环糊精功能化石墨烯修饰电极在抗癌药物和硝基酚检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章:简要介绍了石墨烯的性质、结构及其纳米复合材料研究进展。综述了抗癌药物阿霉素、氨甲喋呤和环境污染物邻硝基苯酚在药理毒理、分析检测方面的研究,概括了化学修饰电极检测阿霉素、氨甲喋呤和邻硝基苯酚的研究进展。
     第二章:以石墨为原料,结合p-环糊精(p-CD),采用湿化学法制备了环糊精功能化石墨烯纳米材料(CD-GNs),并利用紫外-可见光谱(UV)、疏水性、红外光谱(IR)、热重分析(TGA)、X-射线光电子能谱(XPS)、拉曼光谱(Raman Spectroscopy).原子力显微镜(AFM)及交流阻抗测试(EIS)对其进行了表征,结果表明:p-CD能很好吸附在石墨烯表面,制备的石墨烯纳米材料水溶液分散性较好,并具有较强的电化学行为,可应用于传感器的制备。
     第三章:利用环糊精功能化石墨烯纳米材料修饰的玻碳电极(CD-GNs/GCE)建立了阿霉素(DOX)的超灵敏检测方法。在优化条件下,CD-GNs/GCE比裸玻碳电极(GCE)测定阿霉素电化学响应增加了26.5倍,在0.1mol·L-1磷酸缓冲液(PBS)(pH=8)中,DOX在Ep=-0.682V(vs.SCE)产生一对氧化还原峰,在10nM~0.2μM范围内峰电流与浓度呈线性关系,线性关系式为:ip(μA)=18.0+236C(μM)(r=0.9981),检测限为0.1nM(S/N=3),RSD=3.9%(n=6),回收率范围为97%-102%,该方法可以应用于尿样中阿霉素浓度的测定。
     第四章:研究了氨甲喋呤(MTX)在CD-GNs/GCE的电化学行为,在最佳条件下,CD-GNs/GCE比GCE测定氨甲喋呤电化学响应增加了23.7倍,建立了测定氨甲喋呤的高灵敏方法。在0.1mol·L-1PBS(pH=6)中,MTX在Ep=-0.596V(vs.SCE)产生一对氧化还原峰,峰电流与浓度在0.1μM~1.0μM范围内呈线性关系,线性关系式为:ip(μA)=1.29+67.8C(μM)(r=0.9994),检测限为20nM(S/N=3),RSD=4.7%(n=6),回收率范围为100%-105%,该方法可应用于尿样中氨甲喋呤浓度的测定。
     第五章:研究了邻硝基苯酚(O-NP)在CD-GNs修饰玻碳电极的电化学行为,利用循环伏安法研究了pH、富集时间、扫速对邻硝基苯酚浓度测定的影响,结果表明:扫速为0.05V·s-1,在0.1mol·L(-1)的PBS(pH=7)中,富集10min,可得到峰形较好的氧化还原峰,在5.0~400μM范围,峰电流与浓度呈线性关系,线性关系式为:ip(μA)=0.1670+0.4316C(μM)(r=0.9997),检测限为0.5μM (S/N=3), RSD=4.1%(n=6),该方法具有较高的灵敏度和较好的重现性,可应用于废水中的邻硝基苯酚含量测定。
Chapter1:This chapter briefly introduced the properties, structure and the research progress of graphene. The research on pharmacology, toxicology and analytical detection and the electrochemical determination progress of doxorubicin, methotrexate and o-nitrophenol were summarized in this chapter.
     Chapter2:This chapter mainly introduced the synthesis of β-CD modified graphene (CD-GNs) from graphite and β-CD by wet chemical method. UV, IR, TGA, XPS, Raman, AFM and EIS were used to charaterize the prepared CD-GNs. The results showed that P-CD was connected to graphene surface, which made the CD-GNs had good dispersion in aqueous solution and good electrochemical behavior. CD-GNs can be applied to the electrochemical sensor.
     Chapter3:This study showed that the response current of DOX obtained on the CD-GNs modified glassy carbon electrode (CD-GNs/GCE) increased by26.5times compared to the result obtained on bare GCE. Under the optimized conditions, the new determination method of doxorubicin was established. There were a pair of redox peaks at Ep=-0.682V(vs.SCE) in0.1mol·L~(-1) PBS (pH=8). The linear range was10nM~0.2μM,the linear equation was ip (μA)=18.0+236C (μM)(r=0.9981) and the detection limit of DOX was0.1nM (S/N=3), RSD=3.9%(n=6). Recovery experiment was carried out in urine, the recovery was97%~102%,which indicated that this method could be applied in detection of DOX in urine.
     Chapter4:This chapter studied the electrochemical behavior of methotrexate (MTX) on CD-GNs modified glassy carbon electrode. Under optimized conditions, the response current of doxorubicin obtained on the CD-GNs/GCE increased by23.7times compared to the result on bare GCE, the new determination method of MXT was established. There were a pair of redox peaks at Ep=-0.596V(vs.SCE) in0.1mol·L-1PBS (pH=6). The linear range was0.1~1.0μM, the linear equation was ip (μA)=1.29+67.8C (μM)(r=0.9994), the detection limit of doxorubicin was20nM (S/N=3), RSD=4.7%(n=6). Recovery experiment was carried out in urine, the recovery was100%~105%, which indicated that this method could be applied in detection of MTX in urine.
     Chapter5:This chapter discussed the electrochemical behavior of o-nitrophenol (O-NP) on CD-GNs/GCE by cyclic voltammetry (CV). Under the scan rate of0.05V·s-1, The results showed that after accumulation for10min, there were a pair of obvious redox peaks in0.1mol·L-1PBS (pH=7). The linear range was5.0~400μM, the linear equation was ip (μA)=0.1670+0.4316C(μM)(r=0.9997), the detection limit of O-NP was0.5nM(S/N=3), RSD=4.1%(n=6). This method showed good repeatability and could be used in the detection of O-NP in the sample of waste water.
引文
[1]Kroto H.W., Heath J.R., O'Brien S.C., Curl R.F., Smalley R.E.. C60: buckminsterfullerene. Nature,1985,318,162-163.
    [2]Lijima S.. Helical microtubules of graphitic carbon. Nature,1991,354,56-58.
    [3]Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.. Electric field effect in atomically thin carbon films. Science,2004,306,666-669.
    [4]Novoselov K.S., Jiang Z., Zhang Y., Morozov S.V., Stormer H.L., Zeitler U., Maan J.C., Boebinger G.S., Kim P., Geim A.K..Room-temperature quantum hall effect in graphene. Science,2007,315,1379-1379.
    [5]Wang Y., Huang Y., Song Y., Zhang X.Y., Ma Y.F., Liang J.J., Chen Y.S.. Room temperature ferromagnetism of grapheme. Nano Lett.,2009,9,220-224.
    [6]Lee C.G., Wei X.D., Kysar J.W., Hone J.. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science,2008,321,385-388.
    [7]Balandin A.A., Ghosh S., Bao W.Z., Calizo I., Teweldebrhan D., Miao F., Lau C.N.. Superior thermal conductivity of single-layer grapheme. Nano Lett.,2008,8,902-907.
    [8]Chen J.H., Jang C.,Xiao S.D., Ishigami M., Fuhrer M.S.. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol,2008,3, 206-206.
    [9]Meyer J.C., Geim A.K., Katsnelson M.I., et al. On the roughness of Single-and bi-layer graphene membranes.2007,143,101-109.
    [10]Geim A.K., Novoselov K.S., The rise of graphene. Nat. Mater.,2007,6,183-191.
    [11]Li D., Kaner R.B., Graphene-based materials. Science,2008,320,1170-1170.
    [12]Katsnelson M.I., Graphene:carbon in two dimensions. Mater. Today,2007,10, 20-27.
    [13]Rao C.N.R., Biswas Subramanyamk K.S., et al. Graphene-the new nanocarbon. J. Mater. Chem.,2009,19,2457-2469.
    [14]Rao C.N.R., Sood A.K., Subramanyamk K.S. et al. Graphene:the new two dimensional nanomaterial. Angew. Chem. Int. Ed.,2009,48,7752-7777.
    [15]Dreyer D.R., Park S., Bielawski C.W., et al. The chemistry of graphene oxide. Chem. Soc. Rev.,2010,39,228-240.
    [16]Loh K.P., Bao Q., Ang P.K., et al. The chemistry of graphene. J. Mater. Chem., 2010,2,2277-2289.
    [17]Shioyama H., Akita T.. A new route to carbon nanotubes. Carbon,2003,41, 179-181.
    [18]Viculis L.M., Mack J. J., Kaner R.B.. A chemical route to carbon nanoscrolls. Science,2003,299,1361-1361.
    [19]Avouris P., Chen Z., Perebeinos V..Carbon-based electronics. Nature nanotechnology, 2007,2,605-615.
    [20]汪信,徐超.石墨烯一一种新型碳材料.科学,2010,3,25-27.
    [21]Di Chongan, Wei Dacheng, Yu Gui, et al. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater,2008,20, 3289-3293.
    [22]Stoller M.D., Park S., Zhu Yanwu, et al. Graphene-based ultraca-pacitors. Nano Lett, 2008,8,3498-3502.
    [23]Lian g. J., Wan g. Y., Huang Y., et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon,2009,47,922-925.
    [24]Ramanathan T., Abdala A.A., Stankovich S., et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nano,2008,3,327-331.
    [25]Yujing Guo, Shaojun Guo, Jiangtao Ren, Yueming Zhai, Shaojun Dong, Erkang Wang. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:synthesis and host-guest inclusion for enhanced electrochemical performance. ACS.nano.,2010,4,4001-4010.
    [26]Baojun Li, Huaqiang Cao. ZnO/graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem.,2011,21,3346-3349.
    [27]Jing Zhao, Guifang Chen, Li Zhu, Genxi Li. Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochemistry communications, 2011,13,31-33.
    [28]Szejtli J.. Cyclodextrin Technology. Dordrecht,1988,14,34-9.
    [29]Park C., Kim H., Kim S., Kim C.. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. J. Am. Chem. Soc,2009,131,16614-16615.
    [30]Ding J., Qin W.. Current-driven ion fluxes of polymeric membrane ion-selective electrode for potentiometric biosensing. J. Am. Chem. Soc,2009,131,14640-14641.
    [31]Leleivre F., GareilP., Jardy A.. Selectivity in CE:application to chiral separations with CDs. Anal. Chem.,1997,69,385-392.
    [32]Ward T.J.. Chiral separations. Anal. Chem.,2006,78,3947-3956.
    [33]Du L., Liao S., Khatib H. A., Stoddart J. F., Zink J. I.. Controlled-access hollow mechanized silica nanocontainers. J. Am.Chem. Soc,2009,131,15136-15142.
    [34]Schlenk FL, Sand D.M.. The Association of a-and p-Cyclodextrins with Organic Acids. J. Am. Chem. Soc,1961,83,2312-2320.
    [35]Cooper A., Nutley M. A., Camilleri P. Microcalorimetry of Chiral Surfactant-Cyclodextrin Interactions. Anal. Chem.,1998,70,5024-5028.
    [36]Spies M. A., Schowen R. L. The trapping of a spontaneously'flipped-out'base from double helical nucleic acids by host-guest complexation with p-cyclodextrin:the intrinsic base-flipping rate constant for DNA and RNA. J. Am. Chem. Soc.2002,124, 14049-14053.
    [37]Hedges A. R.. Industrial applications of cyclodextrins. Chem. Rev.,1998,98, 2035-2044.
    [38]Uekama K., Hirayama F., Irie T.. Cyclodextrin drug carrier systems. Chem. Rev., 1998,98,2045-2076.
    [39]Pattarapond Gonil, Warayuth Sajomsang, Uracha Rungsardthong Ruktanonchai, Nuttaporn Pimpha, Issara Sramala, Onanong Nuchuchua, Somsak Saesoo, Saowaluk Chaleawlert-umpon, Satit Puttipipatkhachorn. Novel quaternized chitosan containing P-cyclodextrin moiety:Synthesis,characterization and antimicrobial activity. Carbohydrate Polymers,2011,83,905-913.
    [40]Capanico G., Zunino F.. In molecular basis of specificity in nucleic acid-drug interactions; Dordrecht,1990,167-176.
    [41]Duguet M., Lavenot C, Harper F., Mirambeau G., De Recondo A.M.. Nuleic acids Res.1983,11,1059-1075.
    [42]Liu L. F.. Topoisomerase-targeting antitumor drugs. Biochim. Biophys. Acta,1989, 989,163-177.
    [43]Singha B. K., Mimnaugh E. G.. Free Radical Biol. Med.1990,8,567-581.
    [44]Agustin Diaz, Vipin Saxena, Julissa Gonzalez, Amanda David, Barbara Casanas, Carrie Carpenter, James D. Batteas, Jorge L. Colon, Abraham Clearfield, et al. Zirconium phosphate nano-platelets:a novel platform for drug delivery in cancer therapy. Chemical Communications,2012,48,1754-1756.
    [45]Yu Gao, Yu Chen, Xiufeng Ji, Xinyu He, Qi Yin, Zhiwen Zhang, Jianlin Shi, and Yaping Li. Controlled intracellular release of doxorubicinin multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. Acs Nan,2011,5,9788-9798.
    [46]魏峰,王进通,顾梅英,林刚,贺能树.反相高效液相色谱法测定阿霉素的血药浓度.药物分析杂志,1995,3,16-19.
    [47]Sameh Ahmed, Naoya Kishikawa, Kaname Ohyama, MitsuhiroWada, Kenichiro Nakashima, Naotaka Kuroda. Selective determination of doxorubicin and doxorubicinol in rat plasma by HPLC with photosensitization reaction followed by chemiluminescence detection. Talanta,2009,78,94-100.
    [48]Dorota Nieciecka, Pawel Krysinski. Interactions of Doxorubicin with Self-Assembled Monolayer-Modified Electrodes:Electrochemical, Surface Plasmon Resonance (SPR), and Gravimetric Studies. Langmuir,2011,27,1100-1107.
    [49]龚兰新,魏翠梅,胡劲波,李启隆.阿霉素在纳米钴修饰电极上的电化学行为及其应用.药学学报,2008,43,303-307.
    [50]Anna M. Nowicka, Agata Kowalczy, Mikolaj Donten, et al. Influence of a magnetic nanoparticle as a drug carrier on the activity of anticancer drugs:Interactions of double stranded DNA and doxorubicin modified with a carrier. Analytical Chemistry,2009,81,7474-7483.
    [51]Ackland S. P., Schilsky R. L.. High-dose methotrexate:a critical reappraisal.Journal of Clinical Oncology,1987,5,2017-2031
    [52]Fleisher M.. Antifolate analogs:Mechanism of action, analytical methodology, and clinical efficacy. Therapeutic Drug Monitoring,1993,15,521-526.
    [53]Christine Piard, Francoise Bressolle, May Fakhoury, Daolun Zhang, Karina Yacouben, Andre Rieutord, Evelyne Jacqz-Aigrain.A limited sampling strategy to estimate individual pharmacokinetic parameters of methotrexate in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol,2007,60,609-620.
    [54]Xiangjun Liu, Jizhong Liu, Yanyan Huang, Rui Zhao, Guoquan Liu, Yi Chen. Determination of methotrexate in human serum by high-performance liquid chromatography combined with pseudo template molecularly imprinted polymer. Chromatography A,2009,1216,7533-7538.
    [55]Flores J.R., Penalvo G.C., Mansilla A.E., et al. Capillary electrophoretic determination of methotrexate,leucovorin and folic acid in human urine. Chromatography B,2005,819,141-147.
    [56]Fei Wang, Yanju Wu, Jinxia Liua, Baoxian Ye. DNA Langmuir-Blodgett modified glassy carbon electrode as voltammetricsensor for determinate of methotrexate. Electrochimica Acta,2009,54,1408-1413.
    [57]Deia Abd El-Hady, Mohamed Mahmoud Seliem, Roberto Gotti, Nagwa Abo El-Maali. Novel voltammetric method for enantioseparation of racemic methotrexate Determination of its enantiomeric purity in some pharmaceuticals. Sensors and Actuators B-chemical,2006,2,978-988.
    [58]Lin Gao, Yanju Wu, Jingxia Liu, Baoxian Ye. Anodic voltammetric behaviors of methotrexate at a glassy carbon electrode and its determination in spiked human urine. Electroanalytical Chemistry,2007,610,131-136.
    [59]Kristin C. Willianzson, Scott L. Shofer, Ronald S. Tjcerdemaa. Toxicokinetics and biotransformation ofpnitrophenol in the black turban snail.aquatic toxicology,1995, 33,113-123.
    [60]Kafi A.K.M., Chen A.. A novel amperometric biosensor for the detection of nitrophenols. Talanta,2009,79,97-102.
    [61]Ewa Lipczynska-Kochany. Degradation of aqueous nitrophenols and nitrobenzene by means of the fenton reaction. Chemosphere,1991,22,529-536.
    [62]万年升,顾继东,黄锦辉,高传德Achromobacter xylosoxidans NS12的分离和对硝基苯酚的降解.环境科学,2007,2,422-426.
    [63]Lin Li, Yichong Sun, Shuai Wang, Mingqiang Qiu, Anxin Wu. New fluorescent probes based on supramolecular diastereomers for the detection of 2-nitrophenol. Talanta,2010,81,1643-1649.
    [64]Farid R. Zaggout, Nasser Abu Ghalwa. Removal of o-nitrophenol from water by electrochemical degradation using a lead oxide/titanium modified electrode. Journal of Environmental Management,2008,86,291-296.
    [65]Wen sheng Huang, Chunhai Yang, Shenghui Zhang. Simultaneous determination of 2-nitrophenol and 4-nitrophenol based on the multi-wall carbon nanotubes Nafion-modified electrode. Anal Bioanal Chem,2003,375,703-707.
    [66]Li-qiang Luo, Xue-lian Zou, Ya-ping Ding, Qing-sheng Wu. Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sensors and Actuators B,2008,135,61-65.
    [1]Rekharsky M., Inoue Y.. Complexation Thermodynamics of Cyclodextrins. Chem.Rev. 1998,98,1875-1918.
    [2]Yujing Guo, Shaojun Guo, Jiangtao Ren, Yueming Zhai, Shaojun Dong, Erkang Wang. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:Synthesis and host-guest inclusion for enhanced electrochemical performance. ACS.Nano,2010,9,4001-4010.
    [3]Rekharsky M., Inoue Y.. Complexation Thermodynamics of Cyclodextrins. Chem. Rev.1998,98,1875-1918.
    [4]Wang F., Khaledi M. G.. Chiral separations by nonaqueous capillary electrophoresis. Anal. Chem.1996,68,3460-3467.
    [5]Freeman R., Finder T., Bahshi L., Willner I.. Cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. Nano Lett.2009,9,2073-2076.
    [6]Zia V., Rajewski R.A., Stella V.J.. Effect of cyclodextrin charge on complexation of neutral and charged substrates:comparison of (SBE)7M-beta-CD to HPbeta-CD. Pharm. Res.2001,18,667-673.
    [7]LiuK., FuH., XieY., Zhang L., PanK., Zhou W.. Phys. Chem.2008,112,951.
    [8]Yan Jun, Wei Tong, Shao Bo, et al. Preparation of a grapheme nanosheet/polyaniline composite with high specific capacitance. Carbon,2010,48,487-493.
    [9]Hernandez Y., Nicolosi V., Lotya M., et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnol,2008,3,563-568
    [10]Kim K.S., Zhao Y., Jang H. et al. Large-scale pattern growth of grapheme films for stretchable transparent electrode. Nature,2009,457,706-710.
    [11]Li X.S., Cai W.W., An J.H. et al. Large-area synthesis of highe-quality and uniform grapheme films on copper foils. Science,2009,324,1312-1314.
    [12]Heerssheh B.H., Herrero P.J., Oostinga J.B., et al. Bipolar super current in graphene. Nature,2007,446,56-59.
    [13]Tung V.C., Allen M.J., Yang Y., et al. High-throughput solution processing of large-scale graphene. Nature Nanotechnol,2009,4,25-29
    [1]Batist G, Ramakrishnan G., Rao C. S. Chandrasekharan, A., Gutheil, J., Guthrie, T. Shah, P., Khojasteh, A., Nair, M. K., Hoelzer K., Tkaczuk K., Park Y.C., Lee L.W.. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol,2001,19,1444-1454.
    [2]Allen T.M., Cheng W.W., Hare J.I., Laginha K.M.. Pharmacokinetics and pharmacodynamics of lipidic nano-particles in cancer. Anticancer Agents. Med Chem,2006,6,513-523.
    [3]Karczmar G.S., Tritton T. R.. The interaction of adryamicin with small unilamellar vesicle liposomes. Biochim. Biophys. Acta,1979,557,306-319.
    [4]Crommelin D.J.A., Slaats N., van Blois L.. Preparation and characterization of doxorubicin-containing liposomes:I. Influence of liposome charge and pH of hydration medium on loading capacity and particle size. Znt. J. Pharm.,1983,16, 79-92.
    [5]Burke T.G., Tritton T.R.. Ligand self-association at the surface of liposomes:a complication during equilibriumbinding studies. Anal. Biochem.,1984,143,135-140.
    [6]Jiang H., Wang X.M.. Highly sensitive detection of daunorubicin based on carbon nanotubes:drug supramolecular interaction. Electrochem. Commun.,2008,11, 126-129.
    [7]Fei J., Wen X., Zhang Y., Yi L., Chen X., Cao H.. Voltammetric determination of trace doxorubicin at a nano-titania/nafion composite film modified electrode in the presence of cetyltrimethylammonium bromide. Microchim. Acta,2009,164,85-91.
    [1]Andersen P.A., West S.G., O'Dell J.R., et al. Weekly pulse methotrexate in rheunatioid arthritis. Clinical and immunologic effects in a randomized, double-blind study. Annals of internal medicine,1985,103,489-496.
    [2]Bleyer W.A.. The clinical pharmacology of methotrexate:new applications of an old drug. Cancer,1978,41,36-51.
    [3]Pui C.H., Campana D., Evans W.E.. Childhood acute lymphoblastic Leukaemia-current status and future perspectives. Lancetoncology,2001,2,597-607.
    [4]J.Rodriguez Flores, G.Castaneda Penalvo, A.Espinosa Mansill, M.J. Rodriguez Gomez. Capillary electrophoretic determination of methotrexate, leucovorin and folic acid in human urine. Journal of Chromatography B,2005,819,141-147.
    [1]Liao Qiu, Sun jing, Gao Lian. The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids and surfaces A-Physicochemical and engineering aspects,2008,312,160-165.
    [2]Kumar Arinjay, Kumar Shashi, Kumar Surendra. Adsorption of phenol and 4-nitrophenol on granular activated carbon in basal salt medium:equilibrium and kinetics. Hazardous materials,2007,155-166.
    [3]Guido busca, Silvia berardinelli, Carlo resini, Laura arrighi. Technologies for the remo veal of phenol from fluid streams. Hazardous materials,2008,160,265-288.
    [4]Arasteh R., Masoumi M., Rashidi A.M., Moradi L., Samimi V., Mostafavi S.T.. Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions. Applied Surface Science,2010,256,4447-4455.
    [5]Li X. L., Wang X. R., Zhang, L., Lee S., Dai H. J.. Chemically derived, ultrasmooth graphene Nanoribbon Semiconductors. Science,2008,319,1229-1232.
    [6]Pang S. P., Tsao H. N., Feng X. L., Mullen K.. Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Adv. Mater.,2009,21,3488-3491.
    [7]Wu Z. S., Pei S.F., Ren W. C., Tang D. M., Gao L. B., Liu B. L., Li F., Liu C, Cheng H. M.. Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv. Mater.,2009,21,1756-1760.
    [8]Di C.A., Wei D.C, Yu G., Liu Y.Q., Guo Y.L., Zhu D.B.. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater.,2008,20,3289-3293.
    [9]Xu Y.F., Liu Z.B., Zhang X. L., Wang Y., Tian J.G., Huang Y., Ma Y.F., Zhang X.Y., Chen Y.S.. A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater.,2009,21,1275-1279.
    [10]Pasricha R., Gupta S., Srivastava A.K.. A facile and novel synthesis of Ag-graphene-based nanocomposites. Small,2009,5,2253-2259.
    [11]Vickery J.L., Patil A.J., Mann S.. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater.,2009,21,2180-2184.
    [12]Lu C.H., Yang H.H.,Zhu C.L., Chen X., Chen G.N.. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed.,2009,48,4785-4787.
    [13]Lu J., Do I., Drzal L.T., Worden R.M., Lee I.. Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano,2008,2,1825-1832.
    [14]Seger B., Kamat P.V.. Electrocatalytically active graphene-platinum nanocomposites. role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C.,2009,113, 7990-7995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700