标记基因的克隆、化学合成和体外定向分子进化及其在果树基因工程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
标记基因是一种用来筛选和鉴定转化细胞、组织和转基因植株的DNA片段,包括起富集转化细胞作用的选择基因和易于检测表达产物的报告基因。抗生素类和抗除草剂类是当前转基因作物中采用的选择标记基因。目前常用的报告基因主要包括β-葡萄糖苷酸酶基因(gus)、β-半乳糖苷酶基因(LacZ)、荧光素酶基因(Luc)、绿色荧光蛋白基因(gfp)和冠瘿碱合成酶基因等。植物转基因中最广泛应用的报告基因是gus。转基因作物进入商业化生产阶段,其外源基因的逃逸是不可避免的。因此使用安全的标记基因和报告基因是一个很好的选择。体外定向分子进化是发现和改造生物活性分子的重要方法,提供了一种高效获得多样性的方法。DNA改组是重要的体外分子进化技术,结合高通量筛选在农业、环境污染治理、化学工业、基因治疗、疫苗、蛋白药物等方面有着广泛的应用。近年来,许多体外分子进化的新策略和新方法层出不穷。DNA改组技术的发展和成熟是在上世纪九十年代末期。特别是进入21世纪以来,体外分子进化技术在新技术和新理论的推动下,又得到了长足的发展。推理设计是基于基因和蛋白质信息进行基因和蛋白质序列的改造,作为基因和蛋白质体外快速改造有其重要的一面。化学法合成DNA是生物学基础研究和生物工程应用的一个非常重要的手段,化学法合成基因提供了一种改造基因,阐明基因功能,分析蛋白质-核酸相互作用的强有力手段,通过化学法合成和改造后能够实现高表达,也是消除多个点突变的好方法。近年来化学法合成DNA的发展使得大规模合成较长DNA序列成为可能。随着化学合成寡核苷酸链广泛的用于各类引物、基因全合成、DNA芯片等领域,实现了合成寡核苷酸链的小型化,自动化及高通量化。诞生了一些界面友好的设计基因软件。基因全合成自从出现后一直就有着广泛的应用,近年来应用的范围也越来越广泛。
     在重叠延伸PCR合成基因方法的基础上,建立了一种基于两步PCR的简单高效经济合成长DNA序列方法:PTDS。该方法主要涉及两步:首先通过12个长度60 nt且20 nt重叠的寡核苷酸,使用高保真的DNA聚合酶pfu合成4个长度为500 bp左右的的DNA片段;其次通过第一步PCR产物作为模板,使用最外侧的引物和高保真DNA聚合酶pyrobest进行第二步的PCR扩增,从而合成完整的目的抗虫基因vip3aI。另外进一步通过改良的PCR精确合成方法(PAS)合成了一编码普鲁兰酶的pulA基因和一编码耐高温β-葡萄糖苷酸酶的Tm-gus基因。
     大肠杆菌的β-葡萄糖苷酸酶基因,是一个使用广泛的报告基因。由于其具有检测灵敏,酶性质稳定,完善的酶学分析方法和可见的表型等特点,已经成为研究体外分子进化技术的一个好的模式。本文建立了一个高通量β-葡萄糖苷酸酶基因的体外分子进化体系,并通过该高通量体系获得了一个较野生型显著耐受高温的突变体:GUS-TR。该突变体的大肠杆菌转化子在膜上能够耐受100℃的高温达30分钟,而对照不能耐受70℃的高温。通过6-His表达和镍离子螯合层析得到纯化的突变体和野生型蛋白GUS-TR和GUS-WT。酶活性测定结果显示,经过70℃处理10分钟,表达的野生型的GUS-WT活性明显下降,而表达的耐高温的GUS-TR,经过80℃加热10分钟处理活性依然保留88%左右,经过80度加热30分钟,活性依然保留在50%以上。
     gus-tr基因序列测定分析共有15个核苷酸位点发生改变,导致了12个氨基酸位点发生突变,分别是:I149T,N181S,D436E,V446A,A451V,Q493R,T509A,M532T,N550S,G559S,N566S和M591I。以gus-tr基因为模板进一步使用定点突变结合耐高温性状分析,发现存在于定点突变个体GUS-TR中的六个突变位点(Q493R,T509A,M532T,N550S,G559S和N566S)对于耐高温性的获得是重要的,且存在关联效应。其中Q493R和T509A位点是两个新发现的耐高温β-葡萄糖苷酸酶关键位点。通过定点突变技术获得含有上述六个关键位点的突变个体GUS-TR3337。通过对突变个体GUS-TR3337和野生型大肠杆菌β-葡萄糖苷酸酶(GUS-WT)的蛋白质纯化后分析,野生型蛋白质在70℃处理10分钟后酶活性完全丧失。而突变体GUS-TR3337在80℃处理10分钟后酶活性保留在75%以上。进一步通过蛋白质模型分析研究了耐高温突变个体和野生型之间的关系,从分子机制上探讨了β-葡萄糖苷酸酶之结构和功能的关系。
     为了直观地证明获得的耐高温β-葡萄糖苷酸酶突变体在植物转基因中作为报告基因的可行性,将获得的突变基因gus-tr3337和来自大肠杆菌的野生型gus基因分别转入拟南芥植株中进行植物中耐高温性能研究。通过农杆菌蘸花法分别获得多个转基因株系,编号分别为YG8557(耐高温GUS基因gus-tr3337)和YG8555(野生型GUS基因gus-wt)。通过对转基因YG8557拟南芥植株和YG8555拟南芥植株进行了高温处理后X-Gluc染色的实验发现,野生型GUS基因(gus-wt)转基因拟南芥未经高温处理显色良好,呈现蓝色。而经过60℃处理5分钟时略微显蓝色,且非常微弱,随着处理温度的升高和处理时间的延长,转基因植株均不能显蓝色。而耐高温改组GUS基因(gus-tr3337)转基因拟南芥植株未经高温处理显色良好,呈现蓝色。经过60℃处理20分钟、30分钟;70℃处理10分钟、20分钟、30分钟;80℃处理10分钟、20分钟很好的显蓝色。甚至80℃处理30分钟仍能够较明显的显示蓝色,说明经过体外定向分子进化技术改组突变的耐高温β-葡萄糖苷酸酶(GUS-TR3337)在植物中依然能够保持耐高温性能。
     通过RACE技术从苹果中克隆了一个编码5-烯醇丙酮莽草酸-3-磷酸合成酶的基因(mdepsps),多重序列比对分析发现苹果来源的EPSPS与蒺藜苜蓿的EPSPS关系最近。将mdepsps基因构建入原核表达载体pYPX251中,发现含有该表达质粒的大肠杆菌菌株不能够在含有30 mM的草甘膦的M9培养基正常生长。通过体外定向分子进化技术对mdepsps进行了改造,获得了在M9培养基上添加50 mM的草甘膦仍能正常生长的阳性克隆15个。
     本文从果树基因工程研究中广泛使用的报告基因(β-葡萄糖苷酸酶)和有潜在应用前景的选择标记基因(5-烯醇丙酮莽草酸-3-磷酸合成酶)两方面入手,分别通过基因分离、设计、化学合成、体外定向分子进化等手段进行研究。通过化学合成和体外定向分子进化获得的耐高温的β-葡萄糖苷酸酶可以作为新型报告基因在果树基因工程中应用,尤其是一些具有较高内源GUS的果树物种。从苹果中克隆并通过改组提高功能的编码5-烯醇丙酮莽草酸-3-磷酸合成酶的基因具有:来源于苹果,安全可靠,功能良好等特点,且具有自主知识产权,有较强的理论和实际意义。上述研究丰富了果树基因工程中的报告基因种类,对果树遗传转化有一定的意义,同时也进一步丰富了果树基因工程中的基因来源,尤其是安全性的来源果树本身的基因,为果树基因工程应用奠定基础。
Selectable marker genes can be divided into several categories depending on whether they confer positive or negative selection and whether selection is conditional or non-conditional on the presence of external substrates.Green fluorescent protein(GFP),β-galactosidase(GAL),luciferase(LUC),β-glucuronidase(GUS),and oxalate oxidase (OxO) have been important in transgenic plant research or crop development,and have been assessed for efficiency,biosafety,scientific application and commercialization. Despite approximately fifty marker genes existing for plants,only a few marker genes are used for most plant research and crop development.Many of these genes have specific limitations or have not been sufficiently tested to merit their widespread use.Theβ-glucuronidase gene(gusA) isolated from E.coli is still to date the most widely used reporter gene in genetically modified plants.Its popularity is attributed to high stability in plant tissues and lack of toxicity even when expressed at high levels.The histochemical GUS staining protocol is a simple,rapid,highly-reliable and cost-effective method for analysis of transgenic plants.In addition,no specialized equipment is needed for histochemical assay of GUS activity.GUS in genetically modified plants and their products can also be regarded as safe for the environment and consumers.Directed evolution in vitro, especially DNA shuffling,is a powerful method used in academic study and industrial applications to create modified and functionally improved proteins.Directed evolution has brought significant advances in many fields,such as biocatalysts,plant improvement,and vaccine and pharmaceutical development.Rational Evolutionary Design utilizes structural and sequence alignment information to create new genes and proteins.Rational Evolutionary Design has recently emerged as an attractive approach for studying function of proteins.Chemical synthesis of DNA sequences provides a powerful tool to modifying genes for high level expression in heterologous systems and for characterization of gene structure,expression and function.Modified genes and consequently protein/enzymes can bridge and facilitate genomics and proteomics research.High-fidelity and cost-effective chemical synthesis of DNA has been central to recent progresses in biotechnology and basic biomedical research.
     Chemical synthesis of DNA sequences provides a powerful tool to modify genes and to study gene function,structure and expression.Here,we report a simple,high fidelity and cost-effective PCR-based two-step DNA synthesis(PTDS) method for synthesis of long segments of DNA.The method involves two steps:(ⅰ) Synthesis of individual fragments of the DNA of interest:Ten to twelve 60-mer oligonucleotides with 20-bp overlap in each are mixed and a PCR reaction is carried out with high fidelity DNA polymerase Pfu to produce DNA fragments that are about 500-bp in length.(ⅱ) Synthesis of the entire sequence of the DNA of interest:Five to ten PCR products from the first step are combined and used as the template for a second PCR reaction using high-fidelity DNA polymerase pyrobest,with the two outermost oligonucleotides as primers.Compared to the previously published methods, the PTDS method is rapid(5 to 7 days) and suitable for synthesizing long segments of DNA (5 to 6-kb) with high G+C contents,repetitive sequences,or complex secondary structures. Thus,the PTDS method provides an alternative tool for synthesizing and assembling long genes with complex structures.Using the newly developed PTDS method,we have successfully obtained several genes of interest with their size ranging from 1.0-5.4 kb.
     Here we also describe a simple and rapid PCR-based method for accurate assembly and synthesis(PAS) of long DNA sequences.The PAS protocol involves five steps:(1) Design of the DNA sequence to be synthesized and design of 60-bp overlapping oligonucleotides to cover the entire DNA sequence;(2) Purification of the oligonucleotides by polyacrylamide gel electrophoresis(PAGE);(3) First PCR,to synthesize DNA segments of 400- to 500-bp in length using 10 inner(template) and 2 outer(primer) oligonucleotides;(4) Second PCR,to assemble the products of the first PCR into the full length DNA sequence; (5) Cloning and verification of the synthetic DNA by sequencing and,if needed,error correction using an overlap extension PCR technique.This method,which takes about 1 week,is suitable for synthesizing diverse types of long DNA molecules.We have successfully synthesized DNA fragments from 0.5-kb to 12.0-kb,with high GC contents, repetitive sequences,or complex secondary structures.Using the PAS protocol,we chemical synthesized the pulA gene coding for pullulanase and Tm-gus gene coding for thermostableβ-glucuronidase of Thermotoga maritime.
     Escherichia coliβ-glucuronidase(gusA) gene,a versatile and efficient reporter gene, has been the model for studying in vitro directed evolution because its stability,easy analysis of the enzyme properties and conveniently visible phenotype.We developed a high efficiency,throughput system for in vitro directed evolution using gusA reporter gene as the model.The system consisted mainly of three aspects:a prokaryotic expression vector pYPX251,an easy method for obtaining the mutated gene from DNA shuffling and a suitable selected strategy.The vector pYPX251 carried the moderately strong aacC1 gene promoter and T1T2 transcription terminator that allowed expression in E.coli.Over 10,000 individuals could be selected individually in a 9 cm Petri dish after colonies were absorbed on a nitrocellulose filter.A library which contained 100,000 individuals was screened by incubating ten filter papers with X-Gluc.The polymerase chain reaction products of the gusA gene,the fragments of 50-100 bp,with high mutation rates were purified using dialysis bag from 10%PAGE after electrophoresis.The possibility of obtaining desirable mutations was increased dramatically as the size of the library expanded.A GUS variant, named GUS-TR,was obtained through this system,which is significantly more resistant to high temperature than the wild type enzyme.The GUS-TR maintained its high activity even when the nitrocellulose filter containing the variant colony was heated at 100℃for 30 minutes.
     To achieve a thermostableβ-glucuronidase and identify key mutation sites,we applied in vitro directed evolution strategy through DNA shuffling and obtained a highly thermostable mutant GUS gene,gus-tr,after four rounds of DNA shuffling and screening. This variant had mutations in fifteen nucleic acid sites,resulting in changes in twelve amino acids(AAs).Using gus-tr as the template,we further performed site-directed mutagenesis to reverse the individual mutation to the wild-type protein.We found that six sites(Q493R,T509A,M532T,N550S,G559S and N566S) present in GUS-TR3337,were the key AAs needed to confer its high thermostability.Of these Q493R and T509A were not reported previously as important residues for thermostability ofβ-glucuronidase. Furthermore,all of these six mutations must be present concurrently to confer the high thermostability.We expressed the gus-tr3337 gene and purified the GUS-TR3337 protein that contained the six AA mutations.Compared with the wild-type protein which lost its activity completely after 10 min at 70℃,the mutant GUS-TR3337 protein retained 75% of its activity when heated at 80℃for 10 min.The GUS-TR3337 exhibited high activity even heated at 100℃for 30 min on nitrocellulose filter.The comparison of molecular models of the mutated and wild-type enzyme revealed the relation of protein function and these structural modifications.
     In order to study the thermostableβ-glucuronidase in plant,over 20 samples of transgenic Arabidopsis thaliana were obtained by floral dip method.Compared with the transgenic plant YG8555,hosting the wild-type gus-wt gene,which lost its mostly activity after 5 min at 60℃,the transgenic plant YG8557,hosting gus-tr3337 gene,retained its activity when heated at 60℃for 20 min,30min;at 70℃for 10min,20min,30in;80℃for 10 min,20 min,even heated at 80℃for 30 min.
     Based the conserved sequence of abscisic acid responsive elements-binding factor,a cDNA sequence coding for an AREB transcription factor was cloned from Malus robusta. Alignment of predicted amino acid sequences of comparison of MrAREB transcription factor in different plants,the MrAREB was closest with AREB2 of Populus trichocarpa. The gene mdepsps coding for a 5-enolpyruvylshikimate- 3-phosphate synthase was isolated from Malus domestica.Alignment of predicted amino acid sequences of comparison of mdepsps transcription factor in different organisms,the mdepsps was closest with EPSPS of Medicago truncatula.The gene,mdepsps,originates from popularity fruit apple,has the more bio-safety than the epsps gene from bacillus.To achieve a high activity of MdEPSPS, we applied in vitro directed evolution strategy through DNA shuffling,screening and obtained some mutant clones,which resistance 50 mM glyphosate on the M9 culture medium.
引文
郝振纯,崔广柏,刘凌.多氯联苯在土壤水环境中生物降解过程规律研究[J].水利学报,2000,6:6-13
    贾士荣.未来转基因作物的环境风险分析[J].中国农业科学,2004,37:484-489
    李晓兵,陈彩艳,翟文学.培育具有安全选择标记或无选择标记的转基因植物[J].遗传,2003,25(3):345-349
    彭日荷,熊爱生,李贤,等.苏云金芽孢杆菌cryIA(c)Bt基因的合成及其在大肠杆菌中稳定表达[J].生物化学与生物物理学报,2001,33(2):219-224
    彭日荷,熊爱生,李贤,范惠琴,等.应用毕赤酵母高效表达耐高温植酸酶,生物化学与生物物理学报,2002,34(6):725-730
    隋红,李鑫钢,段云霞,等.三氯乙烯共代谢生物降解研究[J].农业环境科学学报,2004,23(1):170-173
    王兴春,杨长登.转基因植物生物安全标记基因[J].中国生物工程杂志,2003,23(4):19-22
    王国栋,陈晓亚.漆酶的性质、功能、催化机理和应用[J].植物学通报,2003,20(4):469-475
    熊爱生,彭日荷,李贤,等.信号肽序列对毕氏酵母表达外源蛋白影响的影响[J].生物化学与生物物理学报,2003,35(2):154-160
    闫新甫.全球转基因作物种植概况[J].世界农业,2001,4:22-24
    朱祯.农业生物技术产业化发展状况及趋势[J].中国农业科学,2001,34:61-67
    张启发.对我国转基因作物研究和产业化发展策略的建议[J].中国科学院院刊,2004,19:330-331
    赵艳,于彦春.转基因植物中标记基因的安全性新策略[J].遗传,2003,25(1):119-122
    姚泉洪,黄晓敏,彭日荷,等.连续延伸PCR法合成ACC解氨酶基因及测序[J].上海农业学报,1999,15(增刊):11-16
    Adams SE,Johnson ID,Braddock M,et al.Synthesis of a gene for the HIV transactivator protein TAT by a novel single stranded approach involving in vivo gap repair[J].Nucleic Acids Res,1988,16:4287-4298
    Aharoni A,Gaidukov L,Yagur S,et al.Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization[J].Proc Natl Acad Sci USA,2004,101:482-487
    Alexeeva M,Carr R,Turner NJ.Directed evolution of enzymes:new biocatalysts for asymmetric synthesis[J].Org Biomol Chem,2003,1:4133-4137
    Allen SJ, Holbrook JJ. Production of an activated form of Bacillus stearothermophilus L-2-hydroxyacid dehydrogenase by directed evolution[J]. Protein Eng, 2000,13: 5-7
    Amin N, Liu A D, Ramer S, et al. Construction of stabilized proteins by combinatorial consensus mutagenesis[J]. Protein Eng Des Sel, 2004,17: 787-793
    Antoniukas L, Grammel H, Reichl U. Production of hantavirus Puumala nucleocapsid protein in Saccharomyces cerevisiae for vaccine and diagnostics[J]. J Biotechnol, 2006,124: 347-362
    Andersson A, Bernander R, Nilsson P. Dual-genome primer design for construction of DNA microarrays[J]. Bioinformatics, 2005,21: 325-332
    Arensdorf JJ, Loomis AK, DiGrazia PM, et al. Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants[J]. Appl Environ Microbiol, 2002, 68: 691-698
    Argos P, Rossman MG, Grau UM, et al. Thermal stability and protein structure [J]. Biochemistry, 1979, 18, 5698-5703
    Arnold FH, Moore JC. Optimizing industrial enzymes by directed evolution[J]. Adv Biochem Eng Biotechnol, 1997,58: 1-14
    Au LC, Yang FY, Yang WJ, et al. Gene synthesis by a LCR-based approach: high-level production of leptin-L54 using synthetic gene in Escherichia coli[J]. Biochem Biophys Res Commun, 1998, 248: 200-203
    Baez J, Olsen D, Polarek JW. Recombinant microbial systems for the production of human collagen and gelatin[J]. Appl Microbiol Biotechnol, 2005, 69: 245-252
    Baik SH, Ide T, Yoshida H, et al. Significantly enhanced stability of glucose dehydrogenase by directed evolution[J]. Appl Microbiol Biotechnol, 2003, 61: 329-335
    Barnett RW, Erfle H. Rapid generation of DNA fragments by PCR amplification of crude, synthetic oligonucleotides[J]. Nucleic Acids Res, 1990,18: 3094
    Barriault D, Plante M, Sylvestre M. Family shuffling of targeted bphA region to engineer biphenyl dioxygenase[J]. J Bacteriol, 2002,184: 3794-3800
    Beattie KL, Logsdon NJ, Anderson RS, et al. Gene synthesis technology: recent developments and future prospects[J]. Biotechnol Appl Biochem, 1988,10: 510-521
    Bechtold N, Ellis J, Pelletier G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants[J], CR Acad Sci Paris Life Sci, 1993, 316: 1194-1199
    Bergquist P, Te'o V, Gibbs M, et al. Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts[J]. Extremophiles, 2002, 6: 177-184
    Bergquist PL, Reeves RA, Gibbs MD. Degenerate oligonucleotide gene shuffling (DOGS) and random drift mutagenesis (RNDM): two complementary techniques for enzyme evolution[J]. Biomol Eng, 2005, 22: 63-72
    Bernal AJ, Pan Q, Pollack J, et al. Functional analysis of the plant disease resistance gene Pto using DNA shuffling[J]. J Biol Chem, 2005, 280: 23073-23083
    Binkowski BF, Richmond KE, Kaysen J, et al. Correcting errors in synthetic DNA through consensus shuffling[J]. Nucleic Acids Res, 2005, 33: e55
    Bosma T, Damborsky J, Stucki G, et al. Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene[J]. Appl Environ Microbiol, 2002, 68: 3582-3587
    Buchholz F, Angrand PO, Stewart AF. Improved properties of FLP recombinase evolved by cycling mutagenesis[J]. Nat Biotechnol, 1998,16: 657-662
    Burgess EP, Malone LA, Christeller JT, et al. Avidin expressed in transgenic tobacco leaves confers resistance to two noctuid pests, Helicoverpa armigera and Spodoptera litura[J]. 2002, Transgenic Res, 11: 185-198
    Cai M, Xun L. Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723[J]. J Bacteriol, 2002,184: 4672-4680
    Cambillau C, Claverie JM. Structural and genomic correlates of hyperthermostability[J]. J Biol Chem, 2000, 275, 32383-32386
    Campbell MA, Fitzgerald HA, Ronald PC. Engineering pathogen resistance in crop plants[J]. Transgenic Res, 2002,11: 599-613
    Canada K A, Iwashita S, Shim H, et al. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation [J]. J Bacteriol. 2002, 184(2):344-349
    Carr PA, Park JS, Lee YJ, et al. Protein-mediated error correction for de novo DNA synthesis[J]. Nucleic Acids Res, 2004, 32: el62
    
    Caruthers MH. Gene synthesis machines: DNA chemistry and its uses[J]. Science, 1985, 230: 281-285
    Cassidy MB, Lee H, Trevors JT, et al. Chlorophenol and nitrophenol metabolism by Sphingomonas sp. UG30[J]. J Ind Microbiol Biotechnol, 1999, 23: 232-241
    Castle L A, Siehl DL, Gorton R, et al. Discovery and directed evolution of a glyphosate tolerance gene[J]. Science, 2004,304: 1151-1154
    Chang CC, Chen TT, Cox BW, et al. Evolution of a cytokine using DNA family shuffling. Nat Biotechnol, 1999, 17: 793-797
    Chen HB, Weng JM, Jiang K, et al. A new method for the synthesis of a structural gene[J]. Nucleic Acids Res, 1990, 18: 871-878
    Cheng JY, Chen HH, Kao YS, et al. High throughput parallel synthesis of oligonucleotides with 1536 channel synthesizer[J]. Nucleic Acids Res, 2002, 30: e93
    Cherepanov P, Pluymers W, Claeys A, et al. High-level expression of active HIV-1 integrase from a synthetic gene in human cells[J]. FASEB J, 2000,14:1389-1399
    Cherry JR, Lamsa MH, Schneider P, et al. Directed evolution of a fungal peroxidase[J]. Nat Biotechnol, 1999,17: 379-384
    Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants[J]. J Exp Bot, 2004, 55: 225-236
    Ciccarelli RB, Loomis LA, McCoon PE, et al. Insertional gene synthesis, a novel method of assembling consecutive DNA sequences within specific sites in plasmids. Construction of the HIV-1 tat gene[J].. Nucleic Acids Res, 1990,18:1243-1248
    Cho C M H, Mulchandani A, Chen W. Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents[J]. Appl Environ Microbiol, 2002, 68: 2026-2030
    Cho C M, Mulchandani A, Chen W. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos[J]. Appl Environ Microbiol, 2004, 70: 4681-4685
    Climie S, Santi DV. Chemical synthesis of the thymidylate synthase gene[J]. Proc Natl Acad Sci USA, 1990, 87: 633-637
    Cline J, Braman JC, Hogrefe HH. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases[J]. Nucleic Acids Res, 1996,24: 3546-3551
    Coco WM, Levinson WE, Crist MJ, et al. DNA shuffling method for generating highly recombined genes and evolved enzymes[J]. Nat Biotechnol, 2001,19: 354-359
    Cohen J. How DNA shuffling works[J]. Science, 2001, 293: 237
    Crameri A, Whitehorn EA, Tate E, et al. Improved green fluorescent protein by molecular evolution using DNA shuffling[J]. Nat Biotechnol, 1996,14: 315-319
    Crameri A, Raillard SA, Bermudez E. DNA shuffling of a family of genes feom diverse species accelerates directed evolution[J]. Nature, 1998, 391: 288-291
    Cutler S, Somerville C. Cloning in silico[J]. Curr Biol, 1997, 7: R108-R111
    Dixon DP, McEwen AG, Lapthorn AJ, et al. Forced evolution of a herbicide detoxifying glutathione transferase[J]. J Biol Chem, 2003, 278: 23930-23935
    
    Dahiyat B I. In silico design for protein stabilization[J]. Curr Opin Biotechnol, 1999, 10(4): 387-390
    Dai M, Copley SD. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723[J]. Appl Environ Microbiol, 2004, 70:2391-2397
    Daly R, Hearn MT. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production[J]. J Mol Recognit, 2005,18:119-138
    Daugherty P S, Chen G, Iverson B L, et al. Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies[J]. Proc Natl Acad Sci USA, 2000, 97: 2029-2934
    
    DeGrado WF. Introduction: protein design[J]. Chem Rev, 2001,101: 3025-3026
    Di Sioudi BD, Miller CE, Lai K, et al. Rational design of organophosphorus hydrolase for altered substrate specificities[J]. Chem Biol Interact, 1999,119-120: 211-223
    Dillon PJ, Rosen CA. A rapid method for the construction of synthetic genes using the polymerase chain reaction[J]. Biotechniques, 1990, 9: 298, 300
    Dixon DP, McEwen AG, Lapthorn AJ, et al. Forced evolution of a herbicide detoxifying glutathione transferase[J]. J Biol Chem, 2003, 278: 23930-23935
    Dolfing J, Janssen DB. Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds [J]. Biodegradation, 1994, 5: 21-28
    Donarski, WJ, Dumas DP, Heitmeyer DP, et al. Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta[J]. Biochemistry, 1989, 28: 4650-4655
    Dumas DP, Caldwell SR, Wild JR, et al. Purification and properties of the phosphotriesterase from Pseudomonas diminuta[J]. J Biol Chem, 1989, 261: 19659-19665
    Durrschmidt P, Mansfeld J, Ulbrich-Hofmann R. An engineered disulfide bridge mimics the effect of calcium to protect neutral protease against local unfolding[J]. FEBS J, 2005, 272:1523-1534
    Endelman JB, Silberg JJ, Wang ZG, et al. Site-directed protein recombination as a shortest-path problem[J]. Protein Eng Des Sel, 2004, 7: 589-594
    
    Engels J, Uhlmann E. Gene synthesis[J]. Adv Biochem Eng Biotechnol, 1988, 37: 73-127
    Eren M, Swenson RP. Chemical synthesis and expression of a synthetic gene for the flavodoxin from Clostridium MP[J]. J Biol Chem, 1989, 264: 14874-14879
    Estruch JJ, Carozzi NB, Desai N, et al. Transgenic plants: an emerging approach to pest control[J]. Nat Biotechnol, 1997,15: 137-141
    Flaman JM, Frebourg T, Moreau V, et al. A rapid PCR fidelity assay[J]. Nucleic Acids Res, 1994, 22: 3259-3260
    Flores H, Ellington AD. Increasing the thermal stability of an oligomeric protein, beta-glucuronidase[J]. J Mol Biol, 2002, 315: 325-337
    Forstner M, Leder L, Mayr LM. Optimization of protein expression systems for modern drug discovery[J]. Expert Rev Proteomics, 2007, 4: 67-78
    Fox R, Roy A, Govindarajan S, et al. Optimizing the search algorithm for protein engineering by directed evolution[J]. Protein Eng, 2003,16: 589-597
    Fradkov AF, Chen Y, Ding L, et al. Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence[J]. FEBS Lett, 2000,479: 127-130
    Fuglsang A. Codon optimizer: a freeware tool for codon optimization[J]. Protein Expr Purif, 2003, 31: 247-249
    Fukuchi S, Nishikawa K. Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria[J]. J Mol Biol, 2001,309, 835-843
    Fujii R, Kitaoka M, Hayashi K. One-step random mutagenesis by error-prone rolling circle amplification[J]. Nucleic Acids Res, 2004,32: e145
    Furukawa K. Molecular genetics and evolutionary relationship of PCB-degrading bacteria[J]. Biodegradation, 1994,5: 289-300
    Furukawa K, Suenaga H, Goto M. Biphenyl dioxygenases: functional versatilities and directed evolution[J]. J Bacteriol, 2004,186: 5189-5196
    Gao W, Rzewski A, Sun H, et al. UpGene: Application of a web-based DNA codon optimization algorithm[J]. Biotechnol Prog, 2004, 20: 443-448
    Gao X, Yo P, Keith A, et al. Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: a novel method of primer design for high-fidelity assembly of longer gene sequences[J]. Nucleic Acids Res, 2003, 31: e143
    Geddie ML, Matsumura I. Rapid evolution of beta-glucuronidase specificity by saturation mutagenesis of an active site loop[J]. J Biol Chem, 2004, 279: 26462-26468
    Gellissen G. Heterologous protein production in methylotrophic yeasts[J]. Appl Microbiol Biotechnol, 2000, 54: 741-750
    
    Gerhardson B. Biological substitutes for pesticides[J]. Trends Biotechnol, 2002, 20: 338-343
    Ghadessy FJ, Ong JL, Holliger P. Directed evolution of polymerase function by compartmentalized self-replication[J]. Proc Natl Acad Sci USA, 2001, 98: 4552-4557
    Gibbs M D, Nevalainen K M, Bergquist P L. Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling[J]. Gene, 2001, 271: 13-20
    Gilissen LJW, Metz PLJ, Stiekema WJ, et al. Biosafety of E. coli B-glucuronidase (GUS) in plants[J]. Trans Res, 1998, 7: 157-163
    Gill RW, Sanseau P. Rapid in silico cloning of genes using expressed sequence tags (ESTs)[J]. Biotechnol Annu Rev, 2000,5: 25-44
    Giudici P, Solieri L, Pulvirenti A M, et al. Strategies and perspectives for genetic improvement of wine yeasts[J]. Appl Microbiol Biotechnol, 2005, 66: 622-628
    Grosjean H, Fiers W. Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes[J]. Gene, 1982, 18: 199-209
    Grundstrom T, Zenke WM, Wintzerith M, et al. Oligonucleotide- directed mutagenesis by microscale 'shot-gun' gene synthesis[J]. Nucleic Acids Res, 1985,13: 3305-3316
    Gulina IV, Shul'ga OA, Mironov MV, et al. Expression of a partially modified delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis in transgenic potato plants[J]. Mol Biol, 1994,28: 1166-1175
    Guo HH, Choe J, Loeb LA. Protein tolerance to random amino acid change [J]. Proc Natl Acad Sci USA, 2004,101: 9205-9210
    Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression[J]. Trends Biotechnol, 2004,22: 346-353
    Haefner S, Knietsch A, Scholten E, et al. Biotechnological production and applications of phytases[J]. Appl Microbiol Biotechnol, 2005, 68: 588-597
    Hamada A, Yamaguchi K, Ohnishi N, et al. High-level production of yeast (Schwanniomyces occidentalis) phytase in transgenic rice plants by a combination of signal sequence and codon modification of the phytase gene[J]. Plant Biotechnol J, 2005,3: 43-55
    Hao J, Berry A. A thermostable variant of fructose bisphosphate aldolase constructed by directed evolution also shows increased stability in organic solvents[J]. Protein Eng Des Sel, 2004, 17: 689-697
    Hardy PM, Holland D, Scott S, et al. Reagents for the preparation of two oligonucleotides per synthesis (TOPS) [J]. Nucleic Acids Res, 1994, 22: 2998-3004
    Haseltine EL, Arnold FH. Synthetic gene circuits: design with directed evolution[J]. Annu Rev Biophys Biomol Struct, 2007,36:1-19
    He M, Nie Y F, Xu P. A T42M substitution in bacterial 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) generates enzymes with increased resistance to glyphosate[J]. Biosci Biotechnol Biochem, 2003, 67: 1405-1409
    Henry I, Sharp PM. Predicting gene expression level from codon usage bias[J]. Mol Biol Evol, 2007, 24: 10-12
    Hibbert EG, Baganz F, Hailes HC, et al. Directed evolution of biocatalytic processes [J]. Biomol Eng, 2005, 22:11-19
    Hill CM, Li W , Thoden JB, et al. Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site[J]. J Am Chem Soc, 2003,125: 8990-8991
    Hiraga K, Arnold F H. General method for sequence-independent site-directed chimeragenesis[J]. J Mol Biol, 2003, 330: 287-296
    Hoover DM, Lubkowski J. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis[J]. Nucleic Acids Res, 2002; 30: e43
    Hu C, Chee PP, Chee KPP, et al. Intrinsic GUS-like activities in seed plants[J]. Plant Cell Rep, 1990, 9: 1-5
    Ike Y, Ikuta S, Sato M, et al. Solid phase synthesis of polynucleotides. VIII. Synthesis of mixed oligodeoxyribonucleotides by the phosphotriester solid phase method[J]. Nucleic Acids Res, 1983,11: 477-488
    Jain S, Drendel WB, Chen ZW. Et al. Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs[J]. Nat Struct Biol, 1996, 3: 375-381
    Jaiwal PK, Sahoo L, Singh ND. Strategies to deal with the concern about marker genes in transgenic plants: some environment-friendly approaches[J]. Curr Sci, 2002,83: 128-136
    James DJ, Passey AJ, Barbare D, et al. Genetic transformation of apple (Malus pumila Mill) using a disarmed Ti-birary vector[J]. Plants Cell Rep, 1989, 7: 658-661
    Jana S, Deb JK. Strategies for efficient production of heterologous proteins in Escherichia coli[J]. Appl Microbiol Biotechnol, 2005,67: 289-298
    Jay E, MacKnight D, Lutze WC, et al. Chemical synthesis of a biologically active gene for human immune interferon-gamma. Prospect for site-specific mutagenesis and structure-function studies[J]. J Biol Chem, 1984, 259: 6311-6317
    Jayaraman K, Fingar SA, Shah J, et al. Polymerase chain reaction-mediated gene synthesis: synthesis of a gene coding for isozyme c of horseradish peroxidase[J]. Proc Natl Acad Sci USA, 1991, 88: 4084-4088
    Jayaraj S, Reid R, Santi DV. GeMS: an advanced software package for designing synthetic genes[J]. Nucleic Acids Res, 2005, 33: 3011-3016
    Jefferson, RA, Kavanaugh TA Bevan MW. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker for higher plants[J]. EMBO J, 1987, 6: 3901-3907
    Joyce GF. In vitro evolution of nucleic acids[J]. Curr Opin Struct Biol, 1994, 4: 331-336
    Kagami O, Kikuchi M, Harayama S. Single-stranded DNA family shuffling[J]. Methods Enzymol, 2004, 388: 11-21
    Kalman M, Cserpan I, Bajszar G, et al. Synthesis of a gene for human serum albumin and its expression in Saccharomyces cerevisiae[J]. Nucleic Acids Res, 1990,18: 6075-6081
    Kaper T, Brouns SJ, Geerling AC, et al. DNA family shuffling of hyperthermostable beta-glycosidases[J]. Biochem J, 2002,368: 461-470
    Kasai N, Suzuki T, Furukawa Y. Chiral C3 epoxides and halohydrins: their preparation and synthetic application[J]. J Mol Catal B Enzym, 1998, 4: 237-252
    Khanna HK, Raina SK. Elite Indica transgenic rice plants expressing modified CrylAc endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas) [J]. Transgenic Res, 2002,11: 411-423
    Khudyakov YE, Fields HA, Favorov MO, et al. Synthetic gene for the hepatitis C virus nucleocapsid protein[J]. Nucleic Acids Res, 1993,21: 2747-2754
    Kibbe MR, Murdock A, Wickham T, et al. Optimizing cardiovascular gene therapy: increased vascular gene transfer with modified adenoviral vectors[J]. Arch Surg, 2000,135:191-197
    Kikuchi M, Ohnishi K, Harayama S. An effective family shuffling method using single-stranded DNA[J]. Gene, 2000,243:133-137
    Kikuchi M, Harayama S. DNA shuffling and family shuffling for in vitro gene evolution[J]. Methods Mol Biol, 2002,182: 243-257
    Kodumal SJ, Patel KG, Reid R, et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster[J]. Proc Natl Acad Sci USA, 2004,101:15573-15578
    Kono H, Saven J G Statistical theory for protein combinatorial libraries. Packing interactions, backbone flexibility, and the sequence variability of a main-chain structure[J]. J Mol Biol, 2001, 306: 607-628
    Kuchner O, Arnold FH. Directed evolution of enzyme catalysts[J]. Trends Biotechnol, 1997,15: 523-530
    Kuhlman B, Dantas G, Ireton G C, et al. Design of a novel globular protein fold with atomic-level accuracy[J]. Science, 2003, 302:1364-1368
    Kumamaru T, Suenaga H, Mitsuoka M, et al. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase[J]. Nat Biotechnol, 1998,16: 663-666
    Kurland CG. Codon bias and gene expression [J]. FEBS Lett, 1991, 285:165-169
    Lai KH, Grimsley JK, Kuhlmann BD, et al. Rational enzyme design: computer modeling and site-directed mutagenesis for the modification of catalytic specificity in organophosphorus hydrolase[J]. Chimia, 1996, 50: 430-431
    Lashkari DA, Hunicke SSP, Norgren RM, et al. An automated multiplex oligonucleotide synthesizer: development of high-throughput, low-cost DNA synthesis[J]. Proc Natl Acad Sci USA, 1995, 92: 7912-7915
    Lassner M, Bedbrook J. Directed molecular evolution in plant improvement[J]. Curr Opin Plant Biol, 2001, 4:152-156
    Lehmann M, Pasamontes L, Lassen S F, et al. The consensus concept for thermostability engineering of proteins[J]. Biochim Biophys Acta, 2000,1543: 408-415
    Lehmann M, Loch C, Middendorf A, et al. The consensus concept for thermostability engineering of proteins: further proof of concept[J]. Protein Eng, 2002,15:403-411
    Livesay EA, Liu YH, Luebke KJ, et al. A scalable high-throughput chemical synthesizer[J]. Genome Res, 2002,12:1950-1960
    Locher CP, Paidhungat M, Whalen RG, et al. DNA shuffling and screening strategies for improving vaccine efficacy[J]. DNA Cell Biol, 2005, 24: 256-263
    Looger LL, Dwyer MA, Smith JJ, et al. Computational design of receptor and sensor proteins with novel functions[J]. Nature, 2003, 423: 185-190
    Macauley PS, Fazenda ML, McNeil B, et al. Heterologous protein production using the Pichia pastoris expression system[J]. Yeast, 2005, 22: 249-270
    Majumder K. Ligation-free gene synthesis by PCR: synthesis and mutagenesis at multiple loci of a chimeric gene encoding OmpA signal peptide and hirudin[J]. Gene, 1992,110: 89-94
    Malakauskas SM, Mayo SL. Design, structure and stability of a hyperthermophilic protein variant[J]. Nat Struct Biol, 1998,5: 470-475
    Manoj S, Babiuk LA, van Drunen Littel-van den Hurk S. Approaches to enhance the efficacy of DNA vaccines[J]. Crit Rev Clin Lab Sci, 2004, 41:1-39
    
    Mandecki W, Boiling TJ. FokI method of gene synthesis[J]. Gene, 1988, 68:101-107
    Mantis J, Tague RW. Comparing the utility of β-glucuronidase and green fluorescent protein for detection of weak promoter activity in Arabidopsis thaliana[J]. Plant Mol Biol Rep, 2000, 18: 319-330
    Marshall SH. DNA shuffling: induced molecular breeding to produce new generation long-lasting vaccines[J]. Biotechnol Adv, 2002, 20: 229-238
    Matsumura I, Ellington, AD DNA shuffling brightens prospects for GFP[J]. Nat Biotechnol, 1996, 14: 366
    Matsumura I, Wallingford JB, Surana NK, et al. Directed evolution of the surface chemistry of the reporter enzyme beta-glucuronidase[J]. Nat Biotechnol, 1999,17: 696-701
    Matsumura I, Ellington AD. In vitro evolution of beta-glucuronidase into a beta-galactosidase proceeds through non-specific intermediates[J]. J Mol Biol, 2001, 305: 331-339
    Matthes HW, Zenke WM, Grundstrom T, et al. Simultaneous rapid chemical synthesis of over one hundred oligonucleotides on a microscale[J]. EMBO J, 1984; 3: 801-805
    McCarty P L. Breathing with chlorinated solvents[J]. Science, 1997, 276:1521-1522
    McGranahan GH, Leslic CA, Uratsu SL. Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants[J]. BioTechnology, 1988, 6: 800-804
    McPherson M J, Harrison D J. Protease inhibitors and directed evolution: enhancing plant resistance to nematodes[J]. Biochem Soc Symp, 2001, 68: 125-142
    Mehta DV, DiGate RJ, Banville DL, et al. Optimized gene synthesis, high level expression, isotopic enrichment, and refolding of human interleukin-5[J]. Protein Expr Purif, 1997,11: 86-94
    Mentewab A, Stewart CN. Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants[J]. Nat Biotech, 2005,23:1177-1180
    Meyer M M, Silberg J J, Voigt C A, et al. Library analysis of SCHEMA-guided protein recombination[J]. Protein Sci, 2003,12:1686-1693
    Michael G, Derek B. Scientific perspectives on regulating the safety of genetically modified foods[J]. Nat Rev Genetics, 2001,2: 217-222
    Miki B, McHugh S. Selectable marker genes in transgenic plants: applications,alternatives and biosafety[J]. J Biotechnol, 2004,107:193-232
    Miranda LP, Alewood PF. Challenges for protein chemical synthesis in the 21st century: bridging genomics and proteomics [J]. Biopolymers. 2000, 55: 217-226
    Miyazaki K. Random DNA fragmentation with endonuclease V: application to DNA shuffling[J]. Nucleic Acids Res, 2002, 30: el39
    Moore GL, Maranas CD. eCodonOpt: a systematic computational framework for optimizing codon usage in directed evolution experiments [J]. Nucleic Acids Res, 2002,30: 2407-2416
    Morley KL. Kazlauskas RJ. Improving enzyme properties: when are closer mutations better[J]. Trends Biotechnol, 2005, 23, 231-237
    Moszer I, Rocha EP, Danchin A. Codon usage and lateral gene transfer in Bacillus subtilis[]]. Curr Opin Microbiol, 1999, 2: 524-528
    Mullenbach GT, Tabrizi A, Blacher RW, et al. Chemical synthesis and expression in yeast of a gene encoding connective tissue activating peptide-III. A novel approach for the facile assembly of a gene encoding a human platelet-derived mitogen[J]. J Biol Chem, 1986, 261: 719-722
    Murray EE, Lotzer J, Eberle M. Codon usage in plant genes[J]. Nucleic Acids Res, 1989, 17: 477-498
    Nagata Y, Miyauchi K, Damborsky J, et al. Purification and characterization of a haloalkane dehalogenase of a new substrate class from a -hexachlorocyclohexane-degrading bacterium Sphingomonas paucimobilis UT26[J]. Appl Environ Microbiol, 1997, 63: 3707-3710
    Nam SH, Oh KH, Kim GJ, et al. Functional tuning of a salvaged green fluorescent protein variant with a new sequence space by directed evolution[J]. Protein Eng, 2003,16:1099-1105
    Ness J E, Welch M, Giver L, et al. DNA shuffling of subgenomic sequences of subtilisin[J]. Nat Biotechnol, 1999,17: 893-896
    Nelson PS, Muthini S, Vierra M, et al. RainbowTM universal CPG: a versatile solid support for oligonucleotide synthesis[J]. Biotechniques, 1997, 22: 752-756
    Neylon C. Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution[J]. Nucleic Acids Res, 2004, 32: 1448-1459.
    Osuna J, Yanez J, Soberon X, et al. Protein evolution by codon-based random deletions[J]. Nucleic Acids Res, 2004, 32: el36
    Ostermeier M. Synthetic gene libraries: in search of the optimal diversity[J]. Trends Biotechnol, 2003, 21: 244-247
    Otey CR, Silberg JJ, Voigt CA, et al. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach[J]. Chem Biol, 2004,11: 309-318
    Otten LG, Quax WJ. Directed evolution: selecting today's biocatalysts[J]. Biomol Eng, 2005, 22: 1-9
    Owen MD, Zelaya IA. Herbicide-resistant crops and weed resistance to herbicides [J]. Pest Manag Sci, 2005, 61: 301-311
    Pandey A, Lewitter F. Nucleotide sequence databases: a gold mine for biologists[J]. Trends Biochem Sci, 1999, 24: 276-280
    Parikh MR, Matsumura I. Site-saturation mutagenesis is more efficient than DNA shuffling for the directed evolution of beta-fucosidase from beta-galactosidase[J]. J Mol Biol, 2005, 352: 621-628
    Patnaik R, Louie S, Gavrilovic V, et al. Genome shuffling of Lactobacillus for improved acid tolerance[J]. Nat Biotechnol, 2002,20: 707-712
    Peng RH, Xiong AS, Li X, et al. A delta-endotoxin encoded in Pseudomonas fluorescens displays a high degree of insecticidal activity[J]. Appl Microbiol Biotechnol, 2003, 63: 300-306
    Peng RH, Yao QH, Xiong AS, et al. Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola[J]. Plant Cell Rep, 2006a, 25:124-132
    Peng RH, Yao QH, Xiong AS. A direct and efficient PAGE-mediated overlap extension PCR (POEP) method for gene multiple-site mutagenesis [J]. Appl Microbio Biotech, 2006b; 73: 234-240
    Preuss R, Angerer J, Drexler H. Naphthalene-an environmental and occupational toxicant[J]. Int Arch Occup Environ Health, 2003, 76: 556-576
    Prodromou C, Pearl LH. Recursive PCR: a novel technique for total gene synthesis[J]. Protein Eng, 1992, 5: 827-829
    Pon RT, Yu S, Sanghvi YS. Rapid esterification of nucleosides to solid-phase supports for oligonucleotide synthesis using uronium and phosphonium coupling reagents[J]. Bioconjug Chem, 1999,10:1051-1057
    Pon RT, Yu S, Sanghvi YS. Multiple oligonucleotide synthesis in tandem on solid-phase supports for small and large scale synthesis[J]. Nucleosides Nucleotides Nucleic Acids, 2001, 20: 985-989
    Pon RT, Yu S. Linker phosphoramidite reagents for the attachment of the first nucleoside to underivatized solid-phase supports[J]. Nucleic Acids Res, 2004,32: 623-631
    Pon RT, Yu S. Tandem oligonucleotide synthesis using linker phosphoramidites[J]. Nucleic Acids Res, 2005, 33:1940-1948
    Radehaus PM, Schmidt SK Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol[J]. Appl Env Microbiol, 1992, 58: 2879-2885
    Rayner S, Brignac S, Bumeister R, et al. MerMade: an oligodeoxyribonucleotide synthesizer for high throughput oligonucleotide production in dual 96-well plates[J]. Genome Res, 1998, 8: 741-747
    Reisinger SJ, Patel KG, Santi DV. Total synthesis of multi-kilobase DNA sequences from oligonucleotides[J]. Nat Protoc, 2006, 1: 2596-2603
    Richardson TH, Tan X, Frey G, et al. A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable alpha-amylase[J]. J Biol Chem, 2002, 277: 26501-26507
    Richardson SM, Wheelan SJ, Yarrington RM, et al. GeneDesign: rapid, automated design of multikilobase synthetic genes [J]. Genome Res, 2006, 16: 550-556
    Rink H, Liersch M, Sieber P, et al. A large fragment approach to DNA synthesis: total synthesis of a gene for the protease inhibitor eglin c from the leech Hirudo medicinalis and its expression in E. coli[J]. Nucleic Acids Res, 1984, 12: 6369-6387
    Robertson DE, Steer BA. Recent progress in biocatalyst discovery and optimization[J]. Curr Opin Chem Biol, 2004, 8: 141-149
    Rossi JJ, Kierzek R, Huang T, et al. An alternate method for synthesis of double-stranded DNA segments[J]. J Biol Chem, 1982, 257: 9226-9229
    Rothman SC, Kirsch JF. How does an enzyme evolved in vitro compare to naturally occurring homologs possessing the targeted function-Tyrosine aminotransferase from aspartate aminotransferase[J]. J Mol Biol, 2003, 327: 593-608
    Rothman SC, Voorhies M, Kirsch JF. Directed evolution relieves product inhibition and confers in vivo function to a rationally designed tyrosine aminotransferase[J]. Protein Sci, 2004,13:763-772
    Rouillard JM, Lee W, Truan G, et al. Gene2Oligo: oligonucleotide design for in vitro gene synthesis[J]. Nucleic Acids Res, 2004,32: W176-180
    Rowe LA, Geddie ML, Alexander OB, et al. A comparison of directed evolution approaches using the beta-glucuronidase model system[J]. J Mol Biol, 2003, 332: 851-860
    Rydzanicz R, Zhao XS, Johnson PE. Assembly PCR oligo maker: a tool for designing oligodeoxynucleotides for constructing long DNA molecules for RNA production[J]. Nucleic Acids Res, 2005, 33: W521-525
    
    Ryu DD, Nam DH. Recent progress in biomolecular engineering[J]. Biotechnol Prog, 2000,16: 2-16
    Sambrook J, Russell DW. Molecular Cloning; A laboratory Mannual. (Cold Spring Harbor laboratory Press, cold Spring Harbor, New York 2001
    Sandhu GS, Aleff RA, Kline BC. Dual asymmetric PCR: one-step construction of synthetic genes[J]. Biotechniques, 1992,12:14-16
    Sandgren M, Gualfetti PJ, Shaw A, et al. Comparison of family 12 glycoside hydrolases and recruited substitutions important for thermal stability[J]. Protein Sci, 2003,12: 848-860
    Schindler JF, Naranjo PA, Honaberger DA, et al. Haloalkane dehalogenases: steady-state kinetics and halide inhibition[J]. Biochemistry, 1999, 38: 5772-5778
    Schofield MJ, Hsieh P. DNA mismatch repair: molecular mechanisms and biological function[J]. Annu Rev Microbiol, 2003, 57: 579-608
    Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: An automated protein homology-modeling server[J]. Nucleic Acids Res, 2003, 31: 3381-3385
    Sekiya T, Takeya T, Brown EL, et al. Total synthesis of a tyrosine suppressor transfer RNA gene. XVI. Enzymatic joinings to form the total 207-base pair-long DNA[J]. J Biol Chem, 1979, 254: 5787-5801
    Sekiya T, Besmer P, Takeya T, et al. Total synthesis of the structural gene for the precursor of a tyrosine suppressor transfer RNA from Escherichia coli[J]. J Biol Chem, 1976, 251: 634-641
    Shabarova ZA, Merenkova IN, Oretskaya TS, et al. Chemical ligation of DNA: the first non-enzymatic assembly of a biologically active gene[J]. Nucleic Acids Res, 1991,19:4247-4251
    Shaffer WA, Luong TN, Rothman SC, et al. Quantitative chimeric analysis of six specificity determinants that differentiate Escherichia coli aspartate from tyrosine aminotransferase[J]. Protein Sci, 2002,11: 2848-2859
    Sharp PM, Tuohy TMF, Mosurski KR. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expression genes[J]. Nucleic Acids Res, 1986, 14: 5125-5143
    Shevchuk NA, Bryksin AV, Nusinovich YA, et al. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously[J]. Nucleic Acids Res, 2004, 32: e19
    Siehl DL, Castle LA, Gorton R, et al. Evolution of a microbial acetyltransferase for modification of glyphosate:a novel tolerance strategy[J]. Pest Manag Sci, 2005, 61: 235-240
    Sindelar LE, Jaklevic JM. High-throughput DNA synthesis in a multichannel format[J]. Nucleic Acids Res, 1995, 23: 982-987
    Singh MB, Bhalla PL. Recombinant expression systems for allergen vaccines[J]. Inflamm Allergy Drug Targets, 2006, 5: 53-59
    Smith J, Cook E, Fotheringham I, et al. Chemical synthesis and cloning of a gene for human beta-urogastrone[J]. Nucleic Acids Res, 1982,10: 4467-4482
    Smith AT, Santama N, Dacey S, et al. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme[J]. J Biol Chem, 1990,265:13335-13343
    Smith HO, Hutchison CA 3rd, Pfannkoch C, et al. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides[J]. Proc Natl Acad Sci USA, 2003, 100:15440-15445
    Sojka B, Piunno PAE, Wust CC, et al. A novel phosphoramidite method for automated synthesis of oligonucleotides on glass supports for biosensor development[J]. Appl Biochem Biotechnol, 2000, 89: 85-103
    Song JK, Chung B, Oh YH, et al. Construction of DNA-shuffled and incrementally truncated libraries by a mutagenic and unidirectional reassembly method: changing from a substrate specificity of phospholipase to that of lipase[J]. Appl Environ Microbiol, 2002, 68: 6146-6151
    Song Q, Wang Z, Sanghvi YS. A short, novel, and cheaper procedure for oligonucleotide synthesis using automated solid phase synthesizer[J]. Nucleosides Nucleotides Nucleic Acids, 2003, 22: 629-633
    Sorensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli[J]. J Biotechnol, 2005,115:113-128
    Sproat BS, Gait MJ. Chemical synthesis of a gene for somatomedin C[J]. Nucleic Acids Res, 1985, 13: 2959-2977
    Stalker DM, McBride KF, Malyj MD. Herbicide resistance in transgenic plants expressing a bacterial detoxification gene[J]. Science, 1988, 242: 419-423
    
    Stemmer WP. Rapid evolution of a protein in vitro by DNA shuffling[J]. Nature, 1994a, 370: 389-391
    Stemmer WP. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution[J]. Proc Natl Acad Sci USA, 1994b, 91: 10747-10751
    Stemmer WP, Crameri A, Ha KD, et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides[J]. Gene, 1995,164: 49-53
    Strizhov N, Keller M, Mathur J, et al. A synthetic cryIC gene, encoding a Bacillus thuringiensis delta-endotoxin, confers Spodoptera resistance in alfalfa and tobacco[J]. Proc Natl Acad Sci USA, 1996, 93:15012-15017
    
    Stuiver M H, Custers J H. Engineering disease resistance in plants[J]. Nature, 2001,411: 865-868
    Suenaga H, Mitsuoka M, Ura Y, et al. Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene, and alkylbenzene[J]. J Bacteriol, 2001, 183: 5441-5444
    Suenaga H, Watanabe T, Sato M, et al. Alteration of regiospecificity in biphenyl dioxygenase by active-site engineering[J]. J Bacteriol, 2002,184: 3682-3688
    Suen W C, Zhang N, Xiao L, et al. Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling[J]. Protein Eng Des Sel, 2004,17:133-140
    Sun J, Baudry J, Katzenellenbogen J A, et al. Molecular basis for the subtype discrimination of the estrogen receptor-beta-selective ligand, diarylpropionitrile[J]. Mol Endocrinol, 2003,17: 247-258
    Sung WL, Zahab DM, Yao FL, et al. Simultaneous synthesis of human-, mouse- and chimeric epidermal growth factor genes via 'hybrid gene synthesis' approach[J]. Nucleic Acids Res, 1986, 14: 6159-6168
    Swanson PE. Dehalogenases applied to industrial-scale biocatalysis[J]. Curr Opin Biotechnol, 1999, 10: 365-369
    Takeuchi M, Hamana K, Akira H. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses[J]. Int J Syst Evol Microbiol, 2001, 51:1405-1417
    Tanaka S, Oshima T, Ohsue K, et al. Expression in Escherichia coli of chemically synthesized gene for a novel opiate peptide alpha-neo-endorphin[J]. Nucleic Acids Res, 1982,10:1741-1754
    Tang W, Tian Y. Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud[J]. J Exp Bot, 2003, 54: 835-844
    Taylor CB. Promoter fusion analysis: an insufficient measure of gene expression [J]. Plant Cell, 1997, 9: 273-275
    Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems[J]. Appl Microbiol Biotechnol, 2006, 72: 211-222
    Thompson CJ, Movva NR, Tizard R, et al. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus[J]. EMBO J, 1987, 6: 2519-2523
    Tian J, Gong H, Sheng N, et al. Accurate multiplex gene synthesis from programmable DNA microchips[J]. Nature, 2004,432: 1050-1054
    Tomschy A, Brugger R, Lehmann M, et al. Engineering of phytase for improved activity at low pH[J]. Appl Environ Microbiol, 2002, 68:1907-1913
    Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability[J]. Microbiol Mol Biol Rev, 2004, 65:1-43
    Voigt CA, Kauffman S, Wang ZG. Rational evolutionary design: the theory of in vitro protein evolution[J]. Adv Protein Chem, 2000, 55: 79-160
    Voigt CA, Martinez C, Wang ZG, et al. Protein building blocks preserved by recombination[J]. Nat Struct Biol, 2002, 9: 553-558
    Wassman CD, Tam PY, Lathrop RH, et al. Predicting oligonucleotide-directed mutagenesis failures in protein engineering[J]. Nucleic Acids Res, 2004, 32: 6407-6413
    Watkins LM, Kuo JM, Chen GM, et al. A combinatorial library for the binuclear metal center of bacterial phosphotriesterase[J]. Proteins Struct Funct Genet, 1997, 29: 553-561
    Whalen RG, Kaiwar R, Soong NW, et al. DNA shuffling and vaccines[J]. Curr Opin Mol Ther, 2001, 3: 31-36
    Withers MC, Carpenter EP, Hackett F, et al. PCR-based gene synthesis as an efficient approach for expression of the A+T-rich malaria genome[J]. Protein Eng, 1999,12: 1113-1120
    Wu K, Guo Y, Lv N, et al. Efficacy of transgenic cotton containing a cry1Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) in northern China[J]. J Econ Entomol, 2003, 96:1322-1328
    Wu G, Wolf JB, Ibrahim AF, et al. Simplified gene synthesis: A one-step approach to PCR-based gene construction[J]. J Biotechnol, 2006,124: 496-503
    Xiong KY, Jin RZ, Hu KH, et al. Chemical synthesis and cloning of the human growth hormone releasing factor gene[J]. Chin J Biotechnol, 1990, 6: 243-250
    Xiong L, Schumaker KS, Zhu J K. Cell signaling during cold,drought,and salt stress[J]. Plant Cell, 2002, 14: 165-183
    Xiong AS, Yao QH, Peng RH, et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences[J]. Nucleic Acids Res, 2004a, 32: e98
    Xiong AS, Yao QH, Peng RH, et al. Isolation, characterization, molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris[J]. J Biochem Mol Biol, 2004b, 37: 282-291
    Xiong AS, Yao QH, Peng RH, et al. High level expression of a recombinant acid phytase gene in Pichia pastoris[J]. J Appl Microbiol, 2005, 98: 418-428
    Yamaguchi A, Tada T, Wada K, et al. Structural basis for thermostability of endo-1,5-alpha-L- arabinanase from Bacillus thermodenitrificans TS-3[J]. J Biochem, 2005,137: 587-592
    Yao JL, Cohen D, Atkinson R, et al. Regeneration of. transgenic plants from the commercial apple cultivar Royal Gala[J]. Plant Cell Rep, 1995,14: 407-412
    
    Young L, Dong Q. Two-step total gene synthesis method[J]. Nucleic Acids Res, 2004,32: e59
    Zakrzewska M, Krowarsch D, Wiedlocha A, et al. Design of fully active FGF-1 variants with increased stability[J]. Protein Eng Des Sel, 2004,17: 603-611
    Zhang JH, Dawes G, Stemmer WP. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening[J]. Proc Natl Acad Sci USA, 1997, 94: 4504-4509
    Zhang YX, Perry K, Vinci VA, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria[J]. Nature, 2002, 415: 644-646
    Zhang Q, Lin SZ, Zhang ZY. Status and Advances of Molecular Genetic Improvement of Poplar Species in China[J]. Forestry Studies in China, 2002, 4:1-8
    Zhang X, Henriques R, Lin SS, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nat Protoc, 2006,1: 641-646
    Zhao H, Chockalingam K, Chen Z. Directed evolution of enzymes and pathways for industrial biocatalysis[J]. Curr Opin Biotechnol, 2002,13:104-110
    Zou LK, Wang FIN, Pan X, et al. Design and expression of a synthetic phyC gene encoding the neutral phytase in Pichia pastoris[J]. Acta Biochim Biophys Sin, 2006, 38: 803-811

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700