michiganensis subsp. sepedonicus by DNA amplification[J]. FEMS Microbiology Letters. 1993, 109(2-3): 207-212.
    [31] Firrao G, Locci R. Identification of Clavibacter michiganensis subsp. sepedonicus using the polymerase chain reaction.[J]. Canadian Journal of Microbiology. 1994, 40(2): 148.
    [32] Li X A, Deboer S H. Selection of polymerase chain reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp. sepedonicus[J]. Phytopathology. 1995, 85(8): 837-842.
    [33]胡林双,何云霞,郭梅,等.应用PCR技术快速检测马铃薯环腐病菌[J].中国马铃薯. 2006, 20(004): 197-199.
    [34] Mills D, Russell B W, Hanus J W. Specific detection of Clavibacter michiganensis subsp. sepedonicus by amplification of three unique DNA sequences isolated by subtraction hybridization[J]. Phytopathology. 1997, 87(8): 853-861.
    [35] Lee I M, Bartoszyk I M, Gundersen D E, et al. Nested PCR for ultrasensitive detection of the potato ring rot bacterium, Clavibacter michiganensis subsp. sepedonicus[J]. Applied and Environmental Microbiology. 1997, 63(7): 2625-2630.
    [36] Chamberlain J S, Gibbs R A, Rainer J E, et al. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification[J]. Nucleic Acids Research. 1988,16(23): 11141.
    [37] Pastrik K H. Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by multiplex PCR with coamplification of host DNA[J]. European Journal of Plant Pathology. 2000, 106(2): 155-165.
    [38]高永洋,王楠,高观朋,等.瓜黑星病菌、枯萎病菌和蔓枯病菌的三重PCR检测[J].植物病理学报. 2010(004): 343-350.
    [39] Bach H J, Jessen I, Schloter M, et al. A TaqMan-PCR protocol for quantification and differentiation of the phytopathogenic Clavibacter michiganensis subspecies[J]. Journal of Microbiological Methods. 2003, 52(1): 85-91.
    [40] Smith D S, De Boer S H, Gourley J. An internal reaction control for routine detection of Clavibacter michiganensis subsp. sepedonicus using a real-time TaqMan PCR-based assay[J]. Plant Disease. 2008, 92(5): 684-693.
    [41] Arias R S, Murakami P K, Alvarez A M. Rapid detection of pectolytic Erwinia sp. in Aglaonema sp[J]. HortTechnology. 1998,8(4): 602-605.
    [42] Vruggink H, Deboer S H. Detection of Erwinia carotovora var. atroseptica in potato tubers with immunofluorescence following induction of decay[J]. Potato Research. 1978, 21(3): 225-229.
    [43] De Boer S H, Mcnaughton M E. Monoclonal antibodies to the lipopolysaccharide of Erwinia carotovora subsp. atroseptica serogroupⅠ[J]. Phytopathology. 1987, 77(6): 828-832.
    [44] Jones D, Hyman L J, Tumeseit M, et al. Blackleg potential of potato seed: determination of tuber contamination by Erwinia carotovora subsp. atroseptica by immunofluorescence colony staining and stock and tuber sampling[J]. Annals of Applied Biology. 1994, 124(3): 557-568.
    [45] Van Vuurde J, Roozen N. Comparison of immunofluorescence colony-staining in media, selective isolation on pectate medium, ELISA and immunofluorescence cell staining for detection of Erwinia carotovora subsp. atroseptica and E. chrysanthemi in cattle manure slurry[J]. European Journal of Plant Pathology. 1990, 96(2): 75-89.
    [46] Van der Wolf J M, Van Beckhoven J, De Vries P M, et al. Verification of ELISA results by immunomagnetic isolation of antigens from extracts and analysis with SDS-PAGE and Western blotting, demonstrated for Erwinia spp. in potatoes[J]. Journal of Applied Microbiology. 1994, 77(2): 160-168.
    [47] Gorris M T, Alarcon B, Lopez M M, et al. Characterization of monoclonal antibodies specific for Erwinia carotovora subsp. atroseptica and comparison of serological methods for its sensitive detection on potato tubers[J]. Applied and Environmental Microbiology. 1994, 60(6): 2076-2085.
    [48] Darrasse A, Kotoujansky A, Bertheau Y. Isolation by genomic subtraction of DNA probes specific for Erwinia carotovora subsp. atroseptica.[J]. Applied and Environmental Microbiology. 1994, 60(1): 298.
    [49] Ward L J, De B. Specific detection of Erwinia carotovora subsp. atroseptica with a digoxigenin-labeled DNA probe[J]. Phytopathology. 1994, 84(2): 180-186.
    [50] Darrasse A, Priou S, Kotoujansky A, et al. PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases[J]. Applied and Environmental Microbiology. 1994, 60(5): 1437-1443.
    [51] Helias V, Le Roux A C, Bertheau Y, et al. Characterisation of Erwinia carotovora subspecies and detection of Erwinia carotovora subsp. atroseptica in potato plants, soil and water extracts with PCR-based methods[J]. European Journal of Plant Pathology. 1998, 104(7): 685-699.
    [52] Smid E J, Jansen A, Gorris L. Detection of Erwinia carotovora subsp. atroseptica and Erwinia chrysanthemi in potato tubers using polymerase chain reaction[J]. Plant Pathology. 1995, 44(6): 1058-1069.
    [53] Park D S, Shim J K, Kim J S, et al. PCR-based sensitive and specific detection of Pectobacterium atrosepticum using primers based on Rhs family gene sequences[J]. Plant Pathology. 2006, 55(5): 625-629.
    [54] Deboer S H, Ward L J. PCR detection of Erwinia carotovora subsp. atroseptica associated with potato tissue[J]. Phytopathology. 1995, 85(8): 854-858.
    [55] Hyman L J, Dewasmes V, Toth I K, et al. Improved PCR detection sensitivity of Erwinia carotovora subsp. atroseptica in potato tuber peel extract by prior enrichment on a selectivemedium[J]. Letters in Applied Microbiology. 1997, 25(2): 143-147.
    [56] Toth I K, Hyman L J, Wood J R. A one step PCR-based method for the detection of economically important soft rot Erwinia species on micropropagated potato plants[J]. Journal of Applied Microbiology. 1999, 87(1): 158-166.
    [57] Frechon D, Exbrayat P, Helias V, et al. Evaluation of a PCR kit for the detection of Erwinia carotovora subsp. atroseptica on potato tubers[J]. Potato Research. 1998, 41(2): 163-173.
    [58]杨松,胡林双,吕文河,等.实时定量荧光PCR法检测马铃薯黑胫病菌[J].中国马铃薯. 2009, 23(1) : 1-5.
    [59] Gilliland G, Perrin S, Blanchard K, et al. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction[J]. Proceedings of the National Academy of Sciences of the United States of America. 1990, 87(7): 2725.
    [60]叶巍,方筠.竞争性核酸定量检测技术研究进展[J].中国国境卫生检疫杂志. 2003, 26(1): 51-52.
    [61]张华,胡白石,刘凤权.双重PCR技术检测水稻白叶枯病菌和细菌性条斑病菌[J].植物检疫. 2007, 21(S1): 34-35.
    [62] Price J A, Smith J, Simmons A, et al. Multiplex real-time RT-PCR for detection of Wheat streak mosaic virus and Tritcum mosaic virus[J]. Journal of virological Methods. 2010, 165(2): 198-201.
    [63] Majumder S, Baranwal V K, Joshi S. Simultaneous detection of Onion yellow dwarf virus and Shallot latent virus in infected leaves and cloves of Garlic by duplex RT-PCR[J]. Journal of Plant Pathology. 2008, 90(2): 371-374.
    [64] Zhang Z, Zhang J, Wang Y, et al. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil[J]. FEMS Microbiology Letters. 2005, 249(1): 39-47.
    [65]陈庆河,李本金,兰成忠,等.双重PCR检测马铃薯晚疫病菌和青枯病菌方法的建立及应用[J].植物病理学报. 2009, 39(6): 578-583.
    [66] Diallo S, Latour X, Groboillot A, et al. Simultaneous and selective detection of two major soft rot pathogens of potato: Pectobacterium atrosepticum (Erwinia carotovora subsp. atrosepticum) and Dickeya spp. (Erwinia chrysanthemi)[J]. European Journal of Plant Pathology. 2009, 125(2): 349-354.
    [67] Heinz R A, Platt H W. A competitive PCR-based assay to quantify Verticillium tricorpus propagules in soil[J]. Canadian Journal of Plant Pathology. 2000, 22(2): 122-130.
    [68] Edwards S G, Pirgozliev S R, Hare M C, et al. Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat[J]. Applied and Environmental Microbiology. 2001, 67(4): 1575.
    [69] Walsh K, North J, Barker I, et al. Detection of different strains of Potato virus Y and their mixed infections using competitive fluorescent RT-PCR[J]. Journal of Virological Methods. 2001, 91(2): 167-173.
    [70] Park C S, Kakinuma M, Amano H. Detection and quantitative analysis of zoospores of Pythium porphyrae, causative organism of red rot disease in Porphyra, by competitive PCR[J]. Journal of Applied Phycology. 2001, 13(5): 433-441.
    [71] Lee H K, Tewari J P, Turkington T K. Quantification of seedborne infection by Rhynchosporium secalis in barley using competitive PCR[J]. Plant Pathology. 2002, 51(2): 217-224.
    [72]王恒波,郭晋隆,陈平华,等.宿根矮化病菌的竞争定量PCR检测方法建立[J].热带作物学报. 2009(10): 1511-1516.
    [73] Manome A, Kageyama A, Kurata S, et al. Quantification of potato common scab pathogens in soil by quantitative competitive PCR with fluorescent quenching-based probes[J]. Plant Pathology. 2008, 57(5): 887-896.
    [74]朱春玉,吴元华,王艳红,等.一种快速检测植物病毒RNA蓄积量的竞争PCR方法[J].辽宁大学学报:自然科学版. 2008, 35(001): 77-80.
    [75]朱杰华,张志铭,李玉琴.马铃薯晚疫病菌(Phytophthora infestans) A2交配型的分布[J].植物病理学报. 2000, 30(4): 375.
    [76]方中达.植病研究方法:第三版[Z].北京:中国农业出版社, 1996.
    [77]彭学文,朱杰华.河北省马铃薯真菌病害种类及分布[J].中国马铃薯. 2008, 22(1): 31-33.
    [78]杨献光,齐志广,赵宝存,等.碱裂解法提取质粒DNA的研究[J].生物技术通报. 2003(6): 24-26.
    [79] Sambrook J,Russell D W,培堂黄.分子克隆实验指南[M].科学出版社, 2002.
    [80] He Y Q. An improved protocol for fungal DNA preparation[J]. Mycosystema. 2000, 19(3): 434.
    [81] Celi F S, Zenilman M E, Shuldiner A R. A rapid and versatile method to synthesize internal standards for competitive PCR[J]. Nucleic Acids Research. 1993, 21(4): 1047.
    [82] Bain R A, Perombelon M, Tsror L, et al. Blackleg development and tuber yield in relation to numbers of Erwinia carotovora subsp. atroseptica on seed potatoes[J]. Plant Pathology. 1990, 39(1): 125-133.
    [83] Laine M J, Haapalainen M, Wahlroos T, et al. The cellulase encoded by the native plasmid of Clavibacter michiganensis ssp. sepedonicus plays a role in virulence and contains an expansin-like domain[J]. Physiological and Molecular Plant Pathology. 2000, 57(5): 221-233.
    [84] Nissinen R, Kassuwi S, Peltola R, et al. In planta-complementation of Clavibacter michiganensis subsp. sepedonicus strains deficient in cellulase production or HR induction restores virulence[J]. European Journal of Plant Pathology. 2001, 107(2): 175-182.
    [85] Mogen B D, Oleson A E. Homology of pCS1 Plasmid Sequences with Chromosomal DNA in Clavibacter michiganense subsp. sepedonicum: Evidence for the Presence of a Repeated Sequence and Plasmid Integration[J]. Applied and Environmental Microbiology. 1987, 53(10): 2476.
    [86] Mogen B D, Oleson A E, Sparks R B, et al. Distribution and partial characterization of pCS1, a highly conserved plasmid present in Clavibacter michiganense subsp. sepedonicum[J]. Phytopathology. 1988, 78(10): 1381-1386.
    [87]刘建柱,崔玉东,李鹏,等.多重PCR检测猪瘟病毒、猪细小病毒、猪伪狂犬病病毒[J].中国兽医学报. 2003, 23(6): 535-537.
    [88] Henegariu O, Heerema N A, Dlouhy S R, et al. Multiplex PCR: critical parameters and step-by-step protocol[J]. Biotechniques. 1997, 23(3): 504-511.
    [89] Gilbert S A, Burton K M, Prins S E, et al. Typing of bovine viral diarrhea viruses directly from blood of persistently infected cattle by multiplex PCR[J]. Journal of Clinical Microbiology. 1999, 37(6): 2020.
    [90] Kent L, Mchugh T D, Billington O, et al. Demonstration of homology between IS6110 of Mycobacterium tuberculosis and DNAs of other Mycobacterium spp.[J]. Journal of Clinical Microbiology. 1995, 33(9): 2290.
    [91] Platzer C, Richter G,überla K, et al. Analysis of cytokine mRNA levels in interleukin-4-transgenic mice by quantitative polymerase chain reaction[J]. European Journal of Immunology. 1992, 22(5): 1179-1184.
    [92] Hyman L J, Birch P, Dellagi A, et al. A competitive PCR-based method for the detection and quantification of Erwinia carotovora subsp. atroseptica on potato tubers[J]. Letters in Applied Microbiology. 2000, 30(4): 330-335.
    [93] Dellagi A, Birch P R J, Heilbronn J, et al. cDNA-AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia carotovora[J]. Microbiology. 2000, 146(1): 165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700