双季稻不同栽培模式的辐射利用与氮肥利用效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粮食安全和节肥减排是我国作物生产当前面临的两大重要任务,实现高产与肥水高效利用成为我国水稻生产的迫切需求。为了研究水稻产量形成和氮肥利用效率的变化规律,于2009年在浏阳市永安镇大田条件下以移栽和摆栽两种栽插方式进行了早、晚双季试验,设置不施N肥空白处理(T1)和当地农民习惯栽培(T2)、高产高效栽培(T3)、超高产栽培(T4)及高效超高产栽培(T5)等四个栽培模式,通过构建不同产量和N肥效率平台,同步分析了不同产量条件下双季稻的冠层辐射利用特性和氮肥利用效率,以期为建立水稻产量与养分资源利用效率协同提高的技术途径提供基础理论和实践依据。主要研究结果如下:
     (1)T3、T4、T5的稻谷产量早、晚季均显著高于农民习惯栽培模式T2,移栽方式的产量呈现T4>T5>T3>T2梯度变化,定距摆栽方式则呈现T4>T3>T5>T2梯度变化。其中T4产量最高,早、晚两季的平均产量在移栽和摆栽条件下分别达到8.62t/ha和9.24t/ha,比农民习惯栽培T2分别提高30%和26%,差异达显著水平。表明通过栽培和养分管理措施的集成优化,可以大幅度提高双季稻的产量。
     (2)水稻冠层太阳辐射截获量和辐射利用率(RUE)在处理间存在显著差异并与产量密切相关。冠层辐射截获量在早、晚两季及移栽、定距摆栽两种栽插方式中均表现为T4>T5>T3>T2,其中T4显著高于T2;RUE在移栽方式下不同栽培模式间变化在1.39-1.54g/MJ(早季)和1.20-1.52g/MJ(晚季),在定距摆栽方式下变化在1.43~1.68g/MJ(早季)和1.39-1.70g/MJ(晚季),其中T3、T4的RUE在两季均显著高于T2,T5在晚季也显著高于T2。表明显著增加水稻群体的辐射截获量和辐射利用率,是双季稻不同栽培模式比农民模式显著增产的重要生理基础。
     (3)群体分蘖、叶面积指数、地上部干物质的积累、生长速率等群体生长特征在各栽培模式间存在差异,高产高效栽培、超高产栽培和高效超高产栽培的成穗率、最大叶面积指数和成熟期干物质积累均比农民习惯栽培显著提高。
     (4)T3、T4、T5的氮肥吸收利用率(RE)、农学利用率(AE)和氮肥偏生产力(PFP)早、晚季均显著高于T2。除移栽晚稻外,T5的RE和AE表现最大,分别达到38.1(早季)~40.8%(晚季)和30.8(早季)~20.5 kg/kg(晚季)。PFP均为T3>T5>T4>T2,T3两季平均值为62.0kg/kg,显著高于其他栽培模式。说明在相同的基础地力条件下,通过栽培和养分管理措施的集成优化,能显著提高双季稻的氮肥利用效率。
To ensure Food security and to reduce fertilizer rates for alleviating environment pollution are two key tasks in crop production in our country. Therefore it is urgent to achieve higher yield and higher use efficiency of resources in rice production in China. Early rice and late rice field experiments were conducted in Yong'an Town, Liuyang City in 2009 to investigate the mechanisms of high yield formation and high nitrogen use efficiency(NUE). Treatments included nitrogen omission plot (T1), local farmer's practice model(T2), high yield and high NUE model(T3), super-high yield model(T4), and super-high yield with high NUE model(T5). The cultivation models were respected to establish different yield and different NUE platforms. We analyzed the characteristics of canopy radiation utilization and NUE under different yield conditions.The major findings are as follows:
     (1) Rice yield of treatment T3、T4、T5 are significantly higher than that of treatment T2. The yield presented as T4>T5>T3>T2 and T4>T3>T5>T2 at transplanting and dibble-planting, respectively. T4 produced the highest yield of 8.62 t/ha and 9.24 t/ha, which were 30% and 26% higher over T2 in early rice and later rice, respectively. The difference was significant. It showed that the yield of double season rice could be increased differently by integrating and optimizing of cultivation technology and nutrient management approaches.
     (2) Significant differences in the amount of intercepted solar radiation (ISRA) and the radiation use efficiency (RUE) existed among tested treatments, and were closely related to rice yield. ISRA presented as T4>T5>T3>T2 in the experiments. RUE value at transplanting were 1.39-1.54g/MJ in early rice and 1.20-1.52g/MJ in late rice, while at dibble-planting were 1.43-1.68g/MJ in early rice and 1.39-1.70g/MJ in late rice. RUE in T3 and T4 are all significantly higher than that in R2. The result indicates that ISRA and RUE enhancement is the physiological foundation of rice yield increasing in different cultivation models in double season rice production.
     (3) There exist differences in the rice population growth characters such as tillering dynamics, leaf area index(LAI), dry matter accumulation and crop growth rate(CGR) among different cultivation models. T3, T4, and T5 had significantly higher effective tiller rate, dry matter accumulation, maximum LAI than T2.
     (4) Nitrogen recovery efficiency(RE), nitrogen agronomy efficiency(AE) and nitrogen partial factor productivity(PFP) were significant higher in T3,T4,and T5 than in T2 across two seasons and two transplanting types. T5 had the highest RE and AE except in transplanting type in later season, averaged from 38.1% and 30.8kg/kg in early rice, and 40.8% and 20.5kg/kg in later season across two transplanting types, respectively. Stable trend was observed for PFP in different cultivation models, i.e., T3>T5>T4>T2. PFP in T3 averaged 62.0 kg/kg, significantly higher than in any other cultivation models across two seasons and two transplanting types. Therefore, NUE in double season rice could also be significantly increased by integrating and optimizing of cultivation technology and nutrient management approaches under the same soil fertility condition.
引文
[1]陈温福,徐正进编.水稻超高产育种理论与方法[M].北京,科学出版社,2008:300-302.
    [2]FAO.Statistical databases, Food and Agriculture Organization (FAO)of the United Nations 2008:http://www.fao.org.
    [3]彭少兵,黄见良,钟旭华等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [4]徐明岗,孙小风,邹长明等.稻田控释氮肥的施用效果与合理施用技术[J].植物营养与肥料学报,2005,11(4):487-493.
    [5]Ohnishi M, Horie T, Homma K,el at.Nitrogen management and cuhivar efects on rice yield and nitrogen use eficiency in Northeast Thailand[J].Field Crop Res,1999, 64:109-120.
    [6]李庆逵.中国农业持续发展中的肥料问题.江西:江西科学技术出版社.1997.
    [7]李荣刚.高产农田氮索肥效与调控途径—以江苏太湖地区稻麦两熟农区为例推及全省.北京:中国农业大学博士学位论文.2000.
    [8]林葆.提高作物产量,增加施肥效应.见:中国土壤学会.中国土壤科学的现状与前景,江苏:江苏科学技术出版社,1991:29-36.
    [9]De Datta S K.Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia[J]. Fert Res.1986(9):171-186.
    [10]张绍林,朱兆良,徐银华等.关于太湖地区稻麦上氮肥的适宜用量[J].土壤,1988,20:5-9.
    [11]Cassman,K.G.,Peng,S.,Olk D.C et al.Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems[J]. Field Crops Res,1998,56:7-38.
    [12]Vlek,P.L.G.,Byrnes,B.H.The efficacy and loss of fertilizer N in low land rice [J].Fert Res.,1986,9:131-147.
    [13]De Datta,S.K.;Buresh,R.J.1989.Integrated nitrogen management in irrigated rice [J].Adv.Soil Sci,10:143-169.
    [14]朱兆良.关于提高氮肥利用率问题.见:林葆,李家康主编,肥料与农业发展,国际学术讨论会论文集,1999:221-229.
    [15]朱兆良.稻田节氮的水肥综合管理技术的研究[J].土壤,1991,23(5):241-245.
    [16]贺帆,黄见良,崔克辉等.实时实地氮肥管理对不同杂交水稻氮肥利用率的影响[J].中国农业科学,2008,41(2):470-479.
    [17]刘立军,桑大志,刘翠莲等.实时实地氮肥管理对水稻产量和氮素利用率的影响[J].中国农业科学,2003,36(12):1456-1461.
    [18]Wang G H,Dobermann A,Witt C,et al.Performance of site-specific nutrient management for irrigated rice in southeast China[J].Agronomy Journal.2001,93: 869-898.
    [19]王绍华,曹卫星,丁艳锋等.水氮互作对水稻氮吸收与利用的影响[J].中国农业科学2004,37(4):497-501.
    [20]杨建昌,王志琴,朱庆森等.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1996,29(4):58-56.
    [21]De Datta K S,Broadbent F E.Methodology for evaluating nitrogen utilization efficiency by rice genotypes[J].Agron J,1988,80:793-798.
    [22]Singh U,Lagha J K,Castillo E G,et al.1998. Genotypic variation in nitrogen use efficiency in medium and long duration rice[J].Field Crops Res,58:35-53.
    [23]Koutroubasa S D,Ntanos D A.Genotypic diferences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterraneanconditions[J].Field Crops Res.,2003,83:251-260;
    [24]杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制的研究[J].土壤学报,1992,21(1):73-79.
    [25]王永锐,周天生.水稻氮、磷、钾营养和合理施肥[J].植物生理学通讯,1994,30(5):384-385.
    [26]申义珍,张正林,钱晓晴.高产水稻的氮素营养与施肥[J].土壤通报,1994,25(2):78-80.
    [27]何高,周大川,孙长锋等.水稻精确施氮量验证与氮素利用效率研究[J].江苏农业科学,2004(5):17-19.
    [28]凌启鸿,张洪程,戴其根等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467.
    [29]朱兆良.推荐氮肥适宜施用量的方法论刍议[J].植物营养与肥料学报,2006,12(1):1-4.
    [30]浙江农业大学主编.作物营养与施肥[M].北京:中国农业出版社,1990:151-152.
    [31]凌启鸿主编.水稻精确定量栽培理论与技术[M].北京:中国农业出版社,2007:47-48.
    [32]单玉华,王余龙,山本由德等.不同类型水稻在氮素吸收及利用上的差异[J].扬州大学学报(自然科学版),2004,4(3):42-46.
    [33]张传胜,龙银成,周娟等.不同产量类型籼稻品种氮素吸收利用特征的研究[J].扬州大学学报(农业与生命科学版),2004,25(2):17-21.
    [34]张耀鸿,张亚丽,黄启为.不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较[J].植物营养与肥料学报,2006,12(5):616-621.
    [35]万靓军,张洪程,霍中洋等.氮肥运筹对超级杂交粳稻产量、品质及氦素利用率的影响[J].作物学报,2007,33(2):175-182.
    [36]鲁如坤.土壤植物营养学原理和施肥[M].北京:化学工业出版社,1998.
    [37]Monteith,J. L. Climate and efficiency of crop production in Britain[J].Phil. Trans. R. Soc. London,B 1977,(281):277-294.
    [38]张金恒,王珂,王人潮.氮叶绿素计SPAD-502在水稻氮素营养诊断中的应用[J].西北农林科技大学学报(自然科学版),2003,31(2):177-180.
    [39]Peng S,Garcia F V,Laza R C,et al.Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice[J].Field Crops Res,1996,47:243-252.
    [40]Mitchell,P.L,Sheehy.J.E,and Woodward,F.I,potential yields and the efficiency of radiation use in rice[M],IRRI,1998
    [41]Bugbee, B. G, Salisbury,B.F. Exploring the limits of crop productivity.I. Photosynthetic efficiency of wheat in high irradiance environments [J]. Plant Physiology,1998, (88):869-878.
    [42]Yunbo Zhang,Qiyuan Tang,Yingbin Zou,el at.Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions[J]. Field Crops Res,2009,114:91-98.
    [43]Keisuke Katsura,Shuhei Maeda,Takeshi Horie,Tatsuhiko Shiraiwa.Analysis of yield attributes and crop physiological traits of Liangyoupeijiu,a hybrid rice recently bred in China[J]. Field Crops Res,2007,103:170-177.
    [44]Cassman, K.G., Gines, G.C, Dizon.M.A,et al.Nitrogen-use efficiency in tropical lowland rice systems contributions from indigenous and applied nitrogen[J].Field Crops Res,1996,47:1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700