CX26致聋突变体的表达、定位和间隙连接功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳聋是引起交流障碍最常见的疾病。在常染色体隐性遗传性聋中,约50%以上耳聋是由GJB2 (CX26)基因缺陷所致,其中白种人最常见的突变是35del G,东亚人最常见的突变是235delC,该基因突变还与常染色体显性遗传性聋和遗传性综合征性聋有关,是最重要的耳聋基因。CX26(Connexin 26)是间隙连接蛋白家族中的一员。间隙连接通道(Gap Junctional Channels, GJCh)是间隙连接蛋白在相邻细胞膜上组成的一种细胞膜性通道,能允许离子(ionic coupling,离子耦联)、或诸如分子量<1000 Da的代谢产物和第二信使分子等小分子物质(biochemical coupling,生化耦联)交换通过。生物体通过这种通道进行物质和信息交换,使得细胞对内外环境的刺激作出协调一致的反应,对细胞的新陈代谢、增殖和分化、内环境稳定等生理过程起着重要的调控作用。GJCh的功能分析包括离子耦联和生化耦联两个方面的分析。
     目的:探讨CX26不同结构域上的各1个点突变(S19T、E47K、V84L、V95M、R165W、R32H、R143W、S199F和L214P),及导致不同长度截短蛋白的突变(35del G、235delC、572delT、465 T→A(Y155X)和631-632delGT)在体外真核细胞内的表达、定位和间隙连接功能的改变;尤其是对CX26的6个在国际上还没有功能研究报道的突变(R32H、R165W、S199F、572delT、465 T→A和631—632delGT)在体外真核细胞表达载体分析突变蛋白功能的变化。本文中的5个截短蛋白突变的共同点是CX26的羧基端(C端)缺失,5个截短蛋白突变的分析可能反应C端对CX26运输、定位和间隙连接功能的作用。本研究旨在为分析GJB2基因突变致聋的分子机制、及为防治该基因缺陷所致的耳聋奠定理论基础。
     方法:从CX26的9个结构域各选1个致聋点突变(错义突变),及5个导致不同长度截短蛋白的移码或无义突变,其中包括我国最常见的突变235delC,高加索人群中最常见的突变35delG,我们以前发现的一个新突变Y155X,以及572delT和631-632delGT,分别用Overlap法和长引物法快速构建CX26基因的这14个致聋突变体(p.S19T、p.R32H、p.E47K、p.V84L、p.V95M、p.R143W、p.R165W、p.S199F、p.L214P、c.35delG、c.235delC、p.Y155X、c.572delT和c.631-632delGT),将各突变体及野生型CX26分别装入pEGFP-N1质粒。脂质体转染HeLa细胞,Western印迹分析突变型和野生型CX26在HeLa细胞的表达,荧光显微镜下初步观察CX26突变蛋白和野生型蛋白在HeLa细胞的表达和定位后,进一步用共聚焦显微镜观察CX26突变蛋白和野生型蛋白的定位及在细胞膜上有无间隙连接斑样结构形成。对无间隙连接斑样结构形成的突变体,再对转染的HeLa细胞的高尔基体和内质网染色进行染色标记,共聚焦显微镜下观察突变蛋白是否定位于高尔基体或内质网,了解突变蛋白的亚细胞定位。对能形成间隙连接斑的突变体采用calcein染料转移实验分析所形成的间隙连接通道的生化耦联功能。
     结果:通过overlap法成功构建了p.R32H、p.E47K、p.V84L、p.V95M、p.R143W、p.R165W、p.S199F及c.35delG突变体;通过长引物法成功构建了p.S19T、p.L214P、c.235delC、p.Y155X、c.572delT及c.631-632delGT突变体。Western印迹检测结果显示,c.35delG突变体在HeLa细胞无突变蛋白的表达,其他13个突变蛋白在HeLa细胞都有表达。p.S19T、p.R32H、p.E47K、p.V84L、p.V95M、p.R143W、p.R165W、p.S199F和p.L214P突变蛋白的分子量大小与野生型CX26基本相同,c.235delC、p.Y155X、c.572delT及c.631-632delGT突变蛋白的分子量小于野生型,为截短蛋白。p.S19T、p.E47K、p.V84L、p.V95M、p.R165W突变蛋白主要定位在细胞膜上,聚集成间隙连接斑样结构。p.R32H>、p.R143W、p.S199F、p.L214P、c.235delC、p.Y155X、c.572delT、c.631-632delGT突变蛋白在细胞内呈弥散分布,主要定位于内质网,高尔基体染色部位无突变蛋白分布,在细胞膜上观察不到突变蛋白表达。Calcein染料转移实验发现p.V84L在HeLa细胞上形成的突变蛋白间隙连接和野生型CX26间隙连接具有Calcein染料转移功能,无显著性差异。而p.S19T、p.E47K、p.V95M、p.R165W突变蛋白在HeLa细胞形成的间隙连接不能进行calcein染料转移。
     结论:CX26的p.R32H、p.R143W、p.S199F和p.L214P错义突变体,及c.235delC、p.Y155X、c.572delT和c.631-632delGT截短蛋白突变体在体外真核细胞表达载体HeLa细胞不能运输至细胞膜上形成间隙连接,突变蛋白主要表达和定位于内质网,提示这8个突变蛋白丧失了从内质网转运到细胞膜的功能。4个不同大小的截短蛋白(c.235delC、c.465T→A、c.572delT和c.631-632delGT)均不能运输至质膜,提示其共同缺失的C端对CX26的运输可能具有重要意义。p.S19T、p.E47K、p.V84L、p.V95M和p.R165W突变体在HeLa细胞表达后能被装配和运输到细胞膜上,形成间隙连接斑样结构。其中p.V84L突变蛋白在HeLa细胞膜上形成的间隙连接有生化耦联通透功能,p.S19T、p.E47K、p.V95M和p.R165W突变体形成的间隙连接无生化耦联通透功能。CX26的c.35delG突变体不能在HeLa细胞翻译和表达。CX26的错义突变的蛋白功能改变与突变所处的结构域无关,错义突变蛋白的功能改变是由突变本身氨基酸的改变所致。
Hearing impairment is the most common sensory disorder causing communication disturbance.Nearly 50% of autosomal recessive non-syndromic hearing loss is associated with mutations in GJB2. The 35delG mutation showed a high prevalence among Caucasian populations while the 235delC mutation was found predominantly within individuals of Asian decent. Mutations in the connexin26 gene (GJB2) are also associated with autosomal dominant non-syndromic hearing loss and inherited syndromic hearing loss. It's the most common cause of genetic deafness. CX26 (Connexin 26) is a gap junctional protein that is encoded by GJB2. Gap junction channels,formed at the appositional plasma membranes by a family of related proteins named connexins,allow the diffusion of ions and small molecules (molecular weight<1000 Da,such as metabolites and the second messengers) between adjacent cells and provide a mechanism of synchronizing response of groups of cells to environment stimuli. Gap junction intercellular communication (GJIC) plays a key role in cell metabolism,cell proliferation and cell differentiation and homeostasis,Gap junction intercellular communication includes ionic coupling and biochemical coupling.
     Objective Our objective is to study the effect of various point mutations (S19T,E47K,V84L,V95M,R165W,R32H,R143W,S199F and L214P) in different domains of CX26 as well as mutations (35delG,235delC, 572delT,465 T→A and 631-632delGT) causing truncated proteins of various lenghth on assembly, localization and function of CX26. Among these mutations, R32H, R165W, S199F,465T→A,572delT and 631-632delGT have not been reported to be studied in exogenous expression system.All of the 5 deletion mutations have no carboxyl terminus.The possible effects of the absence of carboxyl terminus on trafficking,localization and function of mutant proteins will be discussed.Our study will improve the knowledge on the mechanism of how GJB2 mutations cause hearing loss and the development of therapeutic methods.
     Method We constructed expression plasmids of 9 missense mutations each of which is located in a domain of CX26 and 5 mutations causing truncated proteins including c.235delC and c.35delG which are most common in Asia and Caucasian population respectively,c.465 T→A that we discovered previously,c.572del and c.631-632delGT.We used overlap extension PCR and "long-primer PCR" to introduce mutations in CDS of CX26.The CDS with mutations as well as the CDS of wild type CX26 were directionally subcloned into pEGFP-Nl respectively. After successfully constructed,these plasmids were transfected into Hela cells using lipofectamine 2000.The expression of mutants and wild type CX26 was analyzed by Western-blot and the localization were observed under fluorescence microscopy with immunofluorescence technics.The subcellular localization of the mutants which couldn't form gap junctions were identified by analyzing the colocalization of these mutants with Endoplasmic Reticulum (ER) marker or Golgi marker. Biochemical coupling of the mutants which can form gap junctions was tested by calceinAM dye transfer experiments.
     Result The mutations p.R32H,p.E47K,p.V84L,p.V95M,p.R143W, p.R165W,p.S199F and c.35delG,were introduced by overlap PCR,and the mutations p.S19T,p.L214P,c.235delC,c.465T→A,c.572delT and c.631-632delGT were introduced by long-primer PCR.The expression of all mutant proteins except c.35delG was visible as the results of western blot showed.Mutants p.R32H,p.E47K,p.V84L,p.V95M,p.R143W, p.R165W,p.S199F,p.S19T and p.L214P encoded full-length products while the molecular weights of the mutant proteins c.235delC,c.465T→A,c.572delT and c.631-632delGT were lower than that of wild type CX26. The mutant proteins p.S19T, p.E47K, p.V84L, p.V95M, p.R165W meanly located on cell membrane and could form gap junction plaques.The mutant proteins p.R32H,p.R143W, p.S199F, p.L214P,c.35delG,c.235delC,c.465 T→A, c.572delT,c.631-632delGT displayed cytoplasmic accumulation and couldn't be transported to plasma membrane.Further study showed that,these mutant proteins were colocalized with ER marker but not Golgi maker,indicating that they were accumulated in ER.The dye transfer rate of p.V84L showed no significant difference with wild type CX26,but p.S19T,p.E47K,p.V95M, p.R165W couldn't mediate dye transfer.
     Conclusion Mutant proteins p.R32H,p.R143W,p.S199F,p.L214P, c.235delC,p.Y155X,c.572delT and c.631-632delGT could not form gap junction and accumulated in ER after synthesis probably demonstrating that these 8 mutant proteins got defect in ER-to-plasma membrane trafficking.4 truncated proteins c.235delC,c.465T→A,c.572delT and c.631-632delGT, also accumulated in ER and couldn't be transport to plasma membrane,indicating that the C-terminal of CX26 contains sequence important for trafficking.p.V84L can form functional gap junction with biochemical coupling while p.S19T, p.E47K, p.V95M, p.R165W couldn't,although they could form gap junction plaques.The mutant c.35delG couldn't express in HeLa cells.The deafness-causing mechanisms of different missense mutations might not be identical and no correlation could be observed between the mutation and the topological domain of the mutant protein.
引文
1. Xiao ZA, Xie DH. GJB2 (CX26) gene mutations in Chinese patients with congenital sensorineural deafness and a report of one novel mutation. Chin Med J (Engl) 2004;117(12):1797-1801.
    2. Maestrini E,Korge BP,Ocana-Sierra J, et al., A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families. Hum Mol Genet,1999.8(7):1237-43.
    3. Rabionet R, Gasparini P and Estivill X, Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum Mutat, 2000.16(3):190-202.
    4. Gasparini S, Rabionet R, Barbujani G, et al. High carrier frequency of the c.35delG deafness mutation in European populations. Genetic analysis consortium of GJB2 c.35delG. Eur J hum Genet,2000,8:19-23.
    5. Morell RJ, Kim HJ, Hood LJ, et al. Mutations in the connexinn 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med, 1998,339:1500-1505.
    6. Liu Y, Ke X, Qi Y, et al. Connexin26 gene (GJB2):prevalence of mutations in the Chinese population.J Hum Genet,2002,47:688-690.
    7. Wang Y C, Kung C Y, Su M C, et al, Mutations of CX26 gene (GJB2) for prelingual deafness in Taiwan. Eur J Hum Genet,2002.10(8):495-8.
    8. Abe S, Usami S, Shinkawa H, et al, Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet,2000.37(1):41-3.
    9. Robertson, J.D., New observations on the ultrastructure of the membranes of frog peripheral nerve fibers. J Biophys Biochem Cytol,1957.3(6):1043-8.
    10. Musil, L.S., Le, A.C., VanSlyke, J.K., et al., Regulation of connexin degradation as a mechanism to increase gap junction assembly and function. J Biol Chem, 2000.275(33):25207-15.
    11. Kumar, N.M. and Gilula, N.B., Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol,1986.103(3):767-76.
    12. Willecke, K., Eiberger, J., Degen, J., et al., Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem,2002.383(5): 725-37.
    13. Sohl, G. and K. Willecke, Gap junctions and the connexin protein family. Cardiovasc Res,2004.62(2):228-32.
    14. Grummer, R., B. Reuss, and E. Winterhager, Expression pattern of different gap junction connexins is related to embryo implantation. Int J Dev Biol,1996.40(1): 361-7.
    15. White, T.W., Paul, D.L., Goodenough, D.A., et al., Functional analysis of selective interactions among rodent connexins. Mol Biol Cell,1995.6(4):459-70.
    16. Rubin, J.B., Verselis, V.K., Bennett, M.V., et al., Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32. Biophys J,1992.62(1):183-93; discussion 193-5.
    17. Zhou, X.W., Pfahnl, A., Werner, R., et al., Identification of a pore lining segment in gap junction hemichannels. Biophys J,1997.72(5):1946-53.
    18. Castro, C., Gomez-Hernandez, J.M., Silander, K., et al., Altered formation of hemichannels and gap junction channels caused by C-terminal connexin-32 mutations. J Neurosci,1999.19(10):3752-60.
    19. Skerrett, I.M., Aronowitz, J., Shin, J.H., et al., Identification of amino acid residues lining the pore of a gap junction channel. J Cell Biol,2002.159(2): 349-60.
    20. Kronengold J, Trexler E B, Bukauskas F F, et al, Pore-lining residues identified by single channel SCAM studies in CX46 hemichannels. Cell Commun Adhes, 2003.10(4-6):193-9.
    21. Martin, P.E., Blundell, G., Ahmad, S., et al., Multiple pathways in the trafficking and assembly of connexin 26,32 and 43 into gap junction intercellular communication channels. J Cell Sci,2001.114(Pt 21):3845-55.
    22. Oh, S., Ri, Y., Bennett, M.V., et al., Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot-Marie-Tooth disease. Neuron,1997. 19(4):927-38.
    23. Suchyna, T.M., Xu, L.X., Gao, F., et al., Identification of a proline residue as a transduction element involved in voltage gating of gap junctions. Nature,1993. 365(6449):847-9.
    24. Martin, P.E., Steggles, J., Wilson, C., et al., Targeting motifs and functional parameters governing the assembly of connexins into gap junctions. Biochem J, 2000.349(Pt 1):281-7.
    25. Torok, K., Stauffer, K. and Evans, W.H., Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains. Biochem J,1997.326 (Pt 2): 479-83.
    26. Evans, W.H. and Martin, P.E., Gap junctions:structure and function (Review). Mol Membr Biol,2002.19(2):121-36.
    27. Jiang, J.X. and Goodenough, D.A., Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci U S A,1996.93(3):1287-91.
    28. Bevans C G, Kordel M, Rhee S K, et al, Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem,1998.273(5):2808-16.
    29. Cao F, Eckert R, Elfgang C, et al, A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J Cell Sci,1998.111 (Pt 1):31-43.
    30. Yum S W, Zhang J, Valiunas V, et al, Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. Am J Physiol Cell Physiol, 2007.293(3):C1032-48.
    31. Elfgang, C., Eckert, R., Lichtenberg-Frate, H., et al., Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol,1995.129(3):805-17.
    32. Ahmad, S., Diez, J.A., George, C.H., et al., Synthesis and assembly of connexins in vitro into homomeric and heteromeric functional gap junction hemichannels. Biochem J,1999.339 (Pt 2):247-53.
    33. George, C.H., Kendall, J.M. and Evans, W.H., Intracellular trafficking pathways in the assembly of connexins into gap junctions. J Biol Chem,1999.274(13): 8678-85.
    34. Kojima, T., Fort, A., Tao, M., et al., Gap junction expression and cell proliferation in differentiating cultures of CX43 KO mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol,2001.281(4):G1004-13.
    35. Ahmad, S., Martin, P.E. and Evans, W.H., Assembly of gap junction channels: mechanism, effects of calmodulin antagonists and identification of connexin oligomerization determinants. Eur J Biochem,2001.268(16):4544-52.
    36. Liu W, Bostrom M, Kinnefors A, et al.,Unique expression of connexins in the human cochlea. Hear Res,2009,250(1-2):55-62.
    37. Zhao HB, Kikuchi T, Ngezahayo A, et al.,Gap junctions and cochlear homeostasis. J Membr Biol,2006,209(2-3):177-186.
    38. Matsuyama W, Nakagawa M, Moritoyo T, et al.,Phenotypes of X-linked Charcot-Marie-Tooth disease and altered trafficking of mutant connexin 32 (GJB1). JHum Gene,2001,46(6):307-313
    39. Estivill X, Fortina P, Surrey S, et al.,Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet,1998,351(9100):394-398
    40. Xia JH, Liu CY, Tang BS, et al.,Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet,1998,20(4):370-373
    41. Teubner B, Michel V, Pesch J, et al.,Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet, 2003,12(1):13-21.
    42. Liu XZ, Xia XJ, Adams J, et al.,Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet,2001, 10(25):2945-2951.
    43. Forge A, Becker D, Casalotti S, et al.,Gap junctions and connexin expression in the inner ear. Novartis Found Symp,1999,219:134-150. discussion 151-136.
    44. Bicego M, Beltramello M, Melchionda S, et al.,Pathogenetic role of the deafness-related M34T mutation of CX26. Hum Mol Genet,2006, 15(17):2569-2587.
    45. Zhang Y, Tang W, Ahmad S, et al.,Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. Proc Natl Acad Sci USA,2005,102(42):15201-15206.
    46. Beltramello, M., Piazza, V., Bukauskas, F.F., et al. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 2005,7:63.
    47. Kelsell D P, Dunlop J, Stevens H P, et al, Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature,1997.387(6628):80-3.
    48. Cohen-Salmon M, Ott T, Michel V, et al.,Targeted ablation of CX26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol,2002,12(13):1106-1111.
    49. Bruzzone R, Veronesi V, Gomes D, et al.,Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Lett,2003,533(1-3):79-88.
    50. Rouan F, White T W, Brown N, et al, trans-dominant inhibition of connexin-43 by mutant connexin-26:implications for dominant connexin disorders affecting epidermal differentiation. J Cell Sci,2001.114(Pt 11):2105-13.
    51. Denoyelle F, Lina-Granade G, Plauchu H, et al, Connexin 26 gene linked to a dominant deafness. Nature,1998.393(6683):319-20.
    52.52Loffler J, Nekahm D, Hirst-Stadlmann A, et al, Sensorineural hearing loss and the incidence of CX26 mutations in Austria Eur J Hum Genet,2001.9(3):226-30.
    53. Morle L, Bozon M, Alloisio N, et al, A novel C202F mutation in the connexin26 gene (GJB2) associated with autosomal dominant isolated hearing loss. J Med Genet,2000.37(5):368-70.
    54. Richard G, White T W, Smith L E, et al, Functional defects of CX26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism
    and palmoplantar keratoderma Hum Genet,1998.103(4):393-9.
    55. Maestrini E, Korge B P, Ocana-Sierra J, et al, A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel's syndrome) in three unrelated families. Hum Mol Genet,1999.8(7):1237-43.
    56. Richard G, Rouan F, Willoughby C E, et al, Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am J Hum Genet,2002.70(5):1341-8.
    57. Kenneson A, Van Naarden Braun K and Boyle C, GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss:a HuGE review. Genet Med, 2002.4(4):258-74.
    58. Rikkert L. Snoeckx, Patrick L. M. et al, GJB2 Mutations and Degree of Hearing Loss:A Multicenter Study.Am. J. Hum. Genet.200577:945-957
    59. Gabriel H D, Jung D, Butzler C, et al, Transplacental uptake of glucose is decreased in embryonic lethal connexin26-deficient mice. J Cell Biol, 1998.140(6):1453-61.
    60. Gerido D A, DeRosa A M, Richard G, et al, Aberrant hemichannel properties of CX26 mutations causing skin disease and deafness. Am J Physiol Cell Physiol, 2007.293(1):C337-45.
    61. Lee J R, Derosa A M and White T W, Connexin mutations causing skin disease and deafness increase hemichannel activity and cell death when expressed in Xenopus oocytes. J Invest Dermatol,2009.129(4):870-8.
    62. Stong B C, Chang Q, Ahmad S, et al, A novel mechanism for connexin 26 mutation linked deafness:cell death caused by leaky gap junction hemichannels. Laryngoscope,2006.116(12):2205-10.
    63. Melchionda S, Bicego M, Marciano E, et al, Functional characterization of a novel CX26 (T55N) mutation associated to non-syndromic hearing loss. Biochem Biophys Res Commun,2005.337(3):799-805.
    64. Thonnissen E, Rabionet R, Arbones M L, et al, Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet,2002.111(2):190-7.
    65. Wang HL, Chang WT, Li AH, et al.,Functional analysis of connexin-26 mutants associated with hereditary recessive deafness. J Neurochem,2003, 84(4):735-742.
    66. Mese G, Londin E, Mui R, et al.,Altered gating properties of functional CX26 mutants associated with recessive non-syndromic hearing loss. Hum Genet, 2004,115(3):191-199.
    67. D'Andrea P, Veronesi V, Bicego M, et al.,Hearing loss:frequency and functional studies of the most common connexin26 alleles. Biochem Biophys Res Commun, 2002,296(3):685-691.
    68. Stong BC, Chang Q, Ahmad S, et al.,A novel mechanism for connexin 26 mutation linked deafness:cell death caused by leaky gap junction hemichannels. Laryngoscope,2006,116(12):2205-2210
    69. Palmada M, Schmalisch K, Bohmer C, et al.,Loss of function mutations of the GJB2 gene detected in patients with DFNB1-associated hearing impairment. Neurobiol Dis,2006,22(1):112-118.
    70. Mustapha M, Salem N, Delague V, et al.,Autosomal recessive non-syndromic hearing loss in the Lebanese population:prevalence of the 30delG mutation and report of two novel mutations in the connexin 26 (GJB2) gene. J Med Genet,2001, 38(10):E36.
    71. Rickard S, Kelsell DP, Sirimana T, et al., Recurrent mutations in the deafness gene GJB2 (connexin 26) in British Asian families. J Med Genet,2001, 38(8):530-533
    72. Green GE, Scott DA, McDonald JM, et al., Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA, 1999,281(23):2211-2216.
    73.73 Rabionet R, Zelante L, Lopez-Bigas N, et al., Molecular basis of childhood deafness resulting from mutations in the GJB2 (connexin 26) gene. Hum. Genet,2000.106:40-4.
    74. Prasad S, Cucci RA, Green GE, et al., Genetic testing for hereditary hearing loss: connexin 26 (GJB2) allele variants and two novel deafness-causing mutations (R32C and 645-648delTAGA). Hum. Mutat,2000.16:502-8.
    75. Kelley PM, Harris DJ, Comer BC, et al., Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am. J. Hum. Genet,1998.62:792-9.
    76. Brobby GW, Muller-Myhsok B, Horstmann RD. Connexin 26 p.R143W mutation associated with recessive nonsyndromic sensorineural deafness in Africa. N. Engl. J Med,1998.338:548-50
    77. amelmann C, Amedofu GK, Albrecht K, et al.,Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum. Mutat,2001. 18:84-5.
    78. Murgia A, Orzan E, Polli R, et al, CX26 deafness:mutation analysis and clinical variability. J Med Genet,1999.36(11):829-32.
    79. Kelley P M, Harris D J, Comer B C, et al, Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet,1998.62(4):792-9.
    80. Denoyelle F, Marlin S, Weil D, et al., Clinical features of the prevalent form of childhood deafness, DFNB1, due to a connexin-26 gene defect:implications for genetic counselling. Lancet,1999,353(9161):1298-1303.
    81. Yan D, Park HJ, Ouyang XM, et al.,Evidence of a founder effect for the 235delC mutation of GJB2 (connexin 26) in east Asians. Hum Genet,2003,114(1):44-50.
    82. Beltramello M, Bicego M, Piazza V, et al., Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells. Biochem. Biophys. Res Commun,2003,305(4):1024-1033.
    83. An Y, Ji J, Wu W, et al, A rapid and efficient method for multiple-site mutagenesis with a modified overlap extension PCR. Appl Microbiol Biotechnol, 2005.68(6):774-8.
    84. Kudo, T., Kure, S., Ikeda, et al,. Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness. Hum. Mol. Genet.2003,12:995-1004
    85. Martinez AD, Acuna R, Figueroa V, et al.,Gap-junction channels dysfunction in deafness and hearing loss. Antioxid Redox Signal,2009,11(2):309-322.
    86. Thonnissen E, Rabionet R, Arbones ML, et al., Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet,2002,111(2):190-197.
    87. Oshima A, Doi T, Mitsuoka K, et al.,Roles of Met-34, Cys-64, and Arg-75 in the assembly of human connexin 26. Implication for key amino acid residues for channel formation and function. J Biol Chem,2003,278(3):1807-1816.
    88. Martin PE, Coleman SL, Casalotti SO, et al.,Properties of connexin26 gap junctional proteins derived from mutations associated with non-syndromal heriditary deafness.Hum Mol Genet,1999,8(13):2369-2376.
    89. Deng Y, Chen Y, Reuss L, et al.,Mutations of connexin 26 at position 75 and dominant deafness:essential role of arginine for the generation of functional gap-junctional channels. Hear Res,2006;220(1-2):87-94.
    90. Bruzzone R, Gomes D, Denoyelle E, et al.,Functional analysis of a dominant mutation of human connexin26 associated with nonsyndromic deafness. Cell Commun Adhes,2001,8(4-6):425-431.
    91. Skerrett IM, Di WL, Kasperek EM, et al.,Aberrant gating, but a normal expression pattern, underlies the recessive phenotype of the deafness mutant Connexin26 M34T. Faseb J,2004,18(7):860-862.
    92. Montgomery JR, White TW, Martin BL, et al.,A novel connexin 26 gene mutation associated with features of the keratitis-ichthyosis-deafness syndrome and the follicular occlusion triad. J Am Acad Dermatol,2004,51(3):377-382.
    93. Ho S N, Hunt H D, Horton R M, et al, Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene,1989.77(1):51-9.
    94. Horton R M, Cai Z L, Ho S N, et al, Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques, 1990.8(5):528-35.
    95. An Y, Ji J, Wu W, et al, A rapid and efficient method for multiple-site mutagenesis with a modified overlap extension PCR. Appl Microbiol Biotechnol, 2005.68(6):774-8.
    96. Urban A, Neukirchen S and Jaeger K E, A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res,1997.25(11):2227-8.
    97. Warrens A N, Jones M D and Lechler R I, Splicing by overlap extension by PCR using asymmetric amplification:an improved technique for the generation of hybrid proteins of immunological interest. Gene,1997.186(1):29-35.
    98. Slyke, J.K., Deschenes, S.M. and Musil, L.S., Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol Biol Cell,2000.11(6):1933-46.
    99. Wei, C. J., Xu, X., and Lo, C. W. Connexins and cell signaling in development and disease. Annu. Rev. Cell Dev. Biol.2004.20,811-838
    100.Dolphin, A. C. Beta-subunits of voltage-gated calcium channels. J. Bioenerg. Biomembr.2003.35,599-620
    101.101Korovkina, V. P., and England, S. K. Molecular diversity of vascular potassium channel isoforms. Clin. Exp. Pharmacol. Physiol.2002.29,317-323
    102.Locke D, Koreen IV, Harris AL. Isoelectric points and post-translational modifications of connexin26 and connexin32. FASEB J.2006 Jun;20(8):1221-3.
    103.Falk M M, Buehler L K, Kumar N M, et al, Cell-free synthesis and assembly of connexins into functional gap junction membrane channels. EMBO J, 1997.16(10):2703-16.
    104.Shoeb AHMAD, W. Howard EVANS. Post-translational integration and oligomerization of connexin 26 in plasma membranes and evidence of formation of membrane pores:implications for the assembly of gap junctions. Biochem. J. (2002) 365,693±699
    105.Zhang JT, Chen M, Foote CI, et al,Membrane integration of in vitro-translated gap junctional proteins:Co-and posttranslational mechanisms. Mol Biol Cell 1996,7:471-482.
    106..Wang, H.G., Rapp, U.R. and Reed, J.C., Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell,1996.87(4):629-38.
    107..Pedraza, L., Fidler, L., Staugaitis, S.M., et al., The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. Neuron, 1997.18(4):579-89.
    108..Hanakam, F., Albrecht, R., Eckerskorn, C., et al., Myristoylated and non-myristoylated forms of the pH sensor protein hisactophilin II:intracellular shuttling to plasma membrane and nucleus monitored in real time by a fusion with green fluorescent protein. Embo J,1996.15(12):2935-43.
    109..Yano, M., Kanazawa, M., Terada, K., et al., Visualization of mitochondrial protein import in cultured mammalian cells with green fluorescent protein and effects of overexpression of the human import receptor Tom20. J Biol Chem, 1997.272(13):8459-65.
    110..Lauf, U., Giepmans, B.N., Lopez, P., et al., Dynamic trafficking and delivery of connexons to the plasma membrane and accretion to gap junctions in living cells. Proc Natl Acad Sci U S A,2002.99(16):10446-51.
    111..Martin, P.E., Errington, R.J. and Evans, W.H., Gap junction assembly:multiple connexin fluorophores identify complex trafficking pathways. Cell Commun Adhes,2001.8(4-6):243-8.
    112..Lopez, P., Balicki, D., Buehler, L.K., et al., Distribution and dynamics of gap junction channels revealed in living cells. Cell Commun Adhes,2001.8(4-6): 237-42.
    113..Thomas, T., Jordan, K. and Laird, D.W., Role of cytoskeletal elements in the recruitment of CX43-GFP and CX26-YFP into gap junctions. Cell Commun Adhes,2001.8(4-6):231-6.
    114..Lauf, U., Lopez, P. and Falk, M.M., Expression of fluorescently tagged connexins:a novel approach to rescue function of oligomeric DsRed-tagged proteins. FEBS Lett,2001.498(1):11-5.
    115..Laird, D.W., Jordan, K. and Shao, Q., Expression and imaging of connexin-GFP chimeras in live mammalian cells. Methods Mol Biol,2001.154:135-42.
    116..Laird, D.W., Jordan, K., Thomas, T., et al., Comparative analysis and application of fluorescent protein-tagged connexins. Microsc Res Tech,2001.52(3):263-72.
    117..Falk, M.M. and Lauf, U., High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells. Microsc Res Tech,2001.52(3):251-62.
    118..Falk, M.M., Connexin-specific distribution within gap junctions revealed in living cells. J Cell Sci,2000.113 (Pt 22):4109-20.
    119..Paemeleire, K., Martin, P.E., Coleman, S.L., et al., Intercellular calcium waves in HeLa cells expressing GFP-labeled connexin 43,32, or 26. Mol Biol Cell,2000. 11(5):1815-27.
    120..Holm, I., Mikhailov, A., Jillson, T., et al., Dynamics of gap junctions observed in living cells with connexin43-GFP chimeric protein. Eur J Cell Biol,1999.78(12): 856-66.
    121..Jordan, K., Solan, J.L., Dominguez, M., et al., Trafficking, assembly, and function of a connexin43-green fluorescent protein chimera in live mammalian cells. Mol Biol Cell,1999.10(6):2033-50.
    122..J.萨姆布鲁克D.W.拉塞尔著黄培堂等译《分子克隆实验指南》(第三版)1399-1405.
    123.. Oguchi T, Ohtsuka A, Hashimoto S, et al,Clinical features of patients with GJB2 (connexin 26) mutations:severity of hearing loss is correlated with genotypes and protein expression patterns. J Hum Genet,2005,50(2):76-83.
    124.Forge A, Marziano NK, Casalotti SO, et al,The inner ear contains heteromeric channels composed of CX26 and CX30 and deafness-related mutations in CX26 have a dominant negative effect on CX30. Cell Commun Adhes, 2003,10(4-6):341-346
    125.Choung Y H, Moon S K and Park H J, Functional study of GJB2 in hereditary hearing loss. Laryngoscope,2002.112(9):1667-71.
    126.Lawless MW, Mankan AK, Gray SG, et al. Endoplasmic reticulum stress--a double edged sword for Z alpha-1 antitrypsin deficiency hepatoxicity. Int. J. Biochem. Cell Biol,2008.40:1403-14.
    127.Goldberg, G.S., Bechberger, J.F. and Naus, C.C., A pre-loading method of evaluating gap junctional communication by fluorescent dye transfer. Biotechniques,1995.18(3):490-7.
    128.Kikuchi T, Kimura R S, Paul D L, et al, Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl), 1995.191(2):101-18.
    129.Kikuchi T, Kimura R S, Paul D L, et al, Gap junction systems in the mammalian cochlea Brain Res Brain Res Rev,2000.32(1):163-6.
    130. Kikuchi T, Adams J C, Miyabe Y, et al, Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc,2000.33(2):51-6.
    1. Marazita ML, Ploughman LM, Rawlings B, et al, Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet 1993, 46(5):486-491.
    2. Picciotti PM, Pietrobono R, Neri G, et al, Correlation between GJB2 mutations and audiological deficits:personal experience. Eur Arch Otorhinolaryngol 2009, 266(4):489-494.
    3. Van Camp G, Willems PJ, Smith RJ,Nonsyndromic hearing impairment: unparalleled heterogeneity. Am J Hum Genet 1997,60(4):758-764.
    4. Morton NE,Genetic epidemiology of hearing impairment. Ann N Y Acad Sci 1991,630:16-31.
    5. Steel KP,Perspectives:biomedicine. The benefits of recycling. Science 1999, 285(5432):1363-1364.
    6. Weber PC, Cunningham CD,3rd, Schulte BA,Potassium recycling pathways in the human cochlea. Laryngoscope 2001,111(7):1156-1165.
    7. Wangemann P,K(+) cycling and its regulation in the cochlea and the vestibular labyrinth. Audiol Neurootol 2002,7(4):199-205.
    8. Gerido DA, White TW,Connexin disorders of the ear, skin, and lens. Biochim Biophys Acta 2004,1662(1-2):159-170.
    9. Cohen-Salmon M, Maxeiner S, Kruger O, et al, Expression of the connexin43-and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res 2004,316(1):15-22.
    10. Forge A, Becker D, Casalotti S, et al, Gap junctions and connexin expression in the inner ear. Novartis Found Symp 1999,219:134-150; discussion 151-136.
    11. Frenz CM, Van De Water TR,Immunolocalization of connexin 26 in the developing mouse cochlea. Brain Res Brain Res Rev 2000,32(1):172-180.
    12. Kammen-Jolly K, Ichiki H, Scholtz AW, et al, Connexin 26 in human fetal development of the inner ear. Hear Res 2001,160(1-2):15-21.
    13. Lautermann J, Frank HG, Jahnke K, et al, Developmental expression patterns of connexin26 and-30 in the rat cochlea. Dev Genet 1999,25(4):306-311.
    14. Lautermann J, ten Cate WJ, Altenhoff P, et al, Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 1998,294(3):415-420.
    15. Lopez-Bigas N, Arbones ML, Estivill X, et al, Expression profiles of the connexin genes, Gjb1 and Gjb3, in the developing mouse cochlea. Gene Expr Patterns 2002,2(1-2):113-117.
    16. Xia AP, Ikeda K, Katori Y, et al, Expression of connexin 31 in the developing mouse cochlea. Neuroreport 2000, 11(11):2449-2453.
    17. Zhao HB, Yu N,Distinct and gradient distributions of connexin26 and connexin30 in the cochlear sensory epithelium of guinea pigs. J Comp Neurol 2006, 499(3):506-518.
    18. Ahmad S, Chen S, Sun J, et al, Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun 2003, 307(2):362-368.
    19. Forge A, Becker D, Casalotti S, et al, Gap junctions in the inner ear:comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. J Comp Neurol 2003,467(2):207-231.
    20. Sun J, Ahmad S, Chen S, et al, Cochlear gap junctions coassembled from CX26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 2005,288(3):C613-623.
    21. Zhang Y, Tang W, Ahmad S, et al, Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. Proc Natl Acad Sci U S A 2005,102(42):15201-15206.
    22. Kelsell DP, Dunlop J, Stevens HP, et al, Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 1997,387(6628):80-83.
    23. Hsieh CL, Kumar NM, Gilula NB, et al, Distribution of genes for gap junction membrane channel proteins on human and mouse chromosomes. Somat Cell Mol Genet 1991,17(2):191-200.
    24. Haefliger JA, Bruzzone R, Jenkins NA, et al, Four novel members of the connexin family of gap junction proteins. Molecular cloning, expression, and chromosome mapping. J Biol Chem 1992,267(3):2057-2064.
    25. Lee SW, Tomasetto C, Paul D, et al, Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines. J Cell Biol 1992,118(5):1213-1221.
    26. Mignon C, Fromaget C, Mattei MG, et al, Assignment of connexin 26 (GJB2) and 46 (GJA3) genes to human chromosome 13q11-->q12 and mouse chromosome 14D1-E1 by in situ hybridization. Cytogenet Cell Genet 1996, 72(2-3):185-186.
    27. Kiang DT, Jin N, Tu ZJ, et al, Upstream genomic sequence of the human connexin26 gene. Gene 1997,199(1-2):165-171.
    28. Rabionet R, Zelante L, Lopez-Bigas N, et al, Molecular basis of childhood deafness resulting from mutations in the GJB2 (connexin 26) gene. Hum Genet 2000,106(1):40-44.
    29. Apps SA, Rankin WA, Kurmis AP:Connexin 26 mutations in autosomal recessive deafness disorders:a review. Int J Audiol 2007,46(2):75-81.
    30.30. Gasparini P, Estivill X, Volpini V, et al, Linkage of DFNB1 to non-syndromic neurosensory autosomal-recessive deafness in Mediterranean families. Eur J Hum Genet 1997,5(2):83-88.
    31. Green GE, Scott DA, McDonald JM, et al, Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA 1999, 281(23):2211-2216.
    32. Kudo T, Ikeda K, Kure S, et al, Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet 2000,90(2):141-145.
    33. Antoniadi T, Gronskov K, Sand A, et al, Mutation analysis of the GJB2 (connexin 26) gene by DGGE in Greek patients with sensorineural deafness. Hum Mutat 2000,16(1):7-12.
    34. Pampanos A, Neou P, Iliades T, et al, Pseudodominant inheritance of DFNB1 deafness due to the common c.35delG mutation. Clin Genet 2000,57(3):232-234.
    35. Rabionet R, Gasparini P, Estivill X,Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum Mutat 2000, 16(3):190-202.
    36. Loffler J, Nekahm D, Hirst-Stadlmann A, et al, Sensorineural hearing loss and the incidence of CX26 mutations in Austria. Eur J Hum Genet 2001,9(3):226-230.
    37. Janecke AR, Hirst-Stadlmann A, Gunther B, et al, Progressive hearing loss, and recurrent sudden sensorineural hearing loss associated with GJB2 mutations--phenotypic spectrum and frequencies of GJB2 mutations in Austria. Hum Genet 2002,111(2):145-153.
    38. Shahin H, Walsh T, Sobe T, et al, Genetics of congenital deafness in the Palestinian population:multiple connexin 26 alleles with shared origins in the Middle East. Hum Genet 2002,110(3):284-289.
    39. Medlej-Hashim M, Mustapha M, Chouery E,et al:Non-syndromic recessive deafness in Jordan:mapping of a new locus to chromosome 9q34.3 and prevalence of DFNB1 mutations. Eur J Hum Genet 2002,10(6):391-394.
    40. Liu XZ, Xia XJ, Ke XM, et al:The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum Genet 2002, 111(4-5):394-397.
    41. Wang YC, Kung CY, Su MC, et al, Mutations of CX26 gene (GJB2) for prelingual deafness in Taiwan. Eur J Hum Genet 2002,10(8):495-498.
    42. Abe S, Kelley PM, Kimberling WJ, et al, Connexin 26 gene (GJB2) mutation modulates the severity of hearing loss associated with the 1555A-->G mitochondrial mutation. Am J Med Genet 2001,103(4):334-338.
    43. Mahdieh N, Nishimura C, Ali-Madadi K, et al, The frequency of GJB2 mutations and the Delta (GJB6-D13S1830) deletion as a cause of autosomal recessive non-syndromic deafness in the Kurdish population. Clin Genet 2004, 65(6):506-508.
    44. Feldmann D, Denoyelle F, Chauvin P, et al, Large deletion of the GJB6 gene in deaf patients heterozygous for the GJB2 gene mutation:genotypic and phenotypic analysis. Am J Med Genet A 2004,127A(3):263-267.
    45. Seeman P, Malikova M, Raskova D, et al, Spectrum and frequencies of mutations in the GJB2 (CX26) gene among 156 Czech patients with pre-lingual deafness. Clin Genet 2004,66(2):152-157.
    46. Najmabadi H, Nishimura C, Kahrizi K, et al, GJB2 mutations:passage through Iran. Am J Med Genet A 2005,133A(2):132-137.
    47. Mani RS, Ganapathy A, Jalvi R, et al, Functional consequences of novel connexin 26 mutations associated with hereditary hearing loss. Eur J Hum Genet 2009, 17(4):502-509.
    48. Gabriel HD, Jung D, Butzler C, et al, Transplacental uptake of glucose is decreased in embryonic lethal connexin26-deficient mice. J Cell Biol 1998, 140(6):1453-1461.
    49. Cohen-Salmon M, Ott T, Michel V, et al, Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 2002,12(13):1106-1111.
    50. Martinez AD, Acuna R, Figueroa V, et al, Gap-junction channels dysfunction in deafness and hearing loss. Antioxid Redox Signal 2009, 11(2):309-322.
    51.51. Thonnissen E, Rabionet R, Arbones M L, et al, Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet,2002.111(2):190-7.
    52. D'Andrea P, Veronesi V, Bicego M, et al, Hearing loss:frequency and functional studies of the most common connexin26 alleles. Biochem Biophys Res Commun, 2002.296(3):685-91.
    53. Falk M M and Lauf U, High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells. Microsc Res Tech, 2001.52(3):251-62.
    54. Zhang Y, Tang W, Ahmad S, et al, Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. Proc Natl Acad Sci U S A,2005.102(42):15201-6.
    55. Oshima A, Tani K, Hiroaki Y, et al, Three-dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule. Proc Natl Acad Sci USA,2007.104(24):10034-9.
    56. Martin P E, Coleman S L, Casalotti S O, et al, Properties of connexin26 gap junctional proteins derived from mutations associated with non-syndromal heriditary deafness. Hum Mol Genet,1999.8(13):2369-76.
    57. Bruzzone R, Veronesi V, Gomes D, et al, Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Lett,2003.533(1-3):79-88.
    58. Mese G, Londin E, Mui R, et al, Altered gating properties of functional CX26 mutants associated with recessive non-syndromic hearing loss. Hum Genet, 2004.115(3):191-9.
    59. Bicego M, Beltramello M, Melchionda S, et al, Pathogenetic role of the deafness-related M34T mutation of CX26. Hum Mol Genet, 2006.15(17):2569-87.
    60. Skerrett I M, Di W L, Kasperek E M, et al, Aberrant gating, but a normal expression pattern, underlies the recessive phenotype of the deafness mutant Connexin26M34T. FASEB J,2004.18(7):860-2.
    61. Stong B C, Chang Q, Ahmad S, et al, A novel mechanism for connexin 26 mutation linked deafness:cell death caused by leaky gap junction hemichannels. Laryngoscope,2006.116(12):2205-10.
    62. Wang H L, Chang W T, Li A H, et al, Functional analysis of connexin-26 mutants associated with hereditary recessive deafness. J Neurochem,2003.84(4):735-42.
    63. Beltramello M, Piazza V, Bukauskas F F, et al, Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol,2005.7(1):63-9.
    64. Gerido D A, DeRosa A M, Richard G, et al, Aberrant hemichannel properties of CX26 mutations causing skin disease and deafness. Am J Physiol Cell Physiol, 2007.293(1):C337-45.
    65. Lee J R, Derosa A M and White T W, Connexin mutations causing skin disease and deafness increase hemichannel activity and cell death when expressed in Xenopus oocytes. J Invest Dermatol,2009.129(4):870-8.
    66. Maeda S, Nakagawa S, Suga M, et al, Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 2009,458(7238):597-602.
    67. Locke D, Bian S, Li H, et al, Post-translational modifications of connexin26 revealed by mass spectrometry. Biochem J 2009,424(3):385-398.
    68. Goliger J A and Paul D L, Expression of gap junction proteins CX26, CX31.1, CX37, and CX43 in developing and mature rat epidermis. Dev Dyn, 1994.200(1):1-13.
    69. Regidor P A, Engel K, Regidor M, et al, Expression of the gap junction connexins CX43, CX45 and CX26 in human uterine leiomyomata. Gynecol Endocrinol, 2001.15(2):113-22.
    70. Wilgenbus K K, Kirkpatrick C J, Knuechel R, et al, Expression of CX26, CX32 and CX43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer,1992.51(4):522-9.
    71.肖自安,张才云,谢鼎华,等.抑癌基因CX26在喉鳞状细胞癌中的表达及临床意义.临床耳鼻咽喉头颈外科杂志,2008,22(24):1107-1111.
    72. Gee J, Tanaka M and Grossman H B, Connexin 26 is abnormally expressed in bladder cancer. J Urol,2003.169(3):1135-7.
    73. Ito A, Katoh F, Kataoka T R, et al, A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J Clin Invest,2000.105(9):1189-97.
    74. Saito T, Tanaka R, Wataba K, et al, Overexpression of estrogen receptor-alpha gene suppresses gap junctional intercellular communication in endometrial carcinoma cells. Oncogene,2004.23(5):1109-16.
    75. Kanczuga-Koda L, Sulkowski S, Koda M, et al, Connexin 26 correlates with Bcl-xL and Bax proteins expression in colorectal cancer. World J Gastroenterol, 2005.11(10):1544-8.
    76. Tanaka M and Grossman H B, Connexin 26 induces groWTh suppression, apoptosis and increased efficacy of doxorubicin in prostate cancer cells. Oncol Rep,2004.11(2):537-41.
    77. Ito A, Koma Y, Uchino K, et al, Increased expression of connexin 26 in the invasive component of lung squamous cell carcinoma:significant correlation with poor prognosis. Cancer Lett,2006.234(2):239-48.
    78. Muramatsu A, Iwai M, Morikawa T, et al, Influence of transfection with connexin 26 gene on malignant potential of human hepatoma cells. Carcinogenesis 2002,23(2):351-358.
    79. Tanaka M, Grossman HB,Connexin 26 gene therapy of human bladder cancer: induction of groWTh suppression, apoptosis, and synergy with Cisplatin. Hum Gene Ther 2001,12(18):2225-2236.
    80. Sohl G, Nielsen PA, Eiberger J, et al, Expression profiles of the novel human connexin genes hCX30.2, hCX40.1, and hCX62 differ from their putative mouse orthologues. Cell Commun Adhes 2003,10(1):27-36.
    81. Djalilian AR, McGaughey D, Patel S, et al, Connexin 26 regulates epidermal barrier and wound remodeling and promotes psoriasiform response. J Clin Invest 2006,116(5):1243-1253.
    82. Elias LA, Wang DD, Kriegstein AR,Gap junction adhesion is necessary for radial migration in the neocortex. Nature 2007,448(7156):901-907.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700