小开河引黄灌区地下水动态演化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河三角洲地区浅层地下水主要受黄河侧渗补给、降水、历次海水入侵等多个影响因子的控制,浅层地下水矿化度大,地下水位较高且在不同时间段和不同的地理位置复杂多变。引黄灌区不仅提供了当地最主要的淡水资源,还以农田水利体系为纽带,把灌区范围沟通成一个整体,改变了区域水循环规律,使灌区地下水系统变为自然——人工复合系统。受灌区长期、大规模水资源开发等人类活动的干扰,大量引黄水量改变了区域内的自然景观和下垫面条件,地下水系统也进入受灌区水利体系与水利活动强烈影响下的新的演化时期。
     本文通过分析黄河三角洲典型引黄灌区——滨州市小开河引黄灌区建设前后区域地下水动态演化规律,从时间和空间上全面系统地分析小开河灌区地下水的动态变化特征,确定影响该地区地下水动态变化的关键驱动因子,以建立可持续发展的引黄灌溉模式,协调区域人、水与生态环境的关系,对黄河三角洲高效生态经济区具有重要作用。主要研究结果如下:
     1、黄河三角洲地区淡水资源短缺,土壤盐渍化严重,在多重因子的综合作用下,生态系统极不稳定。引黄灌区作为黄河三角洲地区的特殊区域,对该区域生态环境演变起着十分重要的作用。灌区水利体系因其对水的人为调控而居于生态系统的核心层次,人为因素对水、沙的干预状况决定了生态系统的演变与发展方向,如何实现引黄灌区水利体系与区域生态系统的正向耦合是黄河三角洲地区可持续发展的关键所在。
     2、小开河灌区建设前,黄河沿岸地区浅层地下水位保持基本稳定,尽管在不同年份地下水位变化较大,但多年间地下水位的年际变化与年降水量的变化基本吻合,与黄河干流的年径流量变化无明显的相关性,这与黄河的年均稳定入渗量及徒骇河对地下水的排泄密切相关。
     灌区中游和下游地区的浅层地下水位变化与降雨保持明显的一致性。在丰水年浅层地下水位上升,平水年地下水位基本稳定,枯水年浅层地下水位明显下降。在降雨入渗、蒸发排泄等主要条件的控制下,浅层地下水位年际变化幅度较大。
     3、小开河灌区建设后,由于小浪底水库运行后,黄河没有出现断流现象,使黄河侧渗对该区域的浅层地下水补给量基本稳定,上游地区的浅层地下水位基本保持相对稳定。另外,沿黄区域受徒骇河对区域内浅层地下水排泄的影响,以及灌区渠系节水衬砌、引黄节水灌溉等影响,引黄水量对区域内浅层地下水的影响偏小。
     中游地区地下水变化受到引黄灌溉等人类活动影响十分明显。由于引黄灌区对水资源的合理调控,引黄灌溉对地下水产生了良好的补源作用,所以,在干旱年份没有出现浅层地下水位大幅度下降的现象。由此可见,通过引黄灌区良好的调控,可以有效的稳定区域内的浅层地下水位,避免由引黄灌溉导致的浅层地下水位上升的现象。另外,各种措施对于防止地下水位升高、改善区域水平衡状况起到了良好作用。
     4、引黄灌溉对区域浅层地下水矿化度会产生一定的影响,浅层地下水中的可溶性盐分沿灌区内和地形倾斜方向一致的潜水流向进行了一定程度的重新分布,土壤和浅层地下水中的盐分向地势低洼和灌区下游区域汇集,出现重新分布的趋势。灌区大部分地区浅层地下水得到改善,在局部洼地和灌区下游地区,有地下水位升高和地下水矿化度上升的趋势。
     5、从黄河三角洲地区引黄灌区建设发展的曲折历史证明,如果引黄灌区不采取科学、合理的水资源调控措施与方法,会导致对地下水的严重不良影响。但是通过研究小开河灌区发现,科学的调控田间用水及采用合理的节水灌溉方式,既可以避免因引黄灌溉而产生的灌区浅层地下水位升高的现象和土壤次生盐渍化的产生,也能促进灌区浅层地下水水质的改善,从而减轻土壤盐碱化程度,改善灌区的生态环境。
     6、通过采用灰色关联分析法确定典型地区—中游地区地下水位影响因素的关联度发现,降水与地下水位的关联度最大。同时,结合SPSS统计分析软件,采用多元回归分析法建立了地下水动态模型。
     7、在黄河三角洲引黄灌区,仍然面临局部区域盐碱程度加重等问题,利用灌区水利体系,把节水与调控区域水、盐运动进行有机结合,通过进一步的科学试验确定以节水控盐为主的农田生态灌水定额,进而确定以维护区域生态安全的浅层地下水生态水位,维持灌区生态系统健康运行的引黄灌溉模式应是今后研究工作的重点。
The shallow groundwater in the area of the Yellow River is mainly affected by the lateral seepage recharge,rainfall,sea instruction and other factors. The salinity of groundwater and water table is big. And it is complexity changeable in different times and places.Irrigated areas not only provides the most important freshwater resources of local, but also communicates the irrigation district as a whole by the irrigation system. It has changed the law of the regional water cycle, and the groundwater irrigation system becomes natural—artificial composite system. By the irrigation district long-term, large-scale water resources development and other human activities, a large number of Yellow River water has changed the region's natural landscape and underlying surface. And the groundwater systems comes into the evolution of new period influenced by the irrigation system and the strong of water activities.
     The dynamic characteristics of groundwater is analyzed comprehensively and ystematicly by analyzing the evolution of groundwater before and after the construction of Binzhou Xiaokaihe Irrigation District in the Yellow River delta to determine the key driving factors of groundwater dynamic changes.It is to establish sustainable development irrigation and coordinate with people、water and regional ecological environment.And it plays an important role for the Yellow River Delta economic zone.The main results are as follows:
     1、Water is short and soil salinization is serious in the Yellow River Delta. The ecosystem is unstable under multiple factors. Irrigation Area as a special area in the Yellow River Delta, it plays an important role in evolution of ecological environment. The water system of irrigation area lives in the heart of the ecosystem for its artificial regulation of water. The evolution and development of the ecosystem are determined by intervention of human factors on water and sand. The complementation between irrigation water System and regional ecological system is the key to sustainable development in the Yellow River Irrigation area.
     2、The shallow groundwater along the Yellow River remains stable before the construction.
     The annual changes of groundwater level and annual precipitation are consistent despite large changes in groundwater level in different years.And there is no obvions correlation with the annual runoff of the Yellow River.This is closely related to the stable average annual infiltration and the groundwater discharge of Tuhai River.
     The changes between shallow groundwater and rainfall remains consistent in the middle of irrigation areas. Shallow groundwater rises in wet years, groundwater stable in average years, and groundwater decreases in significantly dry years. The inter-annual changes of shallow groundwater is big under the control of main conditions as rainfall infiltration and evaporation discharge.
     3、After construction of the Xiaokaihai irrigation district, shallow groundwater remained relatively stable in upstream region for stable lateral seepage of recharge due to the running of Xiaolangdi Reservoir. In addition, irrigation water less affected the shallow groundwater of the region because of discharge of Tuhai River, water-saving canal lining and water-saving irrigation.
     Irrigation and other human activities affects obviously groundwater in midstream. Irrigation produce a good effect on groundwater for a reasonable regulation of water resources in irrigated areas.Therefore, it does not appear the sharp decline of shallow groundwater in the dry years. Thus, shallow groundwater couled be stabilized by irrigation regulated and it can effectively t to prevent shallow groundwater rise due to irrigation. In addition, various measures play a good role of preventing water rise and improving the regional water balance.
     4、Irrigation have a certain impact on regional shallow groundwater, soluble salt in shallow groundwater was driving to a certain degree of redistribution along the dive flows whicn have the same direction of terrain slope in the irrigation area, soil and shallow groundwater salinity occurs the trend of re-distribution——-downstream to the low-lying and irrigated areas together.Most parts of the shallow groundwater in the irrigation area have been improved, in local depressions and downstream irrigation, the water table and groundwater salinity have the tends of rise.
     5、From the tortuous history of the construction and development in Yellow River Irrigation Area has proven, If you do not take scientific and rational water resources control measures and methods will lead to serious adverse effects on groundwater. But the discovery by studying Xiaokai irrigation, water the fields of science and use reasonable water-saving irrigation methods, not only Shallow water table rise and Soil salinization resulting from irrigation can be avoided ,but also promote the improvement of irrigation water quality of shallow groundwater. Thereby reducing the degree of soil salinity, improve irrigation of the ecological environment.
     6、Through the use of gray correlation analysis method to determine the correlation of groundwater level effected factors in the typical region—the middle area, discovered that precipitation have the greatest associated with the degree of water table. At the same time, with SPSS statistical analysis software, using multiple regression analysis established a dynamic model of groundwater.
     7、Yellow River irrigated areas in the local area continues to face issues suc-h as salinity levels increase. Using irrigation water system, to combine water-saveing, regional water control and salt movement, to determine control of salt-based water saving irrigation of farmland ecological scale through further scientific testing, and to determine to maintain regional ecological safety ecological water level of shallow groundwater to maintain ecosystem health and irrigation Irrigation operation mode should be the focus of future research work.
引文
鲍卫锋,黄介生,王维平.引黄水、地下水联合运用问题的研究[J ].灌溉排水,2002 (5):1-3
    别君,黄海军,樊辉等.现代黄河三角洲地面沉降及其原因分析.海洋地质与第四纪地质,2006,26(4):29-34
    陈葆仁,洪再吉,汪福析.地下水动态及其预测[M].北京:科学出版社,1988
    陈亚新,史海滨,田存旺.地下水与土壤盐渍化关系的动态模拟[J].水利学报.1997(5):77-83
    崔鹏.宁夏引黄灌区土壤盐渍化现状与地下水动态调控.宁夏农林科技,2009(6):142-143
    崔亚莉,邵景力.西北地区地下水的地质生态环境调节作用研究[J].地学前缘.2001,8(1):191-196
    丁宏伟,王贵玲,黄晓辉.红崖山水库径流量减少与民勤绿洲水资源危机分析[J].中国沙漠.2003,23(1):84-88
    邓聚龙.灰色系统理论简介[J].内蒙古电力,1993(3):51-52
    段永侯,肖国强.河北平原地下水资源与可持续利用[J].水文地质工程地质.2003,(1):2-7
    费宇红,张兆吉,张凤娥等.华北平原地下水位动态变化影响因素分析.河海大学学报,2005,33(5):538-541
    高鸿永,伍靖伟,段小亮等.地下水位对河套灌区生态环境的影响.干旱区资源与环境,2008,22(4):134-137
    龚家栋.黑河下游额济纳绿洲环境退化及综合治理[J].中国沙漠.1998
    顾峰雪,张远东,潘晓玲等.阜康绿洲土壤盐渍化与植物群落多样性的相关性分[J].资源科学.2002,24(3):42-48
    郭枫,郭相平.地下水埋深对作物的影响研究现状[J].中国农村水利水电,2008,(1):63-66
    郭占荣,刘花台.西北内陆灌区土壤次生盐渍化与地下水动态调控[J].农业环境保护,2002,21(1):45-48
    孔繁瑞,屈忠义,刘雅等.不同地下水埋深对土壤水、盐及作物生长影响的试验研究.中国水利水电,2009(5):44-48
    雷廷武,肖娟,王建平等.微咸水滴灌对盐碱地西瓜产量品质及土壤盐渍度的影响[J].水利学报,2003,34 (4):85-89
    李彬,王鹏涛,赵静雅等.人类活动对黄河三角洲环境的影响及对策.人民黄河,2010,32(4):70-71
    李庆朝.位山引黄灌区浅层地下水资源调控研究.地域研究与开发,2004,23(1):62-65
    李胜男,王根绪,邓伟等.黄河三角洲典型区域地下水动态分析[J].地理科学进展,27(5):49-55
    李昕,刘江.山东省引黄灌区地下水调控研究.地下水,2007,29(4):68-70
    李新举,刘宁,田素锋等.黄河三角洲垦利县可持续土地利用评价及对策研究.安全与环境学报,2005, 5(6):91-95
    梁俊勋.地下水动态的灰色预测[J].地下水,1992,14(1):7-9
    刘广明,杨劲松.地下水作用条件下土壤积盐规律研究[J].土壤学报,2003,40(1):65-69
    吕红,张静,刘萍.地下水科学调控与增效利用.地下水,2005,27(4):263-265
    毛伟兵,傅建国,孙玉霞等.引黄泥沙对小开河灌区土壤理化性状的影响[J].人民黄河,2009,31(8):66-68
    潘世兵,王忠静,孙江涛.基于GIS的黄河三角洲地下水开发适宜性评价模型.水文地质工程地质,2001(6):33-36
    齐仁贵.用地下水动态资料分析降雨入渗对地下水的补给[J].武汉水利电力大学学报, 1999,32(3):58-62
    齐兆庆,马嶙,徐长锁.黄河下游引黄供水的回顾与展望.人民黄河,1991(8):48-51.
    时连强,李九发,应铭.近、现代黄河三角洲发育演变研究进展.海洋科学进展,2005,23(1):96-101
    史晓楠,王全九,苏莹.微咸水水质对土壤水盐运移特征的影响[J].干旱区地理,2005,8(28):516-519
    束龙仓,范晓梅,王茂枚.现代黄河三角洲浅层地下水对降水的响应.资源科学,2009,31(9):1514-1521
    孙泉盛,赵春娟,许文.论地下水超采的生态保护措施[J].环境科学与管理, 2007.10
    唐莉华,雷慧闽,刘新兵等.位山灌区农业活动对地下水水质的影响.水资源保护,2000,26(5):33-37
    田家怡,王民.黄河断流对三角洲生态环境的影响与缓解对策的研究[J].生态学杂志,1997,16(3):39-44
    王根绪,程国栋.中国西北干旱区水资源利用及其生态环境问题[J].自然资源学报.1999,14(2):109-1160
    王根绪.地下水动态长期预报的灰色双向差分模型[J].勘察科学技术,1993(4):13-15
    王国重.对引黄水、地下水优化调控模型的研究.水资源与水工程学报.2004,15(2):44-48
    王汉祯.黄河三角洲地区潜水矿化度升高原因分析及对策.水资源保护,2000(3):21-25
    王娟,延军平,杜继稳.华北平原典型区地下水动态变化趋势及其区域响应.湖南师范大学自然科学学报,2009,32(4):102-107
    王明娜,向友珍.我国灌区地下水调控研究现状及其发展态势.2008,30(4):21-23
    王全九,毕远杰,吴忠东.微咸水灌溉技术与土壤水盐调控方法.武汉大学学报,2009,42(5):559-564
    王全九,徐益敏,王金栋等.咸水与微咸水在农业灌溉中的应用[J].灌溉排水,2002,21 (4) :73-77
    王琪,史基安,张中宁等.石羊河流域环境现状及其演化趋势分析[J].中国沙漠.2003,23(1):46-52
    王瑞燕,赵庚星,周伟等.县域生态环境脆弱性评价及其动态分析—以黄河三角洲垦利县为例.2009(7):3790-3798
    王仕琴,宋献方,王勤学等.华北平原浅层地下水水位动态变化.地理学报,2008,63(5):462-472
    王学金,郅兴桥,万鹏等.黄河三角洲湿地利用与影响因素分析[J].人民黄河, 2004, 26(10):10
    王颖,张永战.人类活动与黄河断流及其海岸环境影响[J].南京大学学报(自然科学版),1998,34(3):257-271
    武瑞锁.引黄灌区泥沙和盐渍化问题预防与处理方法研究[D].安徽:合肥工业大学,2005
    徐胜利.关注地下水区域变化动态为平衡调控地下水资源提供指导依据[J].河套水利,2004(1):23-25
    薛金香,闫美华.灌溉对农田水环境的影响.节水灌溉,2009(4):119-121
    杨建峰,刘士平.地下水潜埋条件下土壤水动态变化规律研究[J].灌溉排水,2001, 20(3):25-28
    杨建强,罗先香.土壤盐渍化与地下水动态特征关系研究[J].水土保持通报,1999,19(6):11-15
    杨建强,罗先香.土壤盐渍化与地下水动态特征关系研究[J].水土保持通报.1999,19(6):11-5
    杨玲媛,王根绪.近20 a来黑河中游张掖盆地地下水动态变化[J].冰川冻土,2005,27(2):290-296
    杨树青,史海滨,杨金忠等.干旱区微咸水灌溉对地下水环境影响的研究.水利学报,2007,38(5):565-574
    姚秀菊,安永会,李旭峰等.基于GIS的黄河三角洲地区浅层地下水开发潜力评价.勘察科学技术,2005(4):38-41
    姚秀菊,王洪德等.黄河三角洲地区地下水淡水(微咸水)的形成与演化[J].地理学报,2002(4):P375-378
    叶青超.黄河三角洲的地貌结构及发育模式[J].地理学报,1982,37(4): 345-362
    于国强,李占斌,张霞等.洛惠渠灌区地下水位动态模拟研究.2009,37(12):223-229
    于国强,李占斌,张霞等.洛惠渠灌区水土化学特性分析[J].水土保持通报,2009,29(1):103-107
    袁瑞强,宋献方,刘贯群.现代黄河三角洲上部冲积平原降水入渗补给量研究.自然资源学报,2010,25(10):1777-1785
    翟国静.灰色关联分析在水资源工程环境影响评价中的应用[J].水利学报,1997(1):68-72
    张波,刘桂仪,范立芹等.黄河三角洲南部地下水环境问题与对策.成果与方法,2004,20(5):51-54
    张长春,邵景力等.地下水位生态环境效应及生态环境指标.水文地质工程地质.2003.(3):6-l0
    张长春,邵景力等.地下水位生态环境效应及生态环境指标[J].水文地质工程地质,2003,(3):6-10
    张德静,东野广成,宋丽丽等.山东黄河三角洲自然保护区现状及保护对策[J].林业科技管理,2004(3):31-32
    张光辉,费宇红,李惠娣等.海河流域平原浅层地下水位持续下降动因与效应[J].干旱区资源与环境, 2002, 16(2):32-35
    张建新,汪永进,张兆干等.人类活动与黄河三角洲发育的关系[J].南京师范大学学报(自然科学版),1996,19(4):60-65
    张丽君.美国地下水资源研究进展与未来方向[J].国土资源科技进展.2000(1):31-37
    张平,李日运.降雨入渗补给地下水的影响因素[J].辽宁大学学报,1999,26(2):118-122
    张霞,李占斌,李鹏.洛惠渠灌区地下水位动态变化规律研究[J].西北农林科技大学学报,自然科学版,2007,35(8):223-22
    张效龙,孙永福,刘敦武.黄河三角洲地区地下水分析.海洋地质动态,2005,21(6):26-28
    张学英,包淑萍,冯平秀.卫宁灌区地下水动态规律及影响分析.水资源与水工程学报,2007,18(6):103-105
    赵辉,吕谋超,尚三林.引黄灌溉对商丘地区浅层地下水位动态影响研究.灌溉排水,2000,19(4):38-40
    周永青,陈宗团.黄河断流与黄河三角洲环境[J].海洋通报,1998,17(5):58-63
    朱长军,郝振纯等.二维灰色水质模型在地下水污染模拟中的应用[J].辽宁工程技术大学学报(自然科学版),2007,26(6):947-949
    左其亭.地下水动态预测的灰色周期外延组合预测模型[J].水文地质工程地质,1996(5):16-19
    Adams J B, Bate G C. Growth and photosynthetic performance of Phragmites australis in estuarine waters: a field and experimental evaluation[J]. Aquatic Botany,1999,64:359-367
    Aslam M., Huffaker R.C., Rains D.W. Early effects of salinity on nitrate assimilation in barley seedings[J]. Plant Physiol.1984.76:321-335
    Babu Rao P.,Subrahmanyam K.and Dhar R.L.Geoenvironmental effects of groundwaterregime in Andhra Pradesh,India[J].Environmental Geology.40(4-5):632-642 Bulletin,1994,30(4):146-157
    Carbon F,Girard G,Ledoux E. Modeling of nitrogen cycle infarm land areas[J].Fertilizer Research,1991, 27: 161-169
    Emery A C J,Anthony J R,Mary M P.Aneural network model for predicting aquifer water level elevations [J].Ground Water,2005,43(2):231-241
    Emery C J,Mary P,Emmanuel C.Application of artificial neural networks to complex groundwater management problems[J].Natural Resources Research,2003,12(4):303-320
    Gillham R.W.The capillary fringe and its effect on water-table response[J].Journal of Hydrology,1984,67(1-4):307-324
    H S Rifai.A geographic information system user interface for delineating well protection areas[J]. Groundwater,1993,31(3)
    Joannis N D,Pauline C,Joannis K T.Groundwater level forecasting using artificial neural networks [J].Journal of Hydrology,2005,309:229-240
    Kamaraju M.Groundwater potential evaluation of west Godavari district,Andhra Pradesh state, India; a GIS approach[J].Groundwater, 1996,34(2)
    Knotters M.,Walsum van P.E.V.Estimating fluctuation quantities from time series of water-table depths using models with as tochastic component[J].Journal of Hydrology,1997,197(1-4):25-46
    Lallahem S,Maniaa J, Hani A.On the use of neural networks to evaluate groundwater levels in fractured media [J].Journalof Hydrology, 2005,307:92-111
    Lee L.J.E.,Lawrence D.S.L.,Price M.Analysis of water-level response to rainfall and implications for recharge pathways in the Chalk aquifer,SE England[J].Journal of Hydrology,2006,330(3-4):604-620
    Mahmood Alam.Water resources in the Middle-East and the North-Africa PlummerJL.Water resourees Problems in west of Allleriea[J].Water Resource regions[J].Water Intemational,1989,14:122-127
    Robbins B D,Bell S S.Dynamics of a subtidal seagrass landscape:seasonal and annual changein relation to water depth[J].Ecology,2000, 81(5): 1193-1205
    Shaffer M J, Larson W E. NTRM, A soil crop simulation model for nitrogen, tillage, and crop residue management[J]. USDA ConsRes Rep, 1987, 34(1): 103
    sihrintzis V A.Use of geographic information systems in water resources:a review[J].Water Resources Management,1996,10(4)
    Vereecken H, Vanclooster M, Swerts M, et al..Simulating water and nitrogen behavior in soils cropped with winter wheat[J].Fertilizer Research, 1991, 27: 233-243
    Viventsova E.A,VoronovA.N.Groundwater discharge to the Gulf of Finland(Baltic Sea):ecological aspects[J].Environmental Geology.2003(45):221-225
    Von A J R,Mass K.The method of impulse response moments:a new method integrating groundwater and ecohydrological modeling[M]//Hans G,Norman E P,Eduard H,et al.Imapact of human avtivity on groundwater.Oxfordshire:IAHS Press,2001,269:51-58
    VonAJ R,Mass K.The method of impulse response moments:a new method integrating groundwater and eco-hydrological modeling[J].IAHS Publ. 2001.269:51-58
    Wu Jinquan,Zhang Renduo,Yang Jinzhong.Estimating infiltration recharge using a response function model[J].Journal of Hydrology,1997,198(1-4):124-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700