样品前处理技术结合高效液相色谱在食品安全检验中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
样品前处理技术(Sample pretreatment technology)是指样品的制备和对样品采用合适的分解和溶解方法以及对待测组分进行提取、净化和浓缩的过程,使被测组分转变成可测定的形式,从而进行定量、定性分析。样品前处理的目的是消除基体干扰,提高方法的准确度、精密度、选择性和灵敏度。因此,样品前处理是分析检测过程的关键环节,若选择的前处理方法不当,可能会导致某些组分损失、干扰组分的影响不能完全除去或引入新的杂质。然而只要检测仪器稳定可靠,检测结果的重复性和准确性就主要取决于样品前处理。一种新的检测方法的灵敏度和分析速度往往也与样品前处理过程及其复杂程度有着至关重要的联系。
     高效液相色谱(High performance chromatography, HPLC)法是色谱分析中最常用到的对物质进行定性、定量分析的一种方法,它跟经典液相色谱法相比较,具有分析速度快、分离效能高、选择性高、检测灵敏度高和操作自动化等特点。因此,高效液相色谱法在医药、生化、天然产物、环境分析、农业分析以及食品安全检验等领域应用非常广泛。
     本文采用了固相萃取(SPE)、浊点萃取(CPE)和离子液体分散液相微萃取(IL-DLME)等快速有效的样品前处理技术对饲料中的β-兴奋剂以及饮料中的赤藓红进行提纯,并结合高效液相色谱对其进行分离检测。
     主要研究内容如下:
     1.固相萃取结合超高效液相色谱法同时测定饲料中的西马特罗、沙丁胺醇、特布他林和莱克多巴胺
     建立了固相萃取结合超高效液相色谱(UPLC)同时测定饲料中的西马特罗、沙丁胺醇、特布他林和莱可多巴胺的方法。饲料混合均匀后,用甲醇提取,振荡离心,取上清液氮气吹干后用于MCX柱净化。四种β-兴奋剂的线性范围为0.05-1μg mL-1,相关系数都高于0.999。平均回收率在90.1%到101.4%之间,相对标准偏差小于8.0%。
     2.固相萃取结合超高效液相色谱法同时测定饲料中五种β-兴奋剂采用固相萃取提纯饲料中的五种β-兴奋剂(盐酸多巴胺、西马特罗、沙丁胺醇、特布他林和莱克多巴胺),并通过超高效液相色谱(UPLC)对其进行分离测定。饲料混合均匀后,用甲醇提取,振荡离心,取等量上清液两份:一份酸化后直接过酸性氧化铝柱,用1 mol L-1盐酸-甲醇(1/9,v/v)洗脱;另一份氮气吹干后用2%乙酸水溶液溶解后过MCX柱,5%氨化甲醇洗脱。合并两种洗脱液,40℃下氮气吹干,加1.0 mL浓度为10 mM的磷酸二氢钠溶液溶解,过0.22μm滤膜后测定。五种p-兴奋剂的线性范围为0.05-1μg ml-1,相关系数都高于0.996。平均回收率在77.9%到97.0%之间,相对标准偏差小于4.3%。
     3.浊点萃取结合高效液相色谱测定饮料中的赤藓红
     用非离子表面活性剂Triton X-114对饮料中的赤藓红进行萃取,然后用紫外检测器结合高效液相色谱进行检测,建立了一种检测饮料中赤藓红的新分析方法。分别取10.0 mL加入了不同浓度标准溶液的饮料进行浊点萃取,富集因子为50。方法的线性范围为0.002-5μg mL-1,相关系数都大于0.999,检出限(LOD)和定量限(LOQ)分别为0.5 ng mL-1和1.5 ng mL-1.平均回收率在86.5%到97.1%之间,相对标准偏差小于5.7%。
     4.离子液体分散液相微萃取结合高效液相色谱测定饮料中的赤藓红
     离子液体分散液相微萃取(IL-DLME)结合高效液相色谱第一次运用于测定饮料中的赤藓红。这种技术选择了不易挥发的有机溶剂离子液体作为萃取溶剂,集萃取与浓缩于一体。本文采用的离子液体是1-辛基-3-甲基咪唑六氟磷酸盐([C8MIM][PF6]),并对离子液体的用量、甲醇的体积、工作溶液的pH值、萃取时间和溶解温度进行了优化。方法的线性范围为0.005-5μg mL-1,相关系数都大于0.999,检出限(LOD)和定量限(LOQ)分别为2.0 ng mL-1和6.0 ng mL-1。平均回收率在83.6%到95.6%之间,相对标准偏差小于8.4%。这种方法具有操作简单、快速、成本低、回收率和富集因子高等优点。
Sample pretreatment technology refers to the sample preparation and sample decomposition and dissolution using appropriate methods and the process of treatment of test components through extracted, purified and concentrated, so that the determined analytes can be transformed into the form to be quantitative and qualitative analysis and detection. Sample pretreatment is designed to eliminate the matrix interference, improve accuracy, precision, selectivity and sensitivity of the method. Therefore, sample pretreatment is the key to the process of analysis and detection. If you choose the improper pretreatment methods, it may often lead to loss of certain components, the impact of disturbance component can not be completely removed or introduced new impurities. But as long as the detection instruments are stable and reliable, reproducibility and accuracy of test results mainly depends on the sample preparation. Sensitivity of a new kinds of detection method and its analysis speed also have an important relationship with the sample pretreatment process and the complexity of sample pretreatment.
     High performance liquid chromatography (HPLC) method is the most commonly used chromatographic method for qualitative and quantitative analysis of substances. Compared with the classical liquid chromatography, HPLC has the characteristics with high analysis speed, high separation efficiency, high selectivity, high sensitivity and operation of automation and so on. Therefore, high performance liquid chromatography is widely used in the fields of medicine, biochemistry, natural products, environmental analysis, agricultural analysis and food safety inspection.
     In this paper, several fast and efficient sample pretreatment techniques such as solid phase extraction, cloud point extraction and ionic liquid dispersive liquid-phase microextraction are used for purification ofβ-agonists in feed and erythrosine in beverages, combined with HPLC for separation and detection.
     The main contents are as follows:
     1. Simultaneous determination of cimaterol, salbutamol, terbutaline, and ractopamine in feed by solid phase extraction coupled to ultra performance liquid chromatography
     An ultra performance liquid chromatography (UPLC) method was established for the simultaneous determination of cimaterol, salbutamol, terbutaline, and ractopamine in feed. Target compounds were extracted with methanol and centrifuged. The supernatant was then transferred and concentrated, and applied to a solid phase extraction MCX cartridge for clean-up before UPLC analysis. The calibration curves for the four beta-agonists were good linear in concentration range of 0.05-1μg mL-'with the correlation coefficients (r) over 0.999. The average recoveries were in the range of 90.1 to 101.4% with relative standard deviation values lower than 8.0%.
     2. Simultaneous determination of fiveβ-agonists in feed by solid phase extraction coupled to ultra performance liquid chromatography
     An ultra performance liquid chromatography (UPLC) method was established for the simultaneous determination of dopamine, cimaterol, salbutamol, terbutaline, and ractopamine in feed. Target compounds were extracted with methanol and centrifuged. Two equal supernatants were taken:one was applied to a solid phase extraction Alumina A cartridge after acidified and the other was applied to a MCX cartridge when it was concentrated and dissolved in 2% acetic acid. The former was eluted with 1 mol L-1 hydrochloric acid-methanol (1/9, v/v) and the later was eluted with 5%(v/v) ammonia hydroxide in methanol. The elutes were combined and then evaporated to dryness under a stream of nitrogen at 40℃and dissolved in 1.0 mL of sodium dihydrogen phosphate (10 mM, pH 2.7) for UPLC analysis after being filtered through a 0.22μm membrane. The calibration curves for the five beta-agonists were good linear in concentration range of 0.05-1μg mL-1 with the correlation coefficients (r) over 0.996. The average recoveries were in the range of 77.9 to 99.7% with relative standard deviation values lower than4.3%.
     3. Cloud point preconcentration to the determination of erythrosine in soft drinks by high-performance liquid chromatography with UV detection
     A new analytical method for the determination of erythrosine in soft drinks was developed using the cloud point extraction of non-ionic surfactant (Triton X-114) prior to high-performance liquid chromatography with ultraviolet detection (HPLC-UV) analysis. The comound was extracted from 10.0 mL of different soft drinks and a preconcentration factor of 50 was obtained. The proposed method showed good linear relationship in the concentration range of 0.002-5μg mL-with the correlation coefficient over 0.999. The limit of detection (LOD) and limit of quantification (LOQ) were 0.5 ng mL-1 and 1.5 ng mL-1, respectively. The average recoveries were in the range from 86.5% to 97.1% with relative standard deviation value lower than 5.7%.
     4. Determination of erythrosine in soft drinks by ionic liquid dispersive liquid-phase microextraction coupled with high-performance liquid chromatography
     A new approach for the determination of erythrosine in soft drinks by ionic liquid based dispersive liquid-phase microextraction (IL-DLME) prior to high-performance liquid chromatography with ultraviolet detection (HPLC-UV) was developed. This technique selects the ionic liquid instead of a volatile organic solvent as the extraction solvent, and combines extraction and concentration of the analyte into one step. 1-Octyl-3-methylimidazolium hexafluorophosphate [C8MIM][PF6] was used as the extraction solvent and the factors affecting the extraction efficiency such as the volume of [C8MIM][PF6], amount of methanol, pH of working solutions, extraction time, and dissoluble temperature were optimized. The proposed method showed good linear relationship in the concentration range of 0.005-5μg mL-1 with the correlation coefficient (r) over 0.999. The limit of detection (LOD) and limit of quantification (LOQ) were 2.0 ng mL-1 and 6.0 ng mL-1, respectively. The average recoveries were in the range from 83.6% to 95.6% with relative standard deviation values lower than 8.4%. This method has the advantages of simplicity of operation, rapidity, low cost, high recovery, and enrichment factor.
引文
[1]唐英章.现代食品安全检测技术[M].北京:科学出版社,2004:5-36.
    [2]张道宁,吴采樱.固相微萃取的进展[J].化学通报,1998(3):1-8.
    [3]蔡亚岐,江桂斌.固相微萃取-液相色谱联用技术研究进展[J].化学进展,2004,16:708-716.
    [4]Eisert R, Pawliszyn J. New trends in solid-phase micro-extraction[J]. Crit Rev Anal Chem,1997,27(2):103-135.
    [5]Lord H, Pawliszyn J. Evolution of solid-phase microextraction technology[J]. J Chromatogr A,2000,885:153-193.
    [6]Barker SA. Matrix solid-phase dispersion[J]. J Chromatogr A,2000,885:115-127.
    [7]Pauling LJA. Theory of the structure and p rocess of formation of antibodies [J]. Am Chem Soc,1940,62(3):2643-2657.
    [8]Dichey FH. The preparation of specific adsobents[J]. J Proc Natl Acad Sci, USA, 1949,35:277-299.
    [9]Wulff G, Sahan A, Zabrocki K. Enzyme-analongue built polymers and their use for the resolution of racemates[J]. Tetrahedron Lett,1973,14(44):4329-4332.
    [10]Martn-Esteban A. Molecularly imprinted polymers:new molecularre cognition materials for selective solid-phase extraction of organic compounds[J]. Fresenius Anal Chem,2001,370(7):795-802.
    [11]Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates-away towards artificial antibodies[J]. Angew Chemie Int Ed,1995,34: 1812-1832.
    [12]Andersson L. Molecular imprinting for drug bioanalysis:A review on the application of imprinted polymers to solid-phase extraction and binding assay[J]. J Chromatogr B,2000,739(1):163-173.
    [13]Lanza F, Sellergren B. The application of molecular imprinting technology to solid phase extraction[J]. Chromatographia,2001,53(11-12):599-611.
    [14]Sellergren B. Molecularly imprinted polymers:man-made mimics of antibodies and their applications in analytical chemistry[M]. Amsterdam,2001:29-33.
    [15]胡小刚,李科.分子印迹技术在样品前处理中的应用[J].分析化学,2006(07):1035-1041.
    [16]Lawrence JF, Menard C. Determination of clenbuterol in beef liver and muscle tissue using immunoaffinity chromatography cleanup and liquid chromatography with ultraviolet absorbance detection[J]. J Chromatogr B,1997,696:291-297.
    [17]Rashid BA, Kwasowski P, Stevenson D. Solid phase extraction of clenbuterol from plasma using immunoaffinity followed by HPLC[J]. J Pharmaceut Biomed, 1999,21:635-639.
    [18]Koole A, Bosman J, Franke JP, Zeeuw RA. Multiresidue analysis of β2-agonists in human and calf urine using multimodal solid-phase extraction and high-permance liquid chromatography with electrochemical detection[J]. J Chromatogr B.1999, 726(1):149-156.
    [19]Cooper AD, Shepherd MJ. Evaluation of a novel immunoaffinity phase for the purification of cattle liver extracts prior to high-performance liquid chromatographic determination of β-agonists[J]. Food Agr Immunol,1996,8: 205-213.
    [20]Pickett RJH, Sauer MJ. Determination of clenbuterol in bovine urine by enzyme immunoassay following concentration and clean-up by immunoaffinity chromatography[J]. Anal Chim Acta,1993,275:269-273.
    [21]朱霞石,朱小红,封克,王葆生.浊点萃取-石墨炉原子吸收光谱法测定环境样品中的痕量镉[J].分析化学,2006,34(7):951-954.
    [22]Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution[J]. J Bio Chem,1981,256(4):1604-1607.
    [23]Kozani RR, Assadi Y, Shemirani F, Milani Hosseini MR, Jamali MR. Part-per-trillion determination of chlorobenzenes in water using dispersive liquid-liquid microextraction combined gas chromatography-electron capture detection[J]. Talanta,2007,72(2):387-393.
    [24]Rezaee M, ssadi Y. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. J Chromatogr A,2006,1116(1/2):1-9.
    [25]Richter BE. Extraction of hydrocarbon contamination from soils using accelerated solvent extraction[J]. J Chromatogr A,2000,874:217-224.
    [26]Satio K, Sjodin A, Sandau CD, Davis MD, Nakazawa H, Matsuk Y, Patterson DG. Development of a accelerated solvent extraction and gel permeation chromatography analytical method for measuring persistent organohalogen compounds in adipose and organ tissue analysis[J]. Chemosphere,2004,57(5): 373-381.
    [27]Tao S, Guo LQ, Wang XJ, Liu WX, Ju TZ, Dawson R, Cao J, Xu FL, Li BG. Use of sequential ASE extraction to evaluate the bioavailability of DDT and its metabolites to wheat roots in soils with various organic carbon contents[J]. Sci Total Environ,2004,320:1-9.
    [28]张镜澄.超临界流体萃取[M].北京:化学工业出版社,2000:5-8.
    [29]Castro MD. Analytical Supercritical Fluid Extraction:Chapter 3[M]. Berlin: Springer-verlag,1994:79-168.
    [30]Kingston HM, Jassie LB分析化学中的微波制样技术-原理及应用[M].郭振库卜玉兰,刘正阳译.北京:气象出版社,1992:25-50.
    [31]崔政伟.微波技术在食品工程中的新应用展望[J].包装与食品机械,2003,21(4):1-2.
    [1]Commission of the European Union, Off J Eur Commun, L125(1996):10-18.
    [2]Commission of the European Union, Off J Eur Commun, L70(1998):16-18.
    [3]Kootstra PR, Kuijpers CJPF, Wubs KL, van Doom D, Sterk SS, van Ginkel LA, Stephany RW. The analysis of beta-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening[J]. Anal Chim Acta,2005,529: 75-81.
    [4]Zhang Y, Zhang ZR. Simple determination of terbutaline in dog plasma by column-switching liquid chromatography[J].J Chromatogr B,2004,805:211-214.
    [5]Joyce KB, Jones AE, Scott RJ, Biddlecombe RA, Pleasance S. Determination the enantiomers of sulbutamol and its 4-O-sulfate metabolites in biological matrixs by chiral liquid chromatography tandem mass spectrometry[J]. Rapid Commun Mass Sp,1998,12(23):1899-1910.
    [6]Shishani E, Chai SC, Jamokha S, Aznar G, Hoffman MK. Determination of ractopamine in animal tissues by liquid chromatography-fluorescence and liquid chromatography/tandem mass spectrometry[J]. Anal Chim Acta,2003,483: 137-145.
    [7]Koole A, Bosman J, Franke JP, de Zeeuw RA. Multiresidue analysis of β2-agonists in human and calf urine using multimodal solid-phase extraction and high-performance liquid chromatography with electrochemical detection[J]. J Chromatogr B,1999,726:149-156.
    [8]Keskin S, Ozer D, Temizer A. Gas chromotography-mass spectrometric analysis of clenbuterol from urine[J]. J Pharmaceut Biomed,1998,18:639-644.
    [9]Whaites LX, Murby EJ. Determination of clenbuterol in bovine urine using gas chromatography-mass spectrometry following clean-up on an ion-exchange resin[J]. J Chromatogr B,1999,728(1):67-73.
    [10]Amendola L, Colamonici C, Rossi F, Botre F. Determination of clenbuterol in human urine by GC-MS-MS-MS:confirmation analysis in antidoping control[J]. J Chromatogr B,2002,773:7-16.
    [11]Crooks SRH, Elliott CT, Thompson CS, McCaughey WJ. Comparison and evaluation of the specificity and binding capacity of commercial and in house affinity columns used in sample preparation for analysis of growth-promoting drugs[J]. J Chromatogr B,1997,690:161-172.
    [12]dos Ramos FJ. β2-Agonist extraction procedures for chromatographic analysis[J]. J Chromatogr A,2000,880:69-83.
    [13]Aresta A, Calvano CD, Palmisano F, Zambonin CG. Determination of clenbuterol in human urine and serum by solid-phase microextraction coupled to liquid chromatography[J]. J Pharmaceut Biomed,2008,47:641-645.
    [14]Posyniak A, Zmudzki J, Niedzielska J. Screening procedures for clenbuterol residue determination in bovine urine and liver matrices using enzyme-linked immunosorbent assay and liquid chromatography[J]. Anal Chim Acta,2003,483: 61-67.
    [15]Blanca J, Munoz P, Morgado M, Mendez N, Aranda A. Determination of clenbuterol,ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry[J]. Anal Chim Acta,2005,529: 199-205.
    [16]Shao B, Jia XF, Zhang J, Meng J, Wu YN, Duan HJ, Tu XM. Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry[J]. Food Chem,2009,114: 1115-1121.
    [17]Prezelj A, Obreza A, Pecar S. Abuse of clenbuterol and its detection [J]. Curr Med Chem,2003,10(4):281-290.
    [18]Shi YF, Huang Y, Duan JP, Chen HQ, Chen GN. Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis [J]. J Chromatogr A,2006,1125: 124-128.
    [19]Chen Q, Fan LY, Zhang W, Cao CX. Separation and determination of abused drugs clenbuterol and salbutamol from complex extractants in swine feed by capillary zone electrophoresis with simple pretreatment[J]. Talanta,2008,76: 282-287.
    [20]Ventura R, Damasceno L, FarreM, Cardoso J, Segura J. Analytical methodology for the detection of β-agonists in urine by gas chromatography-mass spectrometry for application in doping control[J]. Anal Chim Acta,2000,418:79-92.
    [21]He LM, Su YJ, Zeng ZL, Liu YH, Huang XH. Determination of ractopamine andclenbuterol in feeds by gas chromatography-mass spectrometry[J]. Anim Feed Sci Tech,2007,132:316-323.
    [22]Plumb R, Perez JC, Granger J, Beattie I, Joncour K, Wright A. Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry[J]. Rapid Commun Mass Sp,2004,18(19):2331-2337.
    [23]Stephen ACW, Pierre T. Use of ultraperformance liquid chromatography in pharmaceutical development[J]. J Chromatogr A,2006,1119(1-2):140-146.
    [24]Li R, Dong L, Huang J. Ultra performance liquid chromatography-tandem mass spectrometry for the determination of epirubicin in human plasma[J]. Anal Chim Acta,2005,546:167-173.
    [1]张雷,张骊,朱永林,王树槐,汪霞.超高效液相色谱-串联质谱法检测动物源性食品中残留的9种β-受体激动剂[J].色谱,2008,26(6):709-713.
    [2]Shishani E, Chai SC, Jamokha S, Aznar G, Hoffman MK. Determination of ractopamine in animal tissues by liquid chromatography-fluorescence and liquid chromatography/tandem mass spectrometry[J]. Anal Chim Acta,2003,483: 137-145.
    [3]Aresta A, Calvano CD, Palmisano F, Zambonin CG. Determination of clenbuterol in human urine and serum by solid-phase microextraction coupled to liquid chromatography[J]. J Pharmaceut Biomed,2008,47:641-645.
    [4]Posyniak A, Zmudzki J, Niedzielska J. Screening procedures for clenbuterolresidue determination in bovine urine and liver matrices using enzyme-linked immunosorbent assay and liquid chromatography[J]. Anal Chim Acta,2003,483: 61-67.
    [5]Kootstra PR, Kuijpers CJPF, Wubs KL, van Doom D, Sterk SS, van Ginkel LA, Stephany RW. The analysis of beta-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening[J]. Anal Chim Acta,2005,529: 75-81.
    [6]Blanca J, Munoz P, Morgado M, Mendez N, Aranda A. Determination of clenbuterol,ractopamine and zilpaterol in liver and urine by liquid chromatography tandem mass spectrometry[J]. Anal Chim Acta,2005,529: 199-205.
    [7]Shao B, Jia XF, Zhang J, Meng J, Wu YN, Duan HJ, Tu XM. Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry[J]. Food Chem,2009,114: 1115-1121.
    [8]Ramos F, Santos C, Cristina S, Silva A, Noronha DS, Maria I. β2-adrenergic agonist residues:simultaneous methyl- and butylboronic derivatization for confirmatory analysis by gas chromatography-mass spectrometry[J]. J Chromatogr B,1998,716 (1-2):366-370.
    [9]Whaites LX, Murby EJ. Determination of clenbuterol in bovine urine using gas chromatography-mass spectrometry following clean-up on an ion-exchange resin[J]. J Chromatogr B,1999,728(1):67-73.
    [10]Hernandez-Carrasquilla M. Gas chromatography-mass spectrometry analysis of β2-agonists in bovine retina[J]. Anal Chim Acta,2000,408:285-290.
    [11]Ventura R, Damasceno L, Farre M, Cardoso J, Segura J. Analytical methodology for the detection of β2-agonists in urine by gas chromatography-mass spectrometry for application in doping control[J]. Anal Chim Acta,2000,418: 79-92.
    [12]He LM, Su YJ, Zeng ZL, Liu YH, Huang XH. Determination of ractopamine andclenbuterol in feeds by gas chromatography-mass spectrometry[J]. Anim Feed Sci Tech,2007,132:316-323.
    [13]Shi YF, Huang Y, Duan JP, Chen HQ, Chen GN. Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis[J]. J Chromatogr A,2006,1125: 124-128.
    [14]Chen Q, Fan LY, Zhang W, Cao CX. Separation and determination of abused drugs clenbuterol and salbutamol from complex extractants in swine feed by capillary zone electrophoresis with simple pretreatment[J]. Talanta,2008,76: 282-287.
    [15]Crooks SRH, Elliott CT, Thompson CS, McCaughey WJ. Comparison and evaluation of the specificity and binding capacity of commercial and in house affinity columns used in sample preparation for analysis of growth-promoting drugs[J]. J Chromatogr B,1997,690:161-172.
    [16]王炼,黎源倩,周运柯.超高效液相色谱测定猪组织中4种β2-兴奋剂[J].分析实验室,2009,28(3):78-81.
    [1]Minioti KS, Sakellariou CF, Thomaidis NS. Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector[J]. Anal Chim Acta,2007,583: 103-110.
    [2]EC, Directive of the European Parliament and of the council 94/36/EC of June 30, 1994 on colours for use in foodstuffs, Official J, L237,13,10/9/1994.
    [3]Oka H, Ikaia Y, Kawamura N, Yamada M, Inoue H, Ohno T, Inagaki K, Kuno A, Yamamoto N. Simple method for the analysis of food dyes on reversed-phase thin-layer plates [J]. J Chromatogr,1987,411:437-444.
    [4]Oka H, Ikaia Y, Ohno T, Kawamura N, Hayakawa J, Harada K, Suzuki M. Identification of unlawful food dyes by thin-layer chromatography-fast atom bombardment mass spectrometry[J]. J Chromatogr A,1994,674(1-2):301-307.
    [5]Williams ML. Rapid Separation of Soft Drinks Ingredients using High Performance Liquid Chromatography[J]. Food Chem,1986,22:235-244.
    [6]Gennaro MC, Gioannini E, Angelino S, Aigotti R, Giacosa D. Identification and determination of red dyes in confectionery by ion-interaction high-performance liquid chromatography[J]. J Chromatogr A,1997,767(1-2):87-92.
    [7]Kirschbaum J, Krause C, Pfalzgraf S, Bruckner H. Development and evaluation of an HPLC-DAD method for determination of synthetic food colorants[J]. Chromatographia,2003,57:115-119.
    [8]Greenway GM, Kometa N, Macrae R. The determination of food colours by HPLC with on-line dialysis for sample preparation[J]. Food Chem,1992,43(2):137-140.
    [9]Chen QC, Mou SF, Hou X.P, Riviello JM, Ni ZM. Determination of eight synthetic food colorants in drinks by high-performance ion chromatography[J]. J Chromatogr A,1998,827(1):73-81.
    [10]Cruces Blanco C, Garcia Campana AM, Ales Barrero F. Derivative spectrophotometric resolution of mixtures of the food colourants Tartrazine, Amaranth and Curcumin in a micellar medium[J]. Talanta,1996,43(7): 1019-1027.
    [11]Berzas Nevado JJ, Rodriguez Flores J, Guiberteau Cabanillas C, Villasenor Llerena MJ, Contento Salcedo A. Resolution of ternary mixtures of Tartrazine, Sunset yellow and Ponceau 4R by derivative spectrophotometric ratio spectrum-zero crossing method in commercial foods[J]. Talanta,1998,46(5): 933-942.
    [12]U. Ozgiir M, Alpdogan G, Koyuncu I. Zero-crossing derivative spectrophotometric determination of mixtures of sunset yellow and erythrosine in pure form and in tablets[J]. Anal Lett,2002,35(4):721-732.
    [13]Vidotti EC, Cancino JC, Oliveira CC, Rollemberg MCE. Simultaneous Determination of Food Dyes by First Derivative Spectrophotometry with Sorption onto Polyurethane Foam[J]. Anal Sci,2005,21:149-153.
    [14]Gianotti V, Angioi S, Gosetti F, Marengo E, Gennaro MC. Chemometrically Assisted Development of IP-RP-HPLC and Spectrophotometric Methods for the Identification and Determination of Synthetic Dyes in Commercial Soft Drinks[J]. J Liq Chromatogr Relat Technol,2005,28:923-937.
    [15]Ni Y, Bai J, Jin L. Multicomponent chemometric determination of colorant mixtures by voltammetry[J]. Anal Lett,1997,30:1761-1777.
    [16]Combeau S, Chatelut M, Vittori O. Identification and simultaneous determination of Azorubin, Allura red and Ponceau 4R by differential pulse polarography: application to soft drinks[J]. Talanta,2002,56:115-122.
    [17]Ryvolova M, Taborsky P, Vrabel P, Krasensky P, Preisler J. Sensitive determination of erythrosine and other red food colorants using capillary electrophoresis with laser-induced fluorescence detection[J]. J Chromatogr A, 2007,1141(2):206-211.
    [18]Mai TD, Schmid S, Muller B, Hauser PC. Capillary electrophoresis with contactless conductivity detection coupled to a sequential injection analysis manifold for extended automated monitoring applications[J]. Anal Chim Acta, 2010,665(1):1-6.
    [19]De Villiers A, Alberts F, Lynen F, Crouch A, Sandra P. Evaluation of liquid chromatography and capillary electrophoresis for the elucidation of the artificial colorants brilliant blue and axorubine in red wines[J]. Chromatographia,2003,58: 393-397.
    [20]Boyce MC. Determination of additives in food by capillary electrophoresis[J]. Electrophoresis,2001,22:1447-1459.
    [21]Watanabe T, Terabe S. Analysis of natural food pigments by capillary electrophoresis[J]. J Chromatogr A,2000,880:311-322.
    [22]Evans L. Separation and quantitation of components in FD&C Red No.3 using capillary electrophoresis[J]. J Chromatogr A,2003,991(2):275-280.
    [23]Del Giovine L, Piccioli Bocca A. Determination of synthetic dyes in ice-cream by capillary electrophoresis[J]. Food Control,2003,14(3):131-135.
    [24]Miura J, Ishii H, Watanabe H. Extraction and separation of nickel chelate of 1-(2-thiazolylazo)-2-naphthol in nonionic surfactant solution[J]. Bunseki Kagaku, 1976,25(11):808-809.
    [25]Jia GF, Lv CG, Zhu WT, Qiu J, Wang XQ, Zhou ZQ. Applicability of cloud point extraction coupled with microwave-assisted back-extraction to the determination of organophosphorus pesticides in human urine by gas chromatography with flame photometry detection[J]. J Hazard Mater,2008,159(2-3):300-305.
    [26]Calvo Seronero L, Laespada EF, Perez-Pavon JL, Moreno-Cordero M. Cloud point preconcentration of rather polar compounds:application to the high-performance liquid chromatographic determination of priority pollutant chlorophenols[J]. J Chromatogr A,2000,897:171-176.
    [1]Combes RD, Haveland-Smith RB. A review of the genotoxicity of food, drug and cosmetic colors and other azo, triphenylmethane and xanthenes dye[J]. Mutat Res-Fund Mol M,1982(2),98:101-243.
    [2]Collins TFX, Black TN, O'Donnell Jr. MW, Shackelford ME, Bulhack P. Teratogenic potential of FD and C Red No.3 when given in drinking water[J]. Food Chem Toxicol,1993,31:161-167.
    [3]Ni Y, Bai J, Jin L. Multicomponent chemometric determination of colorant mixtures by voltammetry[J]. Anal Lett,1997,30:1761-1777.
    [4]Combeau S, Chatelut M, Vittori O. Evaluating the significance threshold in robustness testing. A critical discussion on the influence of time in molecular fluorescence spectrometry[J]. Talanta,2002,56(1):115-122.
    [5]Chanlon S, Joly-Pottuz L, Chatelut M, Vittori O, Cretier JL. Determination of Carmoisine, Allura red and Poneeau 4R in sweets and soft drinks by differential pulse polarography[J]. J Food Compos Anal,2005,18:503-515.
    [6]Cruses Blanco C, Garcia Campana AM, Ales Barrero F. Derivative spectrophotometric resolution of mixtures of the food colourants Tartrazine, Amaranth and Curcumin in a micellar medium[J]. Talanta,1996,43(7): 1019-1027.
    [7]Berzas Nevado JJ, Rodriguez Flores J, Guiberteau Cabanillas C, Villasenor Llerena MJ, Contento Salcedo A. Resolution of ternary mixtures of Tartrazine, Sunset yellow and Ponceau 4R by derivative spectrophotometric ratio spectrum-zero crossing method in commercial foods[J]. Talanta,1998,46(5):933-942.
    [8]U. Ozgur M, Alpdogan G, Koyuncu I. Zero-crossing derivative spectrophotometric determination of mixtures of sunset yellow and erythrosine in pure form and in tablets[J]. Anal Lett,2002,35(4):721-732.
    [9]Vidotti EC, Cancino JC, Oliveira CC, Rollemberg MDC. Simultaneous Determination of Food Dyes by First Derivative Spectrophotometry with Sorption onto Polyurethane Foam[J]. Anal Sci,2005,21(2):149-153.
    [10]Gianotti V, Angioi S, Gosetti F, Marengo E, Gennaro MC. Chemometrically Assisted Development of IP-RP-HPLC and Spectrophotometric Methods for the Identification and Determination of Synthetic Dyes in Commercial Soft Drinks[J]. J Liq Chromatogr Relat Technol,2005,28:923-937.
    [11]Ni YN, Gong XF. Simultaneous spectrophotometric determination of mixtures of food colorants[J]. Anal Chim Acta,1997,354(1-3):163-171.
    [12]Dinc E, Baydan E, Kanbur M, Onur F. Spectrophotometric multicomponent analysis of a mixture of metamizol, acetaminophen and caffeine in pharmaceutical formulations by two chemometric techniques[J]. Talanta,2002,58: 579-594.
    [13]Dossi N, Toniolo R, Pizzariello A, Susmel S, Perennes F, Bontempelli G. A capillary electrophoresis microsystem for the rapid in-channel amperometric detection of synthetic dyes in food[J]. J Electroanal Chem,2007,601(1-2):1-7.
    [14]Ryvolova M, Taborsky P, Vrabel P, Krasensky P, Preisler J. Sensitive determination of erythrosine and other red food colorants using capillary electrophoresis with laser-induced fluorescence detection[J]. J Chromatogr A, 2007,1141(2):206-211.
    [15]Oka H, Ikaia Y, Kawamura N, Yamada M, Inoue H, Ohno T, Inagaki K, Kuno A, Yamamoto N. Simple method for the analysis of food dyes on reversed-phase thin-layer plates[J]. J Chromatogr,1987,411:437-444.
    [16]Oka H, Ikaia Y, Ohno T, Kawamura N, Hayakawa J, Harada K, Suzuki M. Identification of unlawful food dyes by thin-layer chromatography-fast atom bombardment mass spectrometry[J]. J Chromatogr A,1994,674(1-2):301-307.
    [17]Williams ML. Rapid Separation of Soft Drinks Ingredients using High Performance Liquid Chromatography[J]. Food Chem,1986,22:235-244.
    [18]Gennaro MC, Gioannini E, Angelino S, Aigotti R, Giacosa D. Identification and determination of red dyes in confectionery by ion-interaction high-performance liquid chromatography[J]. J Chromatogr A,1997,767(1-2):87-92.
    [19]Kirschbaum J, Krause C, Pfalzgraf S, Bruckner H. Development and evaluation of an HPLC-DAD method for determination of synthetic food colorants[J]. Chromatographia,2003,57:115-119.
    [20]Greenway GM, Kometa N, Macrae R. Analytical Methods Section The determination of food colours by HPLC with on-line dialysis for sample preparation[J]. Food Chem.1992,43(2):137-140.
    [21]Chen QC, Mou SF, Hou X.P, Riviello JM, Ni ZM. Determination of eight synthetic food colorants in drinks by high-performance ion chromatography[J]. J Chromatogr A,1998,827(1):73-81.
    [22]Liu JF, Jiang GB, Jonsson JA. Application of ionic liquids in analytical chemistry[J]. TrAC-Trend\Anal Chem,2005,24(1):20-27.
    [23]Kosmulski M, Gustafsson J, Rosenholm JB. Thermal stability of low temperature ionic liquids revisited[J]. Thermochim Acta,2004,412(1-2):47-53.
    [24]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chem Rev,1999,99(8):2071-2084.
    [25]Anderson JL, Ding J, Welton T, Armstrong DW. Characterizing Ionic Liquids On the Basis of Multiple Solvation Interactions[J]. J Am Chem Soc,2002,124(47): 14247-14254.
    [26]Carda-Broch S, Berthod A, Armstrong DW. Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid[J]. Anal Bioanal Chem,2003,375(2):191-199.
    [27]Abraham MH, Zissimos AM, Huddleston JG, Willauer HD, Rogers RD, Acree WE. Some Novel Liquid Partitioning Systems:Water-Ionic Liquids and Aqueous Biphasic Systems[J]. Ind Eng Chem Res,2003,42:413-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700