WC-Co硬质合金的微波烧结制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用多模腔微波高温烧结炉成功制备了WC-8Co硬质合金,通过和真空烧结对比,提出了微波制备硬质合金的工艺特点和性能特征;以微波加热的整体快速加热和选择性加热特点为依据,分析了微波烧结硬质合金的加热特性以及其致密化规律;对微波烧结过程中出现的表层脱碳现象及产生原因进行了系统分析,提出了解决表层脱碳的方法和依据;对微波加热条件下合金中WC晶粒粗化进行了动力学分析,首次提出了局部液相烧结机理(微波加热过程中出现无数随机分布的热点,热点中心的WC颗粒优先发生转动和重排、优先发生共晶反应产生液相、优先发生WC在粘结相Co中的溶解-再析出,以及优先发生WC晶粒合并长大),探讨了硬质合金在微波加热过程中的致密化和合金化过程以及显微组织演变的规律,最后初步分析了微波与硬质合金压坯的相互作用。通过研究本课题取得了以下重要结论:
     (1)微波烧结具有真空烧结硬质合金方法不可比拟的优势。在微波加热烧结硬质合金时,试样温度能够瞬时响应微波的输入功率,无热惯性,有利于烧结工艺的控制;而且微波加热脱脂和烧结周期都比真空烧结大幅缩短,从而可以大幅减少能耗,提高能源利用率。此外,微波烧结制备的硬质合金具有一致的硬度分布、良好的磁学性能和优异的抗化学腐蚀性能。
     (2)压坯密度对微波加热合金升温速率的影响很小,而对硬质合金单组元压坯进行微波加热后发现,WC压坯具有最高的升温速率,Co压坯在1100-1150℃时升温曲线出现波动,WC-8Co压坯的升温速率介于两者之间。致密合金坯的升温速率在高温阶段显著滞后于压坯的升温速率,而且经过微波高温处理后的致密合金坯发生严重变形。另外,对不同粉末粒度硬质合金压坯在微波条件下的致密化和组织演化过程进行了研究。
     (3)金相显微组织和XRD分析表明在微波烧结WC-8Co硬质合金过程中发生了表层脱碳现象,对原始WC粉末进行微波高温(1400℃)处理后发现有W衍射峰存在。微波加热环境(装料器皿和烧结气氛)对制备的硬质合金有重要影响,石墨器皿使合金中的孔隙难以通过表面排除;纯氮气和氮、氢混合气体对合金的表层脱碳有促进作用;气氛中存在微量的甲烷就能造成合金表层严重渗碳;纯氩气不会造成合金表面脱碳,但纯氩气气氛容易在高温阶段发生热失控;压坯在空气中暴露后,会加剧合金表层的脱碳程度。
     (4)通过补碳措施在一定程度上抑制表层脱碳现象的发生。在混料时添加炭黑的方法可以改善合金的脱碳现象,有利于合金力学性能的提高,超细WC-8Co (0.15μm)合金总碳量调整为6.08wt%时,硬度和抗弯强度分别达到93.2HRA和3200MPa;提高环境碳势可以避免合金表层脱碳,细晶WC-8Co (0.8μm)合金的抗弯强度可以提高到2053MPa;当氮气中含有5vo1%甲烷时有利于避免脱碳,普通晶粒WC-13Co(2.0μm)抗弯强度可以达到2850MPa;当添加0.8wt%Ni粉宽化剂时普通晶粒WC-8Co (2.0μm)合金的抗弯强度提高了25%。
     (5)对普通晶粒WC-8Co硬质合金的微波烧结致密化过程和WC晶粒粗化动力学进行了分析,发现烧结温度为1300℃时合金的收缩速率显著增加;当烧结温度低于1280℃时,显微组织中存在大量未发育完全的粉末细微颗粒,超过1300℃时,粉末颗粒已经完全消失,晶粒完全呈现出棱柱形状,继续增加烧结温度,WC晶粒尺寸开始增加;通过Arrhenius测量计算,得到微波烧结WC-8Co硬质合金WC晶粒的粗化表观活化能为84.48kcal/mol,明显低于真空烧结。通过微波烧结WC-8Co硬质合金和真空烧结合金的显微组织对比,提出微波致密化和合金化机理,即局部液相烧结机理,微波制备试样的显微组织中存在细晶粒包围粗晶粒,粗细晶粒相间分布(WC晶粒分布存在局部不均匀,整体均匀)的特点;局部液相烧结理论可以很好的解释了微波烧结合金的加热特性和显微组织特点,同样也可以解释微波熔渗W-Cu合金中出现的棒状晶粒和烧结90W-7Ni-3Fe合金时出现的粗细晶粒相互包围分布的现象。
In this work, WC-8Co alloys were successfully fabricated by using multi-mode microwave high-temperature sintering furnace. The evolutionary mechanisms of microstructures were studied at different sintering conditions and atmospheres. And the advantages and properties of microwave sintered samples were discussed compared with the conventional prepared ones. Based on the microwave properties of volumetric heating and high heating rate, the densification process and microstructure properties during the microwave sintering were researched. Besides, surface layer decarburization phenomena and mechanisms were studied. Densification mechanisms were discussed after analyzing the kinetic of WC grain coarsening. Local liquid phase sintering mechanism was proposed firstly (the densification and alloying occurred at hot spots preferentially). Finally, the temperature model was built according to the interaction of microwave and WC-Co compactions. The following important conclusions were made:
     (1) Be compared with the conventional heating method, the microwave sintering processing has no thermal inertia and the sintered compactions can respond the microwave power instantaneously. The time of microwave dewaxing and sintering are greatly shortened. The microwave sintered samples had the finer WC grains and more homogenous Co phase distribution. The whole microwave processing embodied the properties of energy saving and environmentally friendly.In addition, microwave sintered WC-Co alloys had the uniform hardness distribution and magnetism performance and better resistance to chemical and physical corrosions.
     (2) In multi-mode microwave furnace, the compact density has little effect on the heating rate. For pure materials of WC-Co composites, the WC green compacts had the highest heating rate. Moreover, the heating curve of the cobalt compacts showed the fluction at1100-1150℃. The absorbing ability of WC-8Co compacts was between the Co and WC compacts.The heating rate of the alloy at higher temperature was lower than compact. Besides, the WC-8Co alloy reprocessed in the microwave radiation was deformed.
     (3) W3Co3C3phase peaks appeared in the XRD pattern of WC-8Co compact, and W phase of WC powder after microwave radiation. WC grain coarsening was not significant in the microwave sintered fine and coarse grain cemented carbides. The sintering atmosphere had an important effect on the microstructures of microwave-sintered samples. The graphite vessel could prevent the pore exclusion.Pure N2and N2+H2atmosphere could accelerate the surface decarburization, but pure Ar atmosphere did not cause the decarburization. However, the heating property of Ar gas is not as stable as N2. A little CH4will lead to the precipitation of graphite phase. The decarburization became seriously after the compact samples exposed in the air.
     (4) Adding carbon black at the ball mill stage could reduce the decarburization, and improve the mechanical properties. Hardness and TRS of ultrafine microwave sintered WC-8Co samples were93.2HRA and3200MPa respectively when total carbon content was6.08wt%. The maximum TRS value was2640MPa of coarse WC-6Co samples when total carbon content was5.95wt%. The decarburization phenomenon can be reduced by enhancing the carbon potential in the atmosphere, and the TRS of ultrafine alloy could reach2053MPa. Moreover, a little CH4also can reduce the decarburization, and the TRS could reach2850MPa when CH4content was5vol%. In addition, the Ni additive could enhance the TRS when the content was0.8wt%.
     (5) By researching the densification of normal grain WC-8Co compact, it was found that the shrinkage of the sample was slow when temperature below1280℃, and increased sharply at1300℃until1420℃. Besides, the microstructures changed with the densification. Below1280℃, a lot of small powder still existed; all WC grains became truncated trigonal prism at1300℃and coarsened at higher temperatures. After calculated, apparent activation energy was obtained about84.48kcal/Mol, which was much lower than conventional preparation. The microstructure of microwave sintered WC-8Co alloy had the special WC distribution with small grains enclosed in grown grains, which was not observable in conventional prepared ones. The local liquid phase sintering mechanism could explain this unique microstructure. What's more, the W-Cu and W-Ni-Fe alloy fabricated in the microwave radiation also can be found the same microstructure characteristics as in the WC-Co alloy. The heating rate was important to influence the microstructure of grain distribution. The faster the heating rate, the more significant the difference between the growth and small grain became.
引文
[1]G. S. Upadhyaya. Materials science of cemented carbides-an overview[J]. Materials and Design,2001,22:483-489.
    [2]国外硬质合金编写组.国外硬质合金[M].北京:冶金工业出版社,1976,2-29.
    [3]A. M. R. Senos, C. M. Fernandes. Cemented carbide phase diagrams:A review[J]. International Journal of Refractory Metals & Hard Materials,2011,29 (4):405-418.
    [4]http://www.hardmaterials.sandvik.com/cn.
    [5]http://baike.baidu.com/view/22604.htm.
    [6]http://baike.baidu.com/view/45857.htm.
    [7]吴悦梅,熊计,赖人铭.碳含量对WC-Co硬质合金显微组织的影响及其控制[J].硬质合金,2008,25(3):179-185.
    [8]肖逸锋,贺跃辉,丰平,等.碳含量对缺碳硬质合金组织和性能的影响[J].中国有色金属学报,2007,17(1):39-48.
    [9]周盛安.硬质合金制造工艺学[M].四川:自贡硬质合金有限公司,2006,118-124.
    [10]http://zh.wikipedia.org/wiki/%E7%A2%B3%E5%8C%96%E9%8E%A2.
    [11]胡庚祥,蔡殉.材料科学基础[J].上海:上海交通大学出版社,2005,42-48.
    [12]C.-S. Kim. Microstructural-Mechanical Property Relationships in WC-Co composites[D]. Materials Science and Engineering Department, Ph. D. Thesis, Carnegie Mellon University (Pittsburgh, PA 15213, USA)
    [13]Z. Li, C. Shu, W. Yuan-jie, et al. Tungsten carbide platelet-containing cemented carbide with yttrium containing dispersed phase[J]. Transactions of Nonferrous Metals Society of China,2008,18:104-108.
    [14]http://www.chinabaike.com/article/baike/wli/2008/200801231139694.html.
    [15]http://zh.wikipedia.org/wiki/%E9%92%B4.
    [16]陈楚轩.硬质合金质量控制原理[M].四川:自贡硬质合金集团有限责任公司,43-48.
    [17]G S. Upadhyaya. CEMENTED TUNGSTEN CARBIDES. Prouction, properties and Testing[M]. Indian Institute of Techonology Kanpur, India,1998, Weatwood, New Jersey, U.S.A.
    [18]G.S.Upadhyaya. Materials science of cemented carbides (an overview)[J]. materials and design,2001,22.
    [19]王国栋.硬质合金生产原理[M].北京:冶金工业出版社,1988,24-43.
    [20]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997,307-316.
    [21]G. RM. Liquid phase sintering[M]. New York:Plenum Press,1985,1-10.
    [22]B.Meredith, D.R.Milner. Densification mechanisms in the tungsten carbide-cobalt system[J]. Powder Metallurgy,1976,1:38-45.
    [23]Z. Fang, P. Maheshwari, X. Wang, et al. An experimental study of the sintering of nanocrystalline WC-Co powders[J]. International Journal of Refractory Metals and Hard Materials,2005,23 (4-6):249-257.
    [24]Z. Z. Fang, X. Wang, H. Y. Sohn. Grain growth during the early stage of sintering of nanosized WC-Co powder[J]. International Journal of Refractory Metals & Hard Materials,2008,26 (3):232-241.
    [25]Z. Z. Fang, H. Wang. Densification and grain growth during sintering of nanosized particles[J]. International Materials Reviews,2008,53 (6):326-352.
    [26]J. Agren, K. Mannesson, I. Borgh, et al. Abnormal grain growth in cemented carbides-Experiments and simulations [J]. International Journal of Refractory Metals & Hard Materials,2011,29 (4):488-494.
    [27]GR.Goren-Muginstein, S.Berger, A.Rosen. Sintering study of nanocrystalline tungsten carbide powders[J]. Nanostructured Materials,1998,10 (5):795-804.
    [28]孙兰,贾成厂,曹瑞军,等.WC-Co硬质合金烧结过程中的晶粒长大现象研究[J].稀有金属与硬质合金,2007,35(1):44-47.
    [29]A.S.Kurlov, A.Leenaers, S. v. d. Berghe, M.Scibetta, H.Schrottner and A. A. Rempel. Microstructure of nanocrystalline WC powders and WC-Co hard alloys[J]. Rev.Adv.Mater.Sci.,2011,27:164-172.
    [30]韩风麟,马福康,曹勇家.中国材料工程大典第14卷粉末冶金材料工程难熔金属与硬质合金[M].机械工业出版社.
    [31]赵继贤,张兴华.硬质合金手册[M].中国钨业协会硬质合金分会,2009,460-463.
    [32]钱开友,王兴庆,何宝山,等.碳含量对纳米硬质合金组织和性能的影响[J].上海大学学报(自然科学版),2002,8(5):433-436.
    [33]张梅琳,朱世根,朱守星.超细及纳米硬质合金中碳含量的变化及对组织性能的影响[J].材料导报,2006,20(8):65-72.
    [34]I. Konyashin, S. Hlawatschek, B. Ries, et al. On the mechanism of WC coarsening in WC-Co hardmetals with various carbon contents[J]. International Journal of Refractory Metals and Hard Materials,2009,27 (2):234-243.
    [35]王社权.影响超细硬质合金性能的几个因素(20)[J].硬质合金,2000,17(1):9-12.
    [36]D. F. Carroll. Sintering and microstructural development in WC/Co-based alloys made with superfine WC powder[J]. International Journal of Refractory Metals & Hard Materials,1999,17(1-3):123-132.
    [37]Z. Z. Fang, X. Wang, T. Ryu, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-A review[J]. International Journal of Refractory Metals and Hard Materials,2009,27 (2):288-299.
    [38]Bao R, Yi J. Effect of sintering atmosphere on microwave preparedWC-8wt.%Co cemented carbide[J]. Int J RefractMet HardMater (2013), http://dx.doi.org/10.1016/ j.ijrmhm.2013.05.003.
    [39]R. Roy, D. Agarwal, J. P. Chen, et al. Full sintering of powdered-metal bodies in a microwave field[J]. Nature,1999,399 (6737):668-670.
    [40]D.Sivaprahasam, S. B. Chandrasekar, R. Sundaresan. Microstructure and mechanical properties of nanocrystalline WC-12Co consolidated by spark plasma sintering[J]. International Journal of Refractory Metals & Hard Materials,2007,25 (2):144-152.
    [41]I. J. Shon, H. C. Kim, D. Y. Oh. Sintering of nanophase WC-15vol.%Co hard metals by rapid sintering process[J]. International Journal of Refractory Metals & Hard Materials,2004,22 (4-5):197-203.
    [42]G. Dumitru, B. Luscher, M. Krack, et al. Laser processing of hardmetals:Physical basics and applications [J]. International Journal of Refractory Metals & Hard Materials, 2005,23 (4-6):278-286.
    [43]林信平,曹顺华,李炯义.纳米硬质合金烧结技术进展[J].稀有金属与硬质合金,2004,32(1):6-9.
    [44]贾佐诚,陈飞雄,吴诚.硬质合金新进展[J].粉末冶金工业,2010,20(3):52-57.
    [45]李沐山.20世纪90年代世界硬质合金材料技术进展[M].株洲硬质合金集团有限公司,2004.
    [46]鲍瑞,易健宏,杨亚杰,等.超细WC-Co硬质合金的微波烧结研究[J].粉末冶金工业,2010,20(2):22-26.
    [47]http://www.cut35.com/tag/tag60.html.
    [48]V. Bonache, M. D. Salvador, D. Busquets, et al. Synthesis and processing of nanocrystalline tungsten carbide Towards cemented carbides with optimal mechanical properties[J]. International Journal of Refractory Metals & Hard Materials,2011,29 (1):78-84.
    [49]X. Q. Ou, M. Song, T. T. Shen, et al. Fabrication and mechanical properties of ultrafine grained WC-10Co-0.45Cr(3)C(2)-0.25VC alloys[J]. International Journal of Refractory Metals & Hard Materials,2011,29 (2):260-267.
    [50]V. Bonache, M. D. Salvador, A. Fernandez et al. Fabrication of full density near-nanostructured cemented carbides by combination of VC/Cr(3)C(2) addition and consolidation by SPS and HIP technologies [J]. International Journal of Refractory Metals & Hard Materials,2011,29 (2):202-208.
    [51]http://dea-global.org/wp-content/uploads/2009/10/T-Dennis-DEA-Presentation-2009-06-23.pdf.
    [52]http://www.yuanchigroup.com/cn/productshow.asp?id=385.
    [53]S. H. M. T. i. U. c. c. g. s. h. w. s. c.2004-11-04.
    [54]鲍瑞,易健宏,杨亚杰,等.微波烧结粗晶低钻YG硬质合金存在的脱碳问题及其改进[J].粉末冶金材料科学与工程,2012,17(2):172-176.
    [55]张正富,彭金辉.提高钻采工具用硬质合金性能的新技术[J].粉末冶金技术,2011,29(2):8-15.
    [56]B. Li, H. Wang, J. X. Deng, et al. Antifriction characteristics of quasi-nano alumina reinforced with Zr-O-B compounds against cemented carbides[J]. International Journal of Refractory Metals & Hard Materials,2011,29 (2):177-183.
    [57]N. G. Hashe, J. H. Neethling, P. R. Berndt, et al. A comparison of the microstructures of WC-VC-TiC-Co and WC-VC-Co cemented carbides[J]. International Journal of Refractory Metals. & Hard Materials,2007,25 (3):207-213.
    [58]L. Chen, Y. Du, S. Q. Wang, et al. A comparative research on physical and mechanical properties of (Ti, Al)N and (Cr, Al)N PVD coatings with high Al content[J]. International Journal of Refractory Metals & Hard Materials,2007,25 (5-6):400-404.
    [59]R. Connelly, A. K. Pattanaik, V. K. Sarin. Development of moderate temperature CVD Al2O3 coatings[J]. International Journal of Refractory Metals & Hard Materials, 2005,23(4-6):317-321.
    [60]L. Zhou, S. T. Huang, L. F. Xu. An efficient super-high speed polishing method for CVD diamond films[J]. International Journal of Refractory Metals and Hard Materials, 2011,29(6):698-704.
    [61]F. A. Almeida, J. M. Carrapichano, A. J. S. Fernandes, et al. Nanocrystalline CVD diamond coatings for drilling of WC-Co parts[J]. International Journal of Refractory Metals & Hard Materials,2011,29 (5):618-622.
    [62]L. Chen, Y. Du, F. Yin et al. Mechanical properties of (Ti, A1)N monolayer and TiN/(Ti, Al)N multilayer coatings[J]. International Journal of Refractory Metals & Hard Materials,2007,25 (1):72-76.
    [63]W. Lengauer, K. Dreyer. Functionally graded hardmetals[J]. Journal of Alloys and Compounds,2002,338:194-212.
    [64]羊建高,王海兵,刘咏,等.WC晶粒度不同的双层硬质合金中的梯度结构[J].中南大学学报(自然科学版),2005,36(3):349-356.
    [65]羊建高.梯度结构硬质合金的制备原理及梯度形成机理研究[D].长沙:中南大学,2004.
    [66]Z. Z. Fang, H. B. Zhang, Q. Z. Lu. Characterization of a bilayer WC-Co hardmetal using Hertzian indentation technique[J]. International Journal of Refractory Metals & Hard Materials,2009,27 (2):317-322.
    [67]O. Eso, Z. Fang, A. Griffo. Liquid phase sintering of functionally graded WC-Co composites[J]. International Journal of Refractory Metals & Hard Materials,2005,23 (4-6):233-241.
    [68]娄静.微波烧结YG8硬质合金的脱碳行为及其控制[D].长沙:中南大学,2011,
    [69]刘韩星,欧阳世翕.无机材料微波固相合成方法与原理[M].北京:科学出版社,2006,1-5.
    [70]http://baike.baidu.com/view/5863.htm.
    [71]周建,全峰,刘伟波,等.微波单模腔烧结WC-10Co硬质合金的研究[J].武汉理工大学学报,2007,29(12):1-4.
    [72]罗述东.微波加热技术在金属材料制备中的应用研究-微波烧结与焊接工艺[D].长沙:中南大学,2008.
    [73]朱凤霞.铜粉压坯的微波烧结研究[D].长沙:中南大学,2008.
    [74]李建保,谢志鹏,黄勇.微波在无机材料热处理中的应用[J].应用基础与工程科学学报,1996,4(1):45-57.
    [75]易健宏,唐新文,罗述东,等.微波烧结技术的进展及展望[J].粉末冶金技术, 2003,21(6):351-354.
    [76]范景莲,黄伯云,刘军,等.微波烧结原理与研究现状[J].粉末冶金工业,2004,14(1):29-33.
    [77]G. A. Tompsett, W. C. Conner, K. S. Yngvesson. Microwave synthesis of nanoporous materials[J]. ChemPhysChem,2006,7:296-319.
    [78]郭颖利.微波熔渗法制备W-Cu合金研究[D].长沙:中南大学,2010.
    [79]周承商.微波烧结W-Ni-Fe高密度合金研究[D].长沙:中南大学,2009.
    [80]全峰.微波烧结WC-lOCo硬质合金的结构与性能研究[D].武汉:武汉理工大学,2007.
    [81]A. Moddal, A. Upadhyaya, D. Agrawal. Effect of heating mode on sintering of tungsten[J]. Int. Journal of Refractory Metals and Hard Materials 2010,28:597-600.
    [82]彭元东.微波加热机制及粉末冶金材料烧结特性研究[D].长沙:中南大学,2011.
    [83]A. Mondal, D. Agrawal, A. Upadhyaya. microwave sintering of refractory metalsalloysW Mo Re W-Cu W-Ni-Cu and W-Ni-Fe alloys[J]. Journal of Microwave Power and Electromagenetic Energy,2010,44(1):28-44.
    [84]D. Agrawal. Microwave sintering of Ceramics, Composites and Metallic Materials, and Melting of Glasses[J]. Topical Reviews,2006,65 (3):139-154.
    [85]Y. V. Bykov, K. I. Rybakov, V. E. Semenov. High-temperature microwave processing of materials[J]. Journal of Physics D:Applied Physics,2001,34:R55-R75.
    [86]B. B. P. Microwave processing of materials[J]. Matals and materials Bury St Edmunds,1989,5 (11):633-636.
    [87]K.Rodiger, K.Dreyer, T.Gerdes et al. Microwave sintering of hardmetals[J]. International Journal of Refractory Metals & Hard Materials,1998,16:409-416.
    [88]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007.
    [89]M. Oghbaei, O. Mirzaee. Microwave versus conventional sintering:A review of fundamentals, advantages and applications[J]. Journal of Alloys and Compounds,2010, 494 (1-2):175-189.
    [90]易健宏,罗述东,唐新文,等.金属基粉末冶金零件的微波烧结机理初探[J].粉末冶金工业,2003,13(2):22-25.
    [91]易健宏,周承商.金属基粉末冶金材料的微波烧结技术研究[J].2009全国粉末 冶金学术会议论文集,2009,湖南张家界:14-20.
    [92]A. Mondal, D. Agrawal, A. Upadhyaya. Microwave heating of pure copper powder with varying particle size and porosity[J]. J Microw Power Electromagn Energy,2009,43 (1):5-10.
    [93]鲍瑞.微波烧结超细WC-8Co硬质合金[D].长沙:中南大学,2010.
    [94]P. D. Ramesh, D. Brandon, L. Schachter. Use of partially oxidized SiC particle bed for microwave sintering of low loss ceramics[J]. Materials Science and Engineering A, 1999,266:211-220.
    [95]J.VIeugels, I.Volders, S.Put, et al. Hybrid-microwave sintering of hardmetals and graded oxide composites [J].15th International Plansee Seminar,2001,2:204-215.
    [96]K. I. Rybakov, V. E. Semenov, S. V. Egorov, et al. Microwave heating of conductive powder materials[J]. JOURNAL OF APPLIED PHYSICS,2006,99:023506-1-9.
    [97]J. Wang, J. Binner, B. Vaidhyanathan. Evidence for the Microwave Effect During Hybrid Sintering[J]. J. Am. Ceram. Soc.,2006,89 (6):1977-1984.
    [98]M. Gupta, W. L. E. Wong. Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering[J]. Scripta Materialia, 2005,52:479-483.
    [99]彭元东,易健宏,罗述东,等.微波技术在金属材料制备中的应用现状[J].稀有金属材料与工程,2009,38(4):742-747.
    [100]X. Tang, Q. Tian, B. Zhao, et al. The microwave electromagnetic and absorption properties of some porous iron powders [J]. Materials Science and Engineering A, 2007,445-446:135-140.
    [101]Y. Fang, J. Cheng, D. K. Agrawal. Effect of powder reactivity on microwave sintering of alumina[J]. Materials Letters,2004,58:498-501.
    [102]K. Ahmad, P. Wei, S. Jie. Microwave Sintering of Alumina-Silicon Carbide Nanocomposites[J]. Key Engineering Materials,2007,336-338:1072-1075.
    [103]Z. Xie, J. Yang, Y. Huang. Densification and grain growth of alumina by microwave processing[J]. Materials Letters,1998,37:215-220.
    [104]Kriegsmann. G. A. Thermal runaway in microwave heated ceramics:A one-dimensional model[J]. Journal of Applied Physics,1992,71 (4):1960-1966.
    [105]C. A. Vriezinga, S. Sanchez-Pedreno, J. Grasman. Thermal runaway in microwave heating a mathematical analysis[J]. Materials Science and Engineering A,1999, 266:211-220.
    [106]Kenkre V M, Skala L, Weiser M W, et al. Theory of microwave interactions in ceramic materials:the phenomenon of thermal runaway [J]. Journal of Materials Science, 1991,26(9):2483-2489.
    [107]J. M. Hill and T. R. Marchant. Modelling microwave heating[J]. Appl. Math. Modelling,1996,20:3-15.
    [108]V. M. Kenkre, L. Skala, M. W. Weiser. Theory of microwave interactions in ceramic materials:the phenomenon of thermal runaway[J]. Journal of Materials Science, 1991,26:2483-2489.
    [109]B. R. Sunil, D. Sivaprahasam, R. Subasri. Microwave sintering of nanocrystalline WC-12Co:Challenges and perspectives[J]. International Journal of Refractory Metals and Hard Materials,2010,28 (2):180-186.
    [110]R. Roy, R. Peelamedu, L. Hurtt, et al. Definitive experimental evidence for microwave effects:radically new effects of separated E and H fields, such as decrystallization of oxides in seconds[J]. Mat Res Innovat,2002,6:128-140.
    [111]M. S, T. S, T. M. Anisotropic Sintering in Polarized Microwave Fields-Evidence for Non-Thermal Microwave Effects[J]. Conference Digest of the Joint 31st International Conference Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics,Shanghai, China, September 2006,2006:285.
    [112]M. Sato, A. Matsubara, S. Takayama, et al. EXPERIMENTAL ANALYSIS FOR THERMALLY NON-EQUILIBRIUM STATE UNDER MICROWAVE IRRADIATIONS A GREENER PROCESS FOR STEEL MAKING [J]. Sohn International Symposium ADVANCED PROCESSING OF METALS AND MATERIALS,2006,5:157-170.
    [113]K. Huang, X. Yang, W. Hua, et al. Experimental evidence of a microwave non-thermal effect in electrolyte aqueous solutions[J]. New Journal of Chemistry,2009, 33:1486-1489.
    [114]A. Shazman, S. Mizrahi, U. Cogan, et al. Examining for possible non-thermal effects during heating in a microwave oven[J]. Food Chemistry,2007,103:444-453.
    [115]K.I.Rybakov, V.E.Semenov. Mass tranport in ionic crystals induced by the ponderomotive action of a high-frequency electric field[J]. PHYSICAL REVIEW B, 1995,52 (5):3030-3033.
    [116]S. A. Freeman, J. H. Booske, R. F. Cooper. Modeling and numerical simulations of microwave-induced ionic transport[J]. JOURNAL OF APPLIED PHYSICS,1998,83 (11):5762-5773.
    [117]S.A.Freeman, J.H.Booske, R.F.Cooper. Microwave Field Enhancement of Charge Transport in Sodium Chloride[J]. PHYSICAL REVIEW B,1995,74 (11):2042-2045.
    [118]J. H. Booske, R. F. Cooper, I. Dobson. Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids[J]. J. Mater. Res.,1992,7 (2):495-501.
    [119]D. Demirskyi, D. Agrawal, A. Raguly. Neck growth kinetics during microwave sintering of copper[J]. Scripta mater,2010,62:552-555.
    [120]M. A. Janney, H. D. Kimrey, M. A. Schmidt et al. Grain Growth in Microwave-Annealed Alumina[J]. J.Am.Ceram.Soc.,1991,74 (7):1675-81.
    [121]杨亚杰.微波烧结粗晶WC-Co硬质合金[D].长沙:中南大学,2010.
    [122]鲍瑞,易健宏,杨亚杰,等.炭含量对微波烧结粗晶硬质合金性能的影响[J].2011全国粉末冶金学术会议海峡两岸粉末冶金技术研讨会,2011,中国广州:557-561.
    [123]郭颖利,易健宏,罗述东,等.微波熔渗法制备W-Cu合金[J].2009全国粉末冶金学术会议论文集,2009:399-402.
    [124]周承商,易健宏,罗述东,等.微波烧结快速制备W-Ni-Fe高密度合金[J].2009全国粉末冶金学术会议论文集,2009:348-352.
    [125]易健宏,郭颖利,罗述东,等.一种微波熔渗制备W-Cu合金的方法[P].公开号CN101624662A,2010.
    [126]易健宏,周承商,罗述东,等.一种微波制备W-Ni-Fe高密度合金的方法[P].CN 101624663A,2010.
    [127]http://ceralink.com/sites/default/files/MicrowaveinCeramicManufacturing.pdf.
    [128]彭虎,胡正,夏广斌.微波处理红土镍矿富集镍铁的方法[P].申请公布号CN102127633A,2011.
    [129]张刚,彭锦波,孙友元,等.一种全密闭式工业级微波高温辊道连续烧结[P].CN 102042749A,2011.
    [130]冯国通,邱宁,王俊卿,等.隧道连续式微波高温加热炉[P].CN 201852437U,2011.
    [131]C. Zhou, J. Yi, S. Luo, et al. Effect of heating rate on the microwave sintered W-Ni-Fe heavy alloys[J]. Journal of Alloys and Compounds,2009,482 (1-2):L6-L8.
    [132]Y. Guo, J. Yi, S. Luo, et al. Fabrication of W-Cu composites by microwave infiltration[J]. Journal of Alloys and Compounds,2010,492 (1-2):L75-L78.
    [133]L. Shudong, Y. Jianhong, G Yingli, et al. Consolidation and Microstructures of Microwave Sintered W-25Cu Alloys with Fe Addition [J]. Journal of Wuhan University of Technology-Materials Science Edition,2010,25 (3):437-443.
    [134]彭虎,李俊.微波高温加热技术进展[J].材料导报,2005,19(10):100-103.
    [135]黄加伍,彭虎.粉末冶金Fe-Cu-C合金的微波烧结研究[J].矿冶工程,2005,25(5):77-80.
    [136]马金龙,童学峰,彭虎.烧结技术的革命-微波烧结技术的发展及现状[J].新材料产业,2001,11(8):3-7.
    [137]B. Kieback. Processing techniques for functionally graded materials [J]. Materials Science and Engineering A,2003,362(1-2):81-106.
    [138]牛群英,李贤军.微波加热技术的应用与研究进展[J].物理学和高新技术,2004,33(6):438-442.
    [139]金钦汉.微波化学[M].北京:科学出版社,1999,1-5.
    [140]王绍林.微波加热原理及其应用[J].物理,1996,26(4):232-237.
    [141]池建伟,维珍承,徐志宏,等.微波技术在食品加工中的应用与发展[J].保鲜与加工,2003,3(1):7-9.
    [142]徐培娟,刘晶晶.微波技术在食品工业中的应用[J].食品工程,2007,2:20-22.
    [143]赫亚勤,高愿军.微波技术在食品加工中的应用及前景[J].山西食品工业,2005,1:28-31.
    [144]王永周,陈美,邓维用.我国微波干燥技术应用研究进展[J].干燥技术与设备,2008,6(5):219-224.
    [145]祝圣远,王国恒.微波干燥原理及其应用[J].工业炉,2003,25(3):42-45.
    [146]郭浩,严国军,车林,等.人造金刚石提纯除杂装置[P].CN 201753267U,2011.
    [147]杨军,张晓东,王雄.一种利用微波氧化焙烧提纯金刚石精料的方法[P].CN102381702A,2012.
    [148]吴锴.氧化球团矿在微波场中的还原行为研究[D].长沙:中南大学,2011.
    [149]露丝.罗埃,约翰.马什.在微波和射频能量存在下的含金属矿石的还原处理[P].CN 101395286A,2009.
    [150]张泽强,胡文祥,李冬莲.用微波还原弱磁性铁矿物制取铁精矿的方法[P].CN 101012497A,2007.
    [151]谷晋川.微波强化硅藻土矿提纯机理研究[D].成都:四川大学,2003.
    [152]陈津,刘浏,曾加庆,等.微波加热还原含碳铁矿粉试验研究[J].钢铁,2004,39(6):1-4.
    [153]彭金辉,何蔼平.德国在微波处理材料方面的应用研究[J].昆明理工大学学报,1996,21(6):3941.
    [154]L. S.D., Y. J.H., P. YD. Study on heating Rate of Microwave Sintering Technology for Cemented carbides[J]. Rare Metal Materials and Engineering,2010,39 (5):820-823.
    [155]程吉平,刘先钧,傅文斌,等.精细陶瓷材料的微波烧结[J].全国微波会议论文集,1991:1177-1184.
    [156]D. Agrawal, J. Cheng, P. Seegopaul, et al. Grain growth control in microwave sintering of ultrafine WC-Co composite powder compacts[J]. Powder Metallurgy,2000, 43(1):15-16.
    [157]J.P.Cheng, D.K.Agrawal, S.Komarneni, et al. Microwave processing of WC-Co composities and ferroic titanates[J]. Mat Res Innovat,1997,1:44-52.
    [158]E. Breval, J. Cheng, D. Agrawal, et al. Comparison between microwave and conventional sintering of WC/Co composites[J]. Materials Science and Engineering A, 2005,391(1-2):285-295.
    [159]D. Demirskyi, A. Ragulya, D. Agrawal. Initial stage sintering of binderless tungsten carbide powder under microwave radiation[J]. Ceramics International,2011,37 (2):505-512.
    [160]J. Ramkumar, S. Aravindan, S. K. Malhotra, et al. Enhancing the metallurgical properties of WC insert (K-20) cutting tool through microwave treatment[J]. Materials Letters,2002,53 (3):200-204.
    [161]S. Aravindan, J. Ramkumar, S. K. Malhotra, et al. Enhancement of cutting performance of cemented carbide cutting tools by microwave treatment[J]. Microwave and Radio Frequency Applications,2003:199-206.
    [162]J. Ramkumar, S. K. Malhotra, R. Krishnamurthy. Effect of microwave treatment on WC inserts for drilling of GFRP composites[J]. Machining Science and Technology,2005, 9 (2):263-269.
    [163]史晓亮,杨华,邵刚勤,等.微波烧结法制备WC-10Co硬质合金[J].中南大学学报(自然科学版),2006,37(4):5-9.
    [164]W. Lin, X. Bai, Y. Ling, et al. Fabrication and Properties of Axisymmetrec WC/Co Functionally Graded Hard Metal via Microwave Sintering[J]. Materials Science Forum, 2003,423-426:55-58.
    [165]孙宝琦.关于WC-Co硬质合金的强度和结构问题[J].稀有金属材料与工程,2004,32(1):46-52.
    [166]http://www.osti.gov/energycitations/servlets/purl/825014-H9PJQE/native/825014.p df.
    [167]R. Bao, J. Yi, H. Zhang, et al. A research on WC-8Co preparation by microwave sintering[J]. International Journal of Refractory Metals and Hard Materials,2012, 32:16-20.
    [168]T. Gerdes, M. Willert-Porada, H.-S. Park. Microwave sintering of ferrous PM materials [J]. International Conference on Powder Metallurgy and particulate materials, San Diego, California US,2006.,2006.
    [169]罗述东,易健宏,彭元东.微波技术在金属材料制备中的应用研究[J].全国粉末冶金技术及应用会议,2007,北京.
    [170]P.Marquardt, G.Nimtz. Size-governed electromagnetic absorption by metal particles[J]. PHYSICAL REVIEW B,1989,40 (11):7996-7998.
    [171]G NImitz, P. Marquardt. Size-induced metal-insulator transition in metals and semiconductors[J]. Journal of Crystal Growth,1990,86(1-4):66-71.
    [172]P. MISHRA, G SETHI, A. UPADHYAYA. Modeling of Microwave Heating of Particulate Metals[J]. Metallurgical and Materials Transactions B,2006,37:839-845.
    [173]J. Ma, J. F. Diehl, E. J. Johnson, et al. Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts[J]. Journal of Applied Physics,2007,101:074906-1-8.
    [174]刘伟波.微波烧结WC-lOCo硬质合金工艺和性能的研究[D].武汉:武汉理工大学,2007.
    [175]B. Rui, Y. Jianhong, P. Yuandong, et al. Decarburization and improvement of ultra fine straight WC-8Co sintered via microwave sintering[J]. Transactions of Nonferrous Metals Society of China,2012,22:853-857.
    [176]O.Lavergne, F.Robaut, F.Hodaj, et al. Mechanism of solid-state dissolution of WC in Co-based solutions[J]. Acta Materialia,2002,50:1683-1692.
    [177]L. Sun, C. Jia, M. Xian. A research on the grain growth of WC-Co cemented carbide[J]. International Journal of Refractory Metals and Hard Materials,2007,25 (2):121-124.
    [178]http://baike.baidu.com/view/5089.htm.
    [179]张兆镗,钟若青.微波加热技术基础[J].北京:电子工业出版社,1998.
    [180]M. Elfwing, S. Norgren. Study of solid-state sintered fine-grained cemented carbides[J]. Int. Journal of Refractory Metals & Hard Materials.,2005,23:242-248.
    [181]Z. Fang, O. Eso. Liquid phase sintering of functionally graded WC?Co composites[J]. Scripta Materialia,2005,52 (8):785-791.
    [182]C. C. J. On the microwave hotspot problem[J]. J.Aust.Math.Soc.Ser.B,1991, 33:1-8.
    [183]J. Guo, P. Fan, X. Wang, et al. Formation of Co-capping during sintering of straight WC-10wt% Co[J]. International Journal of Refractory Metals and Hard Materials,2010, 28 (3):317-323.
    [184]S. V. Egorov, AGEremeev, I. V. Plotnikov, et al. Edge effect in microwave heating of conductive plates[J]. JOURNAL OF PHYSICS D,2006,39:3036-3041.
    [185]吴其山,孙东平,陈旭曦,等.WC-Co硬质合金生产过程中碳的控制与调节[J].硬质合金,2002,19:47-50.
    [186]C. H. Allibert. Sintering features of cemented carbides WC-Co processed from fine powders[J]. International Journal of Refractory Metals & Hard Materials,2001,19 (1):53-61.
    [187]L.R.Carbon correction and control for WC-Co alloys in carbon containing furnaces [J]. Metal Powder Report,1986,7:505-509.
    [188]A. Petersson, J. Agren. Rearrangement and pore size evolution during WC-Co sintering below the eutectic temperature[J]. Acta Materialia,2005,53 (6):1673-1683.
    [189]Z. Fang, J. W. Eason. Study of Nanostructured WC-Co Composites [J]. Int. J. of Refractory Metals & ltard Materials,1995,13:297-303.
    [190]A. Birnboim, J. P. Calame, Y. Carmel et al. Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave processing[J]. Journal of Applied Physics,1999,85:478-482.
    [191]D. Demirskyi, D. Agrawal, A. Raguly. Densification kinetics of powdered copper under single-mode and multimode microwave sintering[J]. Materials Letters,2010, 64:1433-1436.
    [192]J. Cheng, R. Roy, D. Agrawal. Radically different effects on materials by separated microwave electric and magnetic fields[J]. Mat Res Innovat,2002,5:170-177.
    [193]张敏,王红丽,孙佳伟.基于CST软件的专用仿真平台的开发[J].2007年全国微波毫米波会议论文集,2007,宁波:1-4.
    [194]石建军,成志强,J.-C. GELIN,等.微波烧结多物理场耦合过程的数值模拟方法研究[J].中国科技论文在线,http://www.paper.edu.cn.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700