草莓灰霉病菌生防细菌的筛选及其抗菌机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草莓灰霉病是导致草莓产量和质量降低的主要限制因素之一,传统的化学防治导致了严重的病菌抗药性与环境污染问题。安全、低毒的微生物防治是控制草莓灰霉病的一条重要而有效的途径,本研究旨在从草莓根际土壤、草莓植株及其它植物内分离、筛选能够抑制草莓灰霉病的拮抗细菌,对菌株进行鉴定、发酵优化,并研究其抑菌机理。主要结果如下:
     1、从草莓根际土壤、草莓植株及其它植物内分离、筛选到6株对草莓灰霉病菌有强拮抗作用的菌株,来自草莓叶的SL_6菌株抑菌效果最佳,抑菌半径达15 mm,无菌发酵液对草莓灰霉菌丝的抑制率为97.6%。经形态、生理生化和16S rDNA等分析测定,并通过MEGA4方法构建其16S rDNA系统发育树,将SL_6菌株鉴定为枯草芽孢杆菌(Bacillus subtilis)。
     2、菌株抑菌机理初步研究表明:SL_6代谢产物能强烈抑制病原菌菌丝的生长并对病菌菌丝形态明显的破坏作用。滤液对菌丝形态的破坏作用主要表现为菌丝原生质收缩、菌丝部分膨大变形、细胞壁破裂和原生质溢出等,使得菌丝不能继续生长,甚至发生断裂。培养滤液用70%硫酸铵沉淀,上清没有抑菌活性。可以初步确定该抗菌物质为可溶性蛋白质。其拮抗物质产生的最佳条件为:接种于100 mL pH 7.0的PSB液体培养基中,置于37℃恒温振荡器中培养72 h。
     3、SL_6培养滤液用70%硫酸铵进行盐析,沉淀物经透析后得粗蛋白。粗蛋白进行DEAE Sepharose Fast Flow离子交换层析得到抗菌活性蛋白,活性物质中具有很高的蛋白酶活力,进行SDS-PAGE及非变性凝胶电泳,均出现三条分子量大小相近蛋白带,通过质谱分析,得三条蛋白分别为30S核糖体蛋白、核酸酶和脱羧酶。测定了温度和pH对抗菌粗蛋白发挥抑菌作用的影响,结果表明,抗菌粗蛋白具有热稳定性,100℃处理30 min后,抑菌活性仍能达到60%以上,pH 2.0-9.0之间均有较强抑菌活性作用。
     4、通过田间试验,可以验证生防枯草芽孢杆菌SL_6发酵液对于草莓灰霉病的发生具有预防和治疗的效果,3次处理后的防效为86.6%,有效地抑制了草莓灰霉病情的扩散,验证了其可在自然环境中长期稳定地发挥作用,可用于开发草莓灰霉病害生防制剂研究证明生物制剂如能阻止或减少灰霉对于草莓花朵的侵染,就能有效地控制灰霉病害,而内生细菌能发挥该项作用。草莓内生细菌具有通过产生吲哚乙酸和溶解有机磷来促进植株生长的作用,但对其生防作用的研究国内外尚未有报道。本文筛选出的高效菌株来源于草莓叶片,其发酵液可在田间试验中发挥很好的防效。研究其生防机理及相关的蛋白并使之能应用于生产,具有重要的理论和实际意义。
Botrytis cinerea in strawberry is one of the major constraints which made the yield and quality reduced. The traditional chemical control has led to the formation of serious resistance and environmental problems. The microbial control of Botrytis cinerea in strawberry with safety and low toxicity is an important and effective way. In this research, we hope to get the antagonistic strain by screening the bacteria isolated from rhizosphere soil of strawberry, strawberry plants and other plants and study identification of the strains, fermentation optimization, and its antagonistic reaction mechanism.The main results are as follows:
     1.Six strong antagonistic strains were isolated from the rhizosphere soil of strawberry, in them, strain SL_6 isolated from the leaf of strawberry was found to have the best control efficacy, the inhibition zone diameter was 15 mm and the inhibition rate could reach 97.6% with the fermentation filtrate, revealing potential in the aspect of antagonistic action. Based on the morphological,physiological,biochemical characteristics and 16S rDNA sequence analysis,through its 16S rDNA phylogenetic tree constructed with MEGA4, SL_6 was identified as Bacillus subtilis.
     2. Study on inhibition mechanism of strain SL_6 demonstrated that metabolites produced by antagonistic strain SL_6 could do great damage to the mycelia and had inhibitory effects on the growth of Botrytis cinerea. Microscopic observation indicated that the mycelium inhibited by strain SL_6 mostly twisted, inflated, deformed, the mycelia wall broke, the protoplasm leaked from the wound and even hyphae lysed. The bacterial metabolites in the culture filtrate could be precipitated by 70% ammonium sulfate and its inhibition activity was similar to the damage of mycelium by strain SL_6, while the supernate couldn’t inhibit the pathogen growth, thereby indicating that the antagonistic substance was protein. The optimal culture condition of SL_6 was shaking culture at 37℃with initial pH 7.0 in 100mL PSB liquid medium for 3 days.
     3. The bacterial metabolites in the culture filtrate could be precipitated by 70% ammonium sulfate. The crude protein was obtained by the dialysis of the precipitate and purified by using ammonium sulfate precipitation following DEAE Sepharose Fast Flow chromatography. There were three bands with similar molecular weight in SDS-PAGE and PAGE of the active substances which had high protease activity. By mass spectrometry, three proteins were identified respectively as 30S ribosomal protein, nuclease subunit and uncharacterized protein. The crude protein was rather stable, its antibacterial activity remained above 60% after treated for 30 min at 100℃, and its pH ranged from 2.0 to 9.0.
     4. The fermentation filtrate of SL_6 showed effective control to Botrytis cinerea in strawberry in field experiments. After three treatments, the effect of fermentation broth was 86.6% and effectively inhibited the spread of disease. It could arrive to the conclusion that it could play a stable role in the long-term natural environment.
     Studies had shown that biological agents, which could prevent or reduce gray mold of strawberry flowers from infection, can effectively control gray mold damage, and endophytic bacteria can play the role. The endophytic bacteria of strawberry could promote the plant growth by producing indole acetic acid or dissolving organic phosphorus. But their roles in biological control have not yet been reported at domestic and overseas reports. This highly effective strain was selected from strawberry leaves, whose fermentation liquid could play a very good role in the field test. Studying the biological control mechanisms and their associated proteins which were expected to be applied to production had important theoretical and practical significance.
引文
[1]苏晓燕.茶多酚抑制植物病害的机制及应用前景[J].内蒙古石油化工, 2009, 24: 25-27.
    [2]Compant S., Duffy B., Nowak J., et al. Use of plant growth-promoting bacteria for biocontrol of plant disease: principles, mechanisms of action, and future prospect[J]. Appl. environ. microbiol., 2005, 71(9): 4951-4959.
    [3]李然.枯草芽孢杆菌胞外蛋白酶突变株的筛选及其拮抗作用[D].济南:山东师范大学生命科学学院,2008:
    [4]王光亮,于金友,石玉萍,等.植物病害生物防治研究进展[J].山东农业科学, 2004, 04: 75-77.
    [5] De Weger L.A., Van der Bij A.J., Dekkers L.C., et al. Colonization of the rhizosphere of crop plants by plant-beneficial Pseudomonads [J]. FEMS Microbiol.Ecol., 1995, 17: 221-228.
    [6] Gerhardson B. Biological substitutes for pesticides [J]. Trends.Biotechnol., 2002, 20: 338-343
    [7] Postma J., Montanari M., Van den Boogert P.H.J.F. Microbial enrichment to enhance the disease suppressive activity of compost [J]. Eur.J.Soil Biol., 2003, 39: 157-163.
    [8] Welbaum G., Sturz A.V., Dong Z., et al. Fertilizing soil microorganisms to improve productivity of agroecosystems [J]. Crit.Rev.Plant Sci., 2004, 23: 175-193.
    [9] Jarvis WR. The Biology of Botrytis. Academic Pres[M]. 1980: 1–17.
    [10] Rosslenbroich HJ, Stuebler D. Botrytis cinerea-history of Chemical control and novel fungicides for its management. Crop Prot [J]. 2000, 19: 557–561.
    [11] Yourman LF., Jeffers SN. Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant Dis [J]. 1999, 83: 569–575.
    [12] Washington WS, Shanmuganathan N. Fungicide control of strawberry fruit rots and the field occurrence of resistance of Botrytis cinerea to iprodione, benomyl and dichlofluanid. Crop Protection [J]. 1992, 11(4): 355–360.
    [13] Sutton JC. Evaluation of micro-organisms for biocontrol: Botrytis cinerea and strawberry, a case study. Advances in Plant Pathology [M]. 1995:173–190.
    [14] Lima G, Ippolito A. Effectiveness of Aureobasidium pullulans and Candida oleophilaagainst postharvest strawberry rots. Postharv Biol and Techno [J]. l, 1997, 10: 169–178.
    [15]刘金江,草莓灰霉病发生危害及防治技术研究[J].中国农村小康科技, 2009, 02: 59-60.
    [16]朱孔华,李本良,廖开志,等.草莓灰霉病的发生与防治[J].农业科技通讯, 2009, 09:215.
    [17]MorgenW M. The effectofnight temoerature and glasshouse ventilation on the incidence of Botrytis cinerea in a lateplant tomato crop [J]. Crop Protection, 1984(3): 243-251.
    [18]MorgenW M. Influence of energy-saving night temperature regimes on Botrytis cinereain an early-season glasshouse tomato crop [J]. Crop Protection, 1985(4): 99-110.
    [19]朱建兰.番茄灰霉病菌的生物学特性研究[J].甘肃农业大学学报, 1995, 30(1): 73-78.
    [20]葛绍荣,牛莉娜,李铭.番茄灰霉病害及其微生物防治的研究进展[J].生物加工过程, 2007, 5(3): 15-19.
    [21]张万春,关佳蕙,张娜娟.草莓灰霉病的发生与防治[J].吉林蔬菜, 2009, 03: 59.
    [22] ZHENG X D, ZHANG H Y, XI Y F(郑晓冬,张红印,席屿芳). Postharvest biological control of gray mold rot of strawberry with Cryptococcus laurentii[J]. Transactions of the CSAE(农业工程学报), 2003, 19(5): 171- 175. (in Chinese)
    [23] ZHU H, WANG Z X, FAN MZ , LUO X M(朱虹,汪章勋,樊美珍,骆绪美). Selection of trichoderma strains for suppression of strawberry sold disease caused by Botrytis cinerea[J]. Journal of Biological Control(中国生物防治), 2005, 21(1): 52- 54. (in Chinese)
    [24] Peng G, Sutton J C. Canadian Journal of Plant Pathology [J]. 1991, 13 (3): 247 - 257.
    [25] Bhatt D D, Vaughan E K. Plant Disease Rept [J]. 1962, 46: 342 - 345.
    [26]刘显达.植物保护学会会刊[J], 1993, 35: 105-115.
    [27] Nielsen M N, Sorensen J. FEMS Microbiol. Ecology[J]. 1999, 30(3): 217 - 227.
    [28] Zhang Z G, Yuen G Y. Phytopathology [J]. 2000, 90(4): 384– 389.
    [29] ARRAS G. Inhibition of postharvest fungal pathogens by Bacillus subtilis strains isolated fromcitrus fruit [J]. Advances in Horticultural Science, 1993, 7(3): 123- 127.
    [30]童蕴慧,纪兆林,徐敬友等.灰霉病生物防治研究进展[J].中国生物防治,19(3):131-135.
    [31]连玲丽.芽孢杆菌的生防菌株筛选及其抑病机理[D].福建:福建农林大学, 2007:
    [32]程亮,游春平,肖爱萍等.拮抗细菌的研究进展[J].江西农业大学学报, 2003 25(5): 732-737.
    [33]杜立新,冯书亮,曹克强.枯草芽孢杆菌BS-208和BS-209菌株防治番茄灰霉病研究[J].农药学学报,2004,6(3): 37-42.
    [34]张玉勋,李光,张光明.植物病理学报[J]. 2000,30(1):42.
    [35]王慧敏,郭岩彬,陈凡等.皱褶假单胞菌P94及其应用[P].中国专利:101012443,2007-02-02.
    [36]陈中义,张杰,黄大昉.植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J].植物病理学报,2003,33(2): 97-103.
    [37]Abo-El-Dohab M K. Antagonism among strains of Pseudomonas solanacearum [J]. Phytopathol, 59 (7): 1005-1007.
    [38]Cupples D, Sen J. Isolation and characterization of a bacterocin produced by Pseudomonas solanacearum [J]. Journal of General Micrology, 1978, 109 (2): 293-303.
    [39]高学文,姚仕义,Pham H.,等.基因工程菌枯草芽孢杆菌GEB3产生的脂肽类抗生素及其生物活性研究[J].中国农业科学,2003,36(12): 1496-1501.
    [40]李越中.药物微生物技术[M].北京:化学工业出版社, 2004:
    [41]何红,蔡学清,关雄.内生菌BS-2菌株的抗菌蛋白及其防病作用[J].植物病理学报,2003,33(4):373-378.
    [42]裴炎,李先碧,彭红卫.抗真菌多肽APS-1的分离纯化与特性[J].微生物学报,1999,39(4): 344-349.
    [43]Ligin J M, Hill DS, Hammer PE, et al. Genetic modi fication of Pseudomonas that enhance biological disease control [J]. Act Horticulture, 1999, 54: 53-60.
    [44]Calonje M., Novaes-Ledieu M., Bernardo D., et al. Chemical components and their locations in the Verticillium fungicola cell wall [J]. Can.J.Microbiol. 2000, 46(2): 101-109.
    [45]Reyes-Ramirez A., Escuderc-Abarca B.I., Aguilar-Uscanga G., et al. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds [J]. Food Microbiol.Saf. , 2004, 65(5): 131-134.
    [46]Zamfir M., CalleWaert R., Cornea P.C., et al. Purification and characterization of a bacteriocin produced by Lactobacillus acidophilus IBB801[J]. J.Appl.Microbiol. 1999, 87(6): 923-931.
    [47]Ei-Tarabily K.A., Soliman M.H., Nassar A. H.Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes [J]. Plant Pathol., 2000, 49(5): 573-583.
    [48]杨海清.桃褐腐病菌致病性及拮抗细菌生防机制的研究[D].呼和浩特:内蒙古农业大学,2007:
    [49]Suslow T.V., Schroath M.N. Rhizobacteria of sugarbeets: effect of seed Application and root colonization on yield [J]. Phytopathology, 1982, 72: 199-206.
    [50]Peixoto L.F., Afonso L.B. Antibiotic resistance and molecular typing of Pseudomonas aeruginosa: focus on imipenem[J]. Journal of Infectious Diseases, 2002, 6(1): 1-7.
    [51]Lindow S.E. Novel method for identifying bacterial mutants with reduced epiphytic fitness [J]. Appl.Environ.Microbiol. 1993, 59: 1586-1592.
    [52]邢介帅.生防芽孢杆菌胞外蛋白酶的纯化及其拮抗作用[D].济南:山东师范大学生命科学学院,2008.
    [53]Kloepper J.W., Schroth M.N. Plant growth promoting rhizobacteria on radishes [J]. Plant Pathogenic Bacteria, 1976, 2: 882- 897.
    [54]Tang W.H., Advances in biological control of plant diseases: proceeding of the international workshop on biological control of plant diseases[C]. Beijing: China Agricultural University Press, 1996.
    [55]陈志谊.拮抗细菌B-916防治水稻纹枯病作用机制的研究[D].南京:南京农业大学,1998:
    [56]冯永丛.草莓灰霉病的发生规律与综合防治[J].果农之友,2008,06:51.
    [57] Pedro BOFF, Jürgen K?HL, Matthijs GERLAGH ,et al. Biocontrol of grey mould by Ulocladium atrum applied at different flower and fruit stages ofstrawberry, BioControl[J]. 2002, 47: 193–206.
    [58]黄海婵,裘娟萍.枯草芽孢杆菌防治植物病害的研究进展[J].浙江农业科学,2005,3:213-219.
    [59]Armando CF Dias, Francisco EC Costa, Fernando D Andreote, et al. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol [J]. 2009, 25: 189-195.
    [60]Kobayashi DY, Palumbo JD. Bacterial endophytes and their effects on plants and uses in agriculture. Microbial endophytes [M]. 2000: 199–233.
    [61]Ladha JK, Reddy PM. Steps towards nitrogen fixation in Rice. International Rice Research Institute [M]. 2003:33–46.
    [62]Stone JK, Bacon CW, White JF Jr. An overview of endophytic microbes: endophytism defined. New York: Marcel Dekker [J]. 2000, 3-29.
    [63]程洪斌,刘晓桥,陈红漫.枯草芽孢杆菌防治植物真菌病害研究进展[J].上海农业学报,2006,22(1):109-112.
    [64]Ei-Tarabily K.A., Soliman M.H., Nassar A.H. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes [J]. Plant Pathol, 2000, 49(5): 573-583.
    [65]Calonje M., Novaes-Ledieu M., Bernardo D., et al.Chemical components and their locations in the Verticillium fungicola cell wall [J]. Can.J.Microbiol. 2000, 46(2): 101-109.
    [66]姜锡瑞,段钢.新编酶制剂实用技术手册[M].北京:中国轻工业出版社,2002,412-418.
    [67]Boller T., Gehri A., Mauch F., et al. Chitinase in bean leaves induction by ethylene purification, properties and possible function [J]. Planta, 1983, 157: 22-31.
    [68]陈崇顺,徐彩凤. 21科41种(变种)植物叶片几丁质酶系的研究[J].植物资源与环境,1993, 2(4): 28-33.
    [69]Miller G.L. Use of dinitrosalicylic reagent for determination of reducing sugars[J]. Anal.Biochem, 1959, 31(3): 426-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700