L-半胱氨酸辅助金属硫化物微米材料的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对纳米/微米材料的进一步深入研究,如何通过控制纳米/微米材料的结晶与成核生长过程来合成具有特殊形貌结构、性能和尺寸大小的材料成为当前材料研究的重点。截止目前为止,各种不同的方法先后被应用于纳米/微米材料的制备合成,应用生物分子为模板或辅助剂来合成纳米/微米材料已成为当前材料制备合成的一大热点,因生物分子具有独特的结构和出色的自组装功能,它们特殊的性能使其成为设计和合成具有复杂结构材料的极佳模板。
     金属硫化物作为材料的一大类,具有广泛的用途。目前大部分金属硫化物都是通过无机硫源与各种金属阳离子反应来制备合成的。L半胱氨酸作为生物体的基本成分之一,其分子结构中具有-SH基团,因此可以作为硫源来合成金属硫化物纳米/微米材料;同时其分子结构具有普通氨基酸的结构能够发生缩合反应来形成多肽进而作为模板来控制材料的合成。怎样使用L-半胱氨酸特殊的结构和强自组装功能来合成具有复杂结构的金属硫化物成为当前研究的热点之一,受到广泛的关注。
     本文研究了以L-半胱氨酸为模板水热合成金属硫化物微米材料的不同方法,通过这些方法成功制备了多种金属硫化物微米材料,并通过各种表征手段如:X-射线衍射(XRD)、透射电镜(TEM)、高分辨电镜(HRTEM),扫描电镜(SEM)、电子衍射(SAED)、红外光谱(FTIR)及荧光光谱分析(PL)等技术对所制备的材料进行了详细的表征和性能研究。主要内容如下:
     (1)利用L-半胱氨酸为模板,在水热条件下合成了管状的γ-MnS微米晶体。通过控制水热反应的温度、时间及添加适当的表面活性剂可得到不同相如α、γ相,不同形貌如片状、海胆状、胶囊状的γ-MnS及八面体状的α-MnS。荧光检测表明不同相、不同形貌的MnS皆具有良好的光学性能。
     (2)基于以上方法,通过调节溶液的pH值或添加不同的螯合剂成功制备了不同形貌的NiS、Bi2S3等硫化物微米晶体。
     该制备方法丰富和发展了金属硫化物微米材料的制备技术,丰富了金属硫化物微米材料的形貌,并为进一步应用生物分子辅助合成微纳米材料提供了理论支持。
Accompanying with nanomaterial's further study, it has became important to synthesize materials with special morphologies, characters, and sizes by controlling the nucleation and growth progress. Until recently, different methods have been applied to synthesize nanomaterials. Now, it is a hot topic to apply biomolecule as template or assist agent to synthesize materials due to biomolecule's special structure and fascinating self-assembling functions. Their special properties make them templates of unmatched type for the design and synthesis of complicated structures.
     As a kind of useful materials, metal sulfides have been used widely in different field. Recently, most metal sulfides are synthesized by inorganic sulfur sources and metal cations. As one of life's basic building blocks, L-cysteine contains-SH in its molecule structure, which can act as sulfur source to synthesize metal sulfides. Besides, its molecule structure also contains the-NH2 and-COOH structure in average amino acid and can form peptide by condensation. How to use L-cysteine's special structure and self-assembling function for the synthesis of complicated structures has became a hot topic.
     In this thesis, a hydrothermal way was developed to synthesize several metal sulfide micromaterials. Various methods including X-ray powder diffraction (XRD), Transmission Electron Microscope (TEM), High-resolution Transmission Electron Microscope (HRTEM), Selected Area Electron Diffraction (SAED), Infrared Spectrum (IR) and Photoluminescence (PL) were used for characterization. The main summarized as follows.
     (1) Using L-cysteine as template, tube-likeγ-MnS microcrystals were synthesized under hydrothermal condition. Different phases and morphologies of MnS, such asαandγphase, thin flake like, sea urchin like, octahedral like, and capsule like, were synthesized by controlling reaction temperature, time, or adding certain surfactant. Photoluminescence experiments under room temperature have indicted that these pure MnS have good optical properties.
     (2) Based on above methods, different morphologies of NiS、Bi2S3 and other sulfides were prepared by changing pH values or adding chelating agent.
     The preparation method enriched and developed the technology of the preparation of metal sulfide micromaterials, whose size and morphology were enriched, besides, it also provides the theory supports of biomolecule assist synthesis of micro/nanomaterilas.
引文
[1]Katz. E, Willner. I. Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angew. Chem. Int. Ed.2004,43: 6042-6108
    [2]Patolsky. F, Weizmann. Y, Lioubashevski. O, et al. Au-Nanoparticle Nanowires Based on DNA and Polylysine Templates. Angew. Chem. Int. Ed.2002, 41(13):2323-2327
    [3]Chen. F, Zhou. R. J, Yang. L. G, et al. One-Step Fabrication of CdS Nanorod Arrays via Solution Chemistry. J. Phys. Chem. C.2008,112:13457-13462
    [4]Mondal. K, Roy. P, Srivastava. S. K. Facile Biomolecule-Assisted Hydrothermal Synthesis of Trigonal Selenium Microrods. Cryst. Growth Des. 2008,8(5):1580-1584
    [5]Abdelouas. A, Gong. W. L, Lutze. W, et al. Using Cytochrome C3 To Make Selenium Nanowires. Chem. Mater.2000,12:1510-1512
    [6]Wang. T, Hu. X.G, Dong. S. J. The fragmentation of gold nanoparticles induced by small biomolecules. Chem. Commun.2008,4625-4627
    [7]Purkayastha. A, Yan. Q. Y, Raghuveer. M. S, et al. Surfactant-Directed Synthesis of Branched Bismuth Telluride/Sulfide Core/Shell Nanorods. Adv. Mater.2008,9999:1-5
    [8]Katz. E, Willner. I. Integrated Nanoparticle-Biomolecule Hybrid Systems:Synthesis, Properties, and Applications. Angew. Chem. Int. Ed.2004, 43:6042-6108
    [9]Martinez-Morales. A. A, Portney. N. G, Zhang. Y, et al. Synthesis and Characterization of Iron Oxide Derivatized Mutant Cowpea Mosaic Virus Hybrid Nanoparticles. Adv. Mater.2008,20:1-5
    [10]Bromley. K. M, Patil. A. J, Perriman. A. W, et al. Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. J. Mater. Chem.2008,18:4796-4801
    [11]Rong. J. H, Oberbeck. F, Wang. X. N, et al.Tobacco mosaic virus templated synthesis of one dimensional inorganic-polymer hybrid fibres. J. Mater. Chem. 2009,19:2841-2845
    [12]Bansal. V, Poddar. P, Ahmad. A, et al. Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles. J. Am. Chem.Soc.2006,128:
    11958-11963
    [13]Behrens. S, Heyman. A, Maul. R, et al. Constrained Synthesis and Organization of Catalytically Active Metal Nanoparticles by Self-Assembled Protein Templates. Adv. Mater.2009,21:1-5
    [14]Iwahori. K, Yamashita. Ⅰ. Size-controlled one-pot synthesis of fluorescent cadmium sulfide semiconductor nanoparticles in an apoferritin cavity. Nanotechnology.2008,19:495601-495607
    [15]Geng. B. Y, Zhan. F. M, Jiang. H, et al. Egg albumin as a nanoreactor for growing single-crystalline Fe3O4 nanotubes with high yields. Chem. Commun. 2008,5773-5775
    [16]NAYAR. S, SINHA. A, DAS. S, J. Amer. Chem. Soc. In situ synthesis of nanosized cadmium sulfide using bovine serum albumin, J. Mater. Sci. Lett. 2001,21:2099-2100
    [17]Gao. F, Lu. Q. Y, Komarneni. S. Protein-assisted synthesis of single-crystal nanowires of bismuth compounds. Chem. Commun.2005,531-533
    [18]Lu. Q. Y, Gao. F, Komarneni. S. Biomolecule-Assisted Synthesis of Highly Ordered Snow flake like Structures of Bismuth Sulfide Nanorods. J. Am. Chem. Soc.2004,126:54-55
    [19]Matsuura. H, Hirai. A, Yamada. F, et al. Soc. High-density DNA Alignment on an Au(111) Surface Starting from Folded DNA. J. Am. Chem. Soc.2008,130: 5002-5003
    [20]Hu. J, Zhang. Y, Gao. H. B, et al. Artificial DNA Patterns by Mechanical Nanomanipulation. Nano Lett.2002,2:55-57
    [21]Severin. N, Barner. J, Kalachev A. A, et al. Manipulation and Overstretching of Genes on Solid Substrates. Nano Lett.2004,4:577-579
    [22]Du. H, Strohsahl. C.M, Camera. J, et al. Sensitivity and Specificity of Metal Surface-Immobilized"Molecular Beacon" Biosensors,. J. Am. Chem. Soc. 2005,127:7932-7940
    [23]Rant. U, Arinaga. K, Fujita. S, et al. Dynamic Electrical Switching of DNA Layers on a Metal Surface.2004,4:2441-2445
    [24]Hazarika. P, Ceyhan. B, Niemeyer. C. M, Reversible Switching of DNA-Gold Nanoparticle Aggregation. Angew. Chem. Int. Ed.2004,43:6469-6471
    [25]TimLiedl, Olapinski. M, Simmel. F. C, A Surface-Bound DNA Switch Driven by a Chemical Oscillator. Angew. Chem. Int. Ed.2006,45:5007-5010
    [26]Fan. H, Zhang. Y. G, Zhang. M. F, et al. Glucose-Assisted Synthesis of CoTe Nanotubes in Situ Templated by Te Nanorods. Cryst. Growth Des.2008,8(8): 2838-2841
    [27]Yu. S. H, Cui. X. J, Li. L. L, et al. From Starch to Metal/Carbon Hybrid Nanostructures:Hydrothermal Metal-Catalyzed Caronization. Adv. Mater. 2004,16(18):1636-1640
    [28]Cakan. R. D, Titirici. M M, Antonietti. M, et al. Hydrothermal carbon spheres containing silicon nanoparticles:synthesis and lithium storage performance. Chem. Commun.2008,3759-3761
    [29]Yang. J. H, Lu. L. H, Wang. H. S, et al. Glycyl Glycine Templating Synthesis of Single-Crystal Silver Nanoplates. Cryst. Growth Des.2006,6(9):2155-2158
    [30]Liu. S. J, Gong. J. Y, Hu. B, et al. Mesocrystals of Rutile TiO2:Mesoscale Transformation,Crystallization, and Growth by a Biologic Molecules-Assisted Hydrothermal Process. Cryst. Growth Des.2009,9(1):203-209
    [31]Pietrobon. B, McEachran. M, Kitaev. V. Synthesis of Size-Controlled Faceted Pentagonal Silver Nanorods with Tunable Plasmonic Properties and Self-Assembly of These Nanorods. ACS Nano.2009,3 (1):21-26
    [32]Nadagouda. M. N, Varma. R. S. A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C. Cryst. Growth Des.2007,7(12):2582-2587
    [33]Park. K, Vaia. R. A. Synthesis of Complex Au/Ag Nanorods by Controlled Overgrowth. Adv. Mater.2008,20,1-5
    [34]Yu. X. L, Cao. C. B. Photo response and Field-Emission Properties of Bismuth Sulfide Nanoflowers. Cryst. Growth Des.2008,8(11):3951-3955
    [35]Tang. C. J, Wang. G. Z.,. Wang. H. Q, et al. Facile synthesis of Bi2S3 nanowire arrays. Mater. Lett.2008,62:3663-3665.
    [36]Zhou. X. F, Zhao. X, Zhang. D. Y, et al. Hollow microscale organization of Bi2S3 nanorods. Nanotechnology.2006,17:3806-3811
    [37]Li. H. B, Chai. L. L, Wang. X. Q, et al. Hydrothermal Growth and Morphology Modification of β-NiS Three-Dimensional Flowerlike Architectures, Cryst. Growth Des.2007,7(9):1918-1922.
    [38]Wei. F, Zhang. J, Wang. L, et al. Solvothermal Growth of Single-Crystal Bismuth Sulfide Nanorods using Bismuth Particles as Source Material, Cryst. Growth Des.2006,6(8):1942-1944
    [39]Quan. Z. W, Yang. J, Yang. P. P, et al. Facile Synthesis and Characterization of Single Crystalline Bi2S3 with Various Morphologies, Cryst. Growth Des.2008, 8(1):200-207
    [40]Zhang. H, Yang. D, Li. S. Z, et al. Hydrothermal synthesis of flower-like Bi2S3 with nanorods in the diameter region of 30 nm. Nanotechnology.2004,15: 1122-1125
    [41]Zhang. H, Ji. Y. J, Ma. X. Y, et al. Long Bi2S3 nanowires prepared by a simple hydrothermal method. Nanotechnology.2003,14:974-977
    [42]Biswas. S, Kar. S, Chaudhur. S, et al. Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets. Applied Surface Science.2007,253:9259-9266.
    [43]Sigman. M. B, Jr, Korgel. B. A. Solventless Synthesis of Bi2S3 (Bismuthinite) Nanorods, Nanowires, and Nanofabric. Chem. Mater.2005,17:1655-1660
    [44]Zhang. B, Ye. X. C, Hou. W. Y, et al. Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Bi2S3 Flowerlike Patterns with Well-Aligned Nanorods. J. Phys. Chem. B.2006,110:8978-8985
    [45]Zuo. F, Yan. S, Zhang. B, et al. L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures. J. Phys. Chem. C. 2008,112:2831-2835
    [46]Zuo. F, Zhang. B, Tang. X. Z, et al. Porous metastable γ-MnS networks: biomolecule-assisted synthesis and optical properties. Nanotechnology.2007, 18:215608-215614
    [47]Lei. Y. Q, Song. S. Y, Fan. W. Q, et al. Facile Synthesis and Assemblies of Flowerlike SnS2 and In3+-Doped SnS2:Hierarchical Structures and Their Enhanced Photo catalytic Property. J. Phys. Chem. C.2009,113:1280-1285
    [48]Amirav. L, Lifshitz. E. Spray-Produced Coral-Shaped Assemblies of MnS Nanocrystal Clusters. J. Phys. Chem. B.2006,110:20922-20926
    [49]Yu. X. L, Cao. C. B, Photo response and Field-Emission Properties of Bismuth Sulfide Nanoflowers, Cryst. Growth Des.2008,8 (11):3951-3955
    [50]Price. L. S, Parkin. I. P, Hardy. A. M. E, et al. Atmospheric Pressure Chemical Vapor Deposition of Tin Sulfides (SnS, Sn2S3, and SnS2) on Glass. Chem. Mater.1999,11:1792-1799
    [51]Lou. W. J, Chen. M, Wang. X. B, et al. Novel Single-Source Precursors Approach to Prepare Highly Uniform Bi2S3 and Sb2S3 Nanorods via a Solvothermal Treatment. Chem. Mater.2007,19:872-878
    [52]Zuo. F, Yan. S, Zhang. B, et al. L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures. J. Phys. Chem. C 2008,112; 2831-2835
    [53]Tao. F, Wang. Z. J, Yao. L. Z, et al. Hydrothermal synthesis of 3D a-MnS flowerlike nanoarchitectures. Mater. Lett.2007,61:4973-4975
    [54]Li. H. B, Chai. L. L, Wang. X. Q, et al. Hydrothermal Growth and Morphology Modification of a-NiS Three-Dimensional Flowerlike Architectures. Cryst. Growth Des.2007,7(9):1918-1922
    [55]Mo. X, Wang. C. Y, Hao. L. Y, et al. Convenient microemulsion route to star-shaped cadmium sulfide pattern at room temperature. Mater. Res. Bull. 2001,36:1925-1930
    [56]Chen. D. L, Gao. L. Novel morphologies of nickel sulfides:nanotubes and nanoneedles derived from rolled nanosheets in a w/o microemulsion. J. Cryst. Growth.2004,262:554-560
    [57]Khiew. P.S, Huang. N. M, Radiman. S, et al. Synthesis and characterization of conducting polyaniline-coated cadmium sulphide nanocomposites in reverse microemulsion. Mater. Lett.2004,58:516-521
    [58]Xu. C. Q, Ni. Y. H, Zhang. Z. C, et al. Synthesis and characterization of spherical MS(M=Cd, Zn) nanocrystalline in a quaternary W/O microemulsion by g-ray irradiation. Mater. Lett.2003,57:3070-3076
    [59]Tadao Sugimoto, Sihai Chen, Atsushi Muramatsu, Synthesis of uniform particles of CdS, ZnS, PbS and CuS from concentrated solutions of the metal chelates. Colloids Surf., A." Physicochem. Eng. Aspects.1998,135:207-226
    [60]王中林.纳米材料表征(曹茂盛,李金刚[译]).北京:化学工业出版社,2005.16-18
    [61]王中林.纳米材料表征(曹茂盛,李金刚[译]).北京:化学工业出版社,2005.31-33
    [62]Stuart. B, Infrared Spectroscopy:Fundamentals and Applications. John Wiley & Sons Ltd.2004,2-13
    [63]Zheng. Y, Cheng. Y, Wang. Y, et al. Metastable y-MnS Hierarchical Architectures:Synthesis, Characterization, and Growth Mechanism. J. Phys. Chem. B.2006,110:8284-8288
    [64]Clendenen. R. L, Drickamer. H. G. J. Chem. Phys.1965,44:4223-4228
    [65]Sombuthawee. C, Bonsall. S. B, Hummel. F. A. A single-crystal diffractometry investigation of scandium in β-rhombohedral boron. J. Solid State Chem.1978, 25:391-399
    [66]Wiedemeier. H, Sigai. A. G Vapor transport and crystal growth in the mixed system MnS-MnSe. J. Cryst. Growth.1969,6:67-71
    [67]Praminik. P, Akhter. M. A, Basu. P. K. Stark spectroscopy of Langmuir-Blodgett monolayers and multilayers. Thin Solid Films.1988,158: 271-275
    [68]Lokhande. C. D, Ennaoui. A, Patil. P. S, et al. Process and characterisation of chemical bath deposited manganese sulphide (MnS) thin films. Thin Solid Films.1998,330:70-75
    [69]Skromme. B. J, Zhang. Y, Smith. D. J, et al. Appl. Phys. Lett.1995,67: 2690-2692
    [70]Sivananthan. S, Wang. L, Sporken. R, et al. MnS/ZnSe on GaAs grown by molecular beam epitaxy, J. Cryst. Growth.1996,159:94-98
    [71]Okajima. M, Tohda. T. Heteroepitaxial growth of MnS on GaAs substrates. J. Cryst. Growth.1992,117:810-815
    [72]Nomura. R, Konishi. K, Futenma. S, et al. Appl. Organomet. Chem.1990,4: 607
    [73]Zhang. C, Tao. F, Liu. G. Q, et al. Hydrothermal synthesis of oriented MnS nanorods on anodized aluminum oxide template, Mater. Lett.2008,62: 246-248
    [74]Cheng. Y, Wang. Y. S, Jia. C, et al. MnS Hierarchical Hollow Spheres with Novel Shell Structure. J. Phys. Chem. B.2006,110:24399-24402
    [75]Zuo. F, Zhang. B, Tang. X. Z, et al. Porous metastable γ-MnS networks: biomolecule-assisted synthesis and optical properties. Nanotechnology.2007, 18:215608-251614
    [76]Amirav. L, Lifshitz. E. Spray-Produced Coral-Shaped Assemblies of MnS Nanocrystal Clusters. J. Phys. Chem. B.2006,110:20922-20926
    [77]Yu. J. G, Tang. H. Solvothermal synthesis of novel flower-like manganese sulfide particles. J. Phys. Chem. Solids.2008,69:1342-1345
    [78]Zhang. N, Yi. R, Wang. Z, et al. Hydrothermal synthesis and electrochemical properties of alpha-manganese sulfide submicrocrystals as an attractive electrode material for lithium-ion batteries. Mater. Chem. Phys.2008,111: 13-16
    [79]Tilley. R. D, Jefferson. D. A. The Synthesis of Nickel Sulfide Nanoparticles on Graphitized Carbon Supports. J. Phys. Chem. B.2002,106:10895-10901
    [80]Seim. H, Fjellvag. H, Groenvold. F, et al. Metastable Nickel Sulfides with Composition Close to Ni7S6-Stability and Structural Properties. J. Solid State Chem.1996,121:400-407
    [81]Stolen. S, Fjellvag. H, Gronvold. F, et al. Phase stability and structural properties of Ni7S6 and Ni9S8 Heat capacity and thermodynamic properties of Ni7S6 at temperatures from 5 K to 970 K and of Ni9S8 from 5 K to 673 K. J. Chem. Thermodyn.1994,26:987-1000
    [82]Zhan. F. M, Geng. B. Y, Guo. Y. J, et al. One-step synthesis of hierarchical carnation-like NiS superstructures via a surfactant-free aqueous solution route. J. Alloys Compd.2009,482:L1-L5
    [83]Zhao. P. T, Zeng. Q. M, Huang. K.X. Mater. Lett.2009,63:313-315
    [84]Tian. L, Ye. L. Y, Ong. T. T, et al. Synthesis of NiS and MnS Nanocrystals from the Molecular Precursors (TMEDA)M(SC{O}C6H5)2 (M=Ni, Mn). Cryst. Growth Des.2009,9:352-357
    [85]Yang. P. F, Song. B, Wu. R, et al. Solvothermal growth of NiS single-crystalline nanorods. J. Alloys Compd.2009,481:450-454
    [86]Black. J, Conwell. E. M, Seigle. L, et al. Electrical and optical properties of some M2Ⅴ-BN3Ⅵ-B semiconductors. J. Phys. Chem. Solids.1957,2:240-251
    [87]Pawar. S. H, Bhosale. P. N, Uplane. M. D, et al. Growth of Bi2S3 film using a solution-gas interface technique. Thin Solid Films.1983,110:165-170
    [88]Zhang. H, Ji. Y. J, Ma. X. Y, et al. Long Bi2S3 nanowires prepared by a simple hydrothermal method. Nanotechnology.2003,14:974-977
    [89]Bao. H. F, Li. C. M, Cui. X. Q, et al. Synthesis of a Highly Ordered Single-Crystalline Bi2S3 Nanowire Array and its Metal/Semiconductor/Metal Back-to-Back Schottky Diode. Small.2008,4:1125-1129
    [90]Liu. Z. P, Peng. S, Xie. Q, et al.. Contents:Chem. Vap. Deposition. Adv.Mater. 2003,15:11-12
    [91]Sigman. J. M. B, Korgel. B. A. Solventless Synthesis of Bi2S3 (Bismuthinite) Nanorods, Nanowires, and Nanofabric. Chem. Mater.2005,17:1655-1660
    [92]Zhou. X. F, Zhao. X, Zhang. D. Y, et al. Hollow microscale organization of Bi2S3 nanorods. Nanotechnology.2006,17:3806-3811
    [93]Tang. J, Alivisatos. A. P. Crystal Splitting in the Growth of Bi2S3. Nano Lett. 2006,6(12):2701-2706

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700