分数阶混沌系统及其同步控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分数阶微积分理论的研究已有300多年的历史,但长久以来的研究者主要集中在数学领域里。直到1983年Mandelbort首次指出自然界以及许多科学技术领域中存在大量分维数的事实,且在整数与分数部分之间存在自相似现象以后,作为分形几何和分维数的动力学基础,分数阶微积分才重新获得了新的发展并成为当前国际上的一个热点研究课题。分数阶动力学系统的混沌控制与混沌同步已成为非线性领域研究的重点,但分数阶混沌控制与同步的策略和方法还较少,尚处在研究初期。由于分数阶混沌系统在保密通信等领域中拥有潜在的应用前景,在这一领域将会有更大的发展空间。
     本文利用计算机数值模拟的方法研究了分数阶混沌系统及其同步控制问题。基本内容包括以下几个方面:(1)介绍了混沌的发展历程、混沌的特性及通向混沌的道路。研究了国内外分数阶混沌系统及其同步发展的现状,总结了所取得的成果及存在的不足。(2)介绍了分数阶混沌系统的数值模拟方法。(3)基于分数阶系统的非线性观测器理论和稳定性理论的结合,推导出一类分数阶混沌系统的状态观测器同步设计方法,得到了此类状态不能全部测量的分数阶混沌系统的同步方案。(4)对一个新的分数阶混沌系统的动态行为进行研究。基于分数阶稳定性理论,推导出该分数阶系统在对称阶和非对称阶时产生混沌的必要条件;最后分别运用改进的非线性观测器控制方法和主动反馈控制方法实现了新的分数阶混沌系统的自同步。(5)在对称阶和非对称阶两种情况下,分别对一个新的分数阶超混沌系统的运行状态进行讨论,然后运用主动反馈控制分别实现了该分数阶超混系统的自同步和该系统与分数阶Chen超混沌系统的异结构同步。(6)首先对整数阶简单互联电力系统的混沌和分叉的研究现状作简要介绍;然后基于分数阶理论,对分数阶互联电力系统模型进行仿真分析;最后,分别运用非线性反馈控制和主动反馈控制方法,实现了分数阶互联电力系统混沌振荡的同步控制。
The study on fractional order calculus theory has a history more than 300 years, however, the scholars studying on fractional order calculus theory mainly exist in the field of math during the past long period. In1983, Mandelbort initially suggested that there are plenty of fractal dimension phenomena in the field of nature and the field of science and technology, and there are self-similarities between integer and fraction. Then, as the dynamics foundation of geometry and fractal dimension, fractional order calculus gained new development and become a hot issue of the international. The synchronization control of fractional order system is the focus of recent researches, but chaotic synchronization methods are limited. It is believed that the chaos synchronization will play an important role in fields such as secure communication in the future.
     In this paper, fractional order chaotic systems and their synchronization are studied by numerical simulation. The main contents can be divided into six parts: The first part, the development process of chaos, the characteristics of chaos and the road leading to chaos are introduced. The development of fractional order chaos systems and their synchronization are investigated at home and abroad, the results achieved and the existing shortcomings are summarized. In the second part, the numerical simulation methods for fractional order chaos system are given. In the thirdly part, based on the nonlinear observer and stability theory of fractional order systems, a class of fractional synchronization of chaotic systems state observer are designed, has been such a state can not be fully measured fractional order chaotic systems synchronization program. In the fourth part, a new fractional order chaos system is invesgated. Based on the stability theory of fractional order systems, we analyse stability condition for chaos to exist in the commensurate and incommensurate new fractional order system respectively. At last, based on active control method and observe-based control method, two identical new fractional order chaotic systems achieve synchronization respectively. In the fifth part, a new fractional order hyperchaos system is studied. We analyse the dynamics behavior of the commensurate and incommensurate new fractional order hyperchaotic system respectively, followed by the use of active feedback control, two identical new fractional order hyperchaotic systems and nonidentical new fractional order hyperchaotic systems achieve synchronization. In the sixth part, the model of integer-order simple interconnected power system and the bifurcation of the chaotic status are introducted, and then based on fractional order theory, the model of fractional order interconnected power system is analysed by numerical simulation. Finally, based on nonlinear feedback control and active feedback control method, we realize the synchronization control for the fractional order interconnected power system chaotic oscillation respectively.
引文
[1]方锦清.驾驭混沌与发展高新技术[M].北京:原子能出版社, 2002: 1-180.
    [2]郝柏林.从抛物线谈起—混沌动力学引论[M].上海:上海科技教育出版社, 1993.
    [3] Chen G, Dong X. From chaos to order: Methodologies, perspectives and applications [M]. Singapore: World Scientific, 1998.
    [4]郝柏林.分岔、混沌、奇怪吸引子、湍流及其它.物理学进展[J].1983, 3(3): 329-416.
    [5]王兴元.复杂非线性系统中的混沌[M].北京:电子工业出版社, 2003.
    [6]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社, 2004.
    [7] Ott E, Grebogi C, Yorke J A. Controlling chaos [J]. Physical Review Letters, 1990, 64(11): 1196-1199
    [8] Pecora L M, Carroll T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64(8): 821-827.
    [9]胡岗,萧井华,郑志刚.混沌控制[M].上海科技教育出版社, 2000.
    [10]王光瑞,于熙龄,陈式刚.混沌的控制、同步与利用[M].北京:国防工业出版社, 2001.
    [11] E.N. Lorenz. Deterministic Non-Periodic Flow [J]. J. Atmos. Sci., 1963, 20: 130-141.
    [12] Henon M.A. Two-dimensional Mapping with a Strange Attractor [J]. Commun. Math. Phys., 1976, 50: 69-77.
    [13] Li T Y, Yorke J A. Perid three implies chaos [J]. American Mathematical Monthly, 1975, 82(1): 985-992.
    [14] Feigenbaum M J. Quantitative universality for a class of nonlinear transformations [J]. Journal of Statistical Physics, 1978, 19(1): 25-52.
    [15] Chen G R and Ueta T. Yet Another Chaotic Attractor [J]. Int. J. of Bifur. Chaos, 1999, 9: 1465-1466.
    [16] LüJ H, Chen G R. A new chaotic attractor coined [J]. Int. J. of Bifur. Chaos, 2002, 12(3): 659-661.
    [17] LüJ H, Chen G R, Zhang S C. Dynamical analysis of a new chaotic attractor coined [J]. Int. J. of Bifur. Chaos, 2002, 12(5): 1001-1015.
    [18] Liu C X, Liu T, Liu K et al. A new chaotic attractor [J]. Chaos, Solitions and Fractals, 2004, 22: 1031-1038.
    [19] Liu Chongxin. A novel chaotic attractor [J]. Chaos, Solitons and Fractals, 2009, 39(3): 1037-1045.
    [20] Buncha Munmuangsaen, Banlue Srisuchinwong. A new five-term simple chaotic attractor [J]. Physics Letters A, 2009, 373: 4038-4043.
    [21] Guoyuan Qi, Micha?l Antonie van Wyk, Guanrong Chen et al. A new hyperchaotic system and its circuit implementation [J]. Chaos, Solitons and Fractals, 2009, 40: 2544-2549.
    [22]陈志盛,孙克辉,张泰山. Liu混沌系统的非线性反馈同步控制[J].物理学报, 2005, 54(6): 2580-2583.
    [23] Santoboni G, Poromsky A Y, Nijmeijer H. An observer for phase synchronization of chaos [J]. Physics Letters A, 2001, 29: 265-273.
    [24] Tan wen, Wang yaonan. Synchronization of an uncertain chaotic system via recurrent neural networks [J]. Chinese Physics, 2005,14(1): 72-76.
    [25]王燕舞,关治洪,王华.自适应控制实现混沌同步[J].系统工程与电子技术, 2004, 26(2): 219-221.
    [26] Cuomo K.M., Oppenheim A.V.et al. Synchronization of Lorenz-Based Chaotic Circuits with Applications to Communications [J]. IEEE Trans.Circuits Syst., 1993, 40(10): 626-633.
    [27] Kocarev L, Parlitz U. Generalized synchronization in chaotic systems [J]. Phys. Rev. Lett., Proc SPIE 2612(1995): 57-61.
    [28] H.G. Winful, L. Rahman. Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers [J]. Phys. Rev. Lett. 65 (1990): 1575-1578.
    [29] R. Roy and K. S. Thornburg. Experimental synchronization of chaotic lasers [J]. Phys. Rev. Lett., 72(13): 2009-2012.
    [30] T. Sugawara, M. Tachikawa, T. Tsukamoto, and T. Shimizu. Observation of synchronization in laser chaos [J]. Phys. Rev. Lett., 1994, 65: 3602-3604.
    [31] T. Kapitaniak, L. O. Chua, and G. Q. Zhong. Experimental synchronization of chaos using continuous control [J]. Int. J. Bifurc. Chaos, 1994, 2 (6): 483-488.
    [32] K. Pyragas. Experimental control of chaos by delayed self-controlling feedback [J]. Physics Letters A, 1993, l80(2): 99-102.
    [33] Huberman A. Dynamics of adaptive systems [J]. IEEE Transactions on CAS, 1990, 37(4): 547-550.
    [34] Yang T,Chua L O. Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication [J]. IEEE Transactionson CAS, 1997, 144(10): 976-988.
    [35] A. De Angeli, R. Genesio, and A. Tesi. Dead-beat chaos synchronization in discrete-time systems [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 1995, 42(1): 54-56.
    [36]兰祝刚,彭巍,丘水生.混沌同步方法的研究[J].通信技术, 2001, (1): 28-31.
    [37] Mandelbort BB. The fractal geometry of nature[M]. New York: Free-man, 1983.
    [38] Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastically damped structures [J]. Journal of Guidance, Control, and Dynamics, 1991, 14(2): 304-311.
    [39] Koeller RC. Application of fractional calculus to the theory of viscoelasticity [J]. J. Appl. Mech., 1984, 51(3): 294-298.
    [40] Ichise M, Nagayanadi Y, Kojima T. An analog simulation of non-integer order transfer functions for analysis of electrode processes [J]. Journal of Electroanalytical Chemistry, 1971, 33: 253-265.
    [41] Mandelbrot B. Some noises with l/f spectrum: a bridge between direct current and white noise [J]. IEEE Transaction InformationTheory, 1967, 13(2): 289-292.
    [42] Heaviside O. Electromagnetic theory [J]. New York: Chelsea, 1971.
    [43] I. Grigorenko, E. Grigorenko. Chaotic dynamics of the fractional Lorenz system [J]. Phys. Rev. Lett., 2003, 91(3): 034101.
    [44] C. Li, G. Peng. Chaos in Chen’s system with a fractional order [J]. Chaos, Solitons and Fractals, 2004, 22: 443-450.
    [45] J. G. Lu. Chaotic dynamics of the fractional order Lüsystem and its synchronization [J]. Phys. Lett. A, 2006, 354(4): 305-311.
    [46] C. Li, G. Chen. Chaos and hyperchaos in the fractional order Rossler equations [J]. Phys.A: Stat. Mech. Appl., 2004, 341: 55-61.
    [47] V.Daftardar-Gejji, S. Bhalekar. Chaos in fractional ordered Liu system [J]. Comput. Math.Appl., 2010, 59, (3): 1117-1127
    [48] Wajdi M. Ahmad. Hyperchaos in fractional order nonlinear systems [J]. Chaos, Solitons and Fractals, 2005, 26 : 1459-1465.
    [49] S. Bhalekar and V.Daftardar-Gejji. Fractional ordered Liu system with time-delay [J]. Commun.Nonlinear Sci. Numer. Simulat, 2010, 15(8): 2178-2191.
    [50] W. H. Deng and C. P. Li. Chaos synchronization of the fractional Lüsystem [J]. Physica A, 2005, 353(8): 61-72.
    [51] W. H. Deng, C. P. Li. Synchronization of chaotic fractional Chen system [J]. J. Phys. Soc.Jpn., 2005, 74: 1645-1648.
    [52] T. Zhou, C. Li. Synchronization in fractional-order differential systems [J]. Physica D, 2005, 212: 111-125.
    [53] C. P. Li, W. H. Deng, D. Xu. Chaos synchronization of the Chua system with a fractional order [J]. Physica A, 2006, 360: 171-185.
    [54] W. Xingyuan, H. Yijie. Projective synchronization of fractional order chaotic system based on linear separation [J]. Phy. Lett. A, 2008, 372: 435-441.
    [55] Y. Yu, H. Li. The synchronization of fractional-order Rossler hyperchaotic systems [J]. Physica A, 2008, 387: 1393-1403.
    [56] M. S. Tavazoei, Mohammad Haeri. Synchronization of chaotic fractional-order systems via active sliding mode controller [J]. Physica A, 2008, 387: 57-70.
    [57] A. E. Matouk. Chaos synchronization between two different fractional systems of Lorenz family [J]. Math. Prob. Engg. 2009, Article ID 572724.
    [58] J. Hu, Y. Han, L. Zhao. Synchronizing chaotic systems using control based on a special matrix structure and extending to fractional chaotic systems [J]. Commun. Nonlinear Sci. Numer. Simulat, 2010, 15: 115-123.
    [59] M. D. Orligueira. Introduction to Fractional Linear Systems. Part l: Continuous-time case [J]. IEE Proc. Vis. Image Signal Proeess., 2000, 147: 62-70.
    [60] C. F. Lorenzo and T.T. Hartley. Variable Order and Distributed Order Fractional Operators [J]. Nonlinear Dynamics, 2002, (29): 57-98.
    [61] I. Podlubny. Fractional Differential Equations [M]. Academic Press. San Diego, CA, 1999
    [62] A. Charef, H. H. Sun, Y.Y. Tsao et al. Fractal systems as Represented by Singularity Function [J]. IEEE Transactions on Automatic Control, 1992, 37(9):1465-1470.
    [63] Hartly T T, Lorenzo C F. Qammer H K. Chaos in a fractional order Chua’s system [J]. IEEE Trans. CAS-I, 1995, 42(8): 485-489.
    [64] Ahmnd W M, Sprott J C. Chaos in fractional-order autonomous nonlinear systems [J]. Chaos, Solitons and Fractals, 2003, 16(2): 339-351.
    [65] W. H. Deng, C. P. Li, J. H. Lü. Stability analysis of linear fractional differential system with multiple time delays [J]. Nonlinear Dyn, 2007, 48: 409-416.
    [66] Mohammad Saleh Tavazoei, Mohammad Haeri. Chaotic attractors in incommensurate fractional order systems [J]. Physica D, 2008, 237(20): 2628-2637.
    [67] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo. Theory and Applications of Fractional Differential Equations [M]. Amsterdam, Netherlands: Elsevier Science, 2006.
    [68] K. Diethelm, N. J. Ford and A. D. Freed. A Predietor-correct or Approach for the Numerical Solution of Fractional Differential Equations [J]. Nonlinear Dynamics 2002, 29: 3-22.
    [69] K.Diethelmand, N. J. Ford. Analysis of Fractional Differential Equations [J]. J. Math. Anal. Appl., 2002, 265: 229-248.
    [70] M. Feki, B. Robert. Observer-based chaotic synchronization in presence of unkown inputs [J]. Chaos, Solitons and Fractals, 2003, 25: 831-840.
    [71]高金峰,张成芬.基于非线性观测器的一类分数阶混沌系统同步[J].复杂系统和复杂性科学, 2007, 4 (2): 50-54.
    [72]武相军,卢宏涛.基于非线性观测器的新的分数阶超混沌系统同步[J].中国科技论文在线. 2009, 4(2):135-140.
    [73] D.Matignon. Stability Results of Fraetional Differential Equations with Applications to Control Processing [J]. In IMACS-SMC, (Lille, France), 1996: 963-968.
    [74] Tavazoei MS. Limitations of frequency domain approximation for detecting chaos in fractional order systems [J]. Nonlinear Anal, 2008, 69: 1299-1320.
    [75] Tavazoei MS. A necessary condition for double-scroll attractor existence in fractional-order system [J]. Phys Lett A, 2007, 367: 102-113.
    [76] Tavazoei MS. Chaotic attractors in incommensurate fractional order system [J]. Physics D 2008, 237: 2628-2637.
    [77] Z. Vuki¢, L. Kulja¢a. Nonlinear Control Systems [M]. CRC Press, 2003.
    [78] D. Cafagna, G. Grassi. New 3-D-scroll attractors in hyperchaotic Chua's circuit forming a ring [J]. Int. J. Bifur. Chaos, 2003, 13 (10): 2889-2903.
    [79] J. Lu, G. Chen, X. Yu, H. Leung. Design and analysis of multi-scroll chaotic attractors from saturatedfunction series [J]. IEEE Trans. Circuits Syst. I, 2004, 51, (12): 2476-2490.
    [80] Alan Wolf, Jack B. Swift, Harry L. Swinney, John A. Vastano. Determining Lyapunov exponents from a time series [J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317.
    [81]方锦清.非线性系统中混沌控制方法、同步原理及其应用前景(二)[J].物理学进展, 1996, 16(2): 174-179.
    [82]刘健辰,谭文.分数阶超混沌系统的模糊控制和同步[J].计算机工程与应用, 2007, 43(34): 196-199.
    [83]周平,程雪峰,张年英.一个新的分数阶超混沌系统及其混沌同步[J].物理学报, 2008, 57(9): 5407-5412.
    [84]胡建兵,韩焱,赵灵冬.自适应同步参数未知的异结构分数阶超混沌系统[J].物理学报, 2009, 58(3): 1442-1445.
    [85] Tiegang Gao, Zengqiang Chen, Zhuzhi Yuan, Dongchuan Yu. Adaptive synchronization of a new hyperchaotic system with uncertain parameters [J]. Chaos, Solitons and Fractals, 2007, 33: 922-928.
    [86] Wang XY, Wang MJ. A hyperchaos generated from Lorenz system [J]. Physica A, 2008, 387(14): 3751-3758.
    [87] Yu Y N. Electric Power System Dynamics [M], New York: Academic Press, 1983.
    [88]卢强,孙元章.电力系统非线性控制[M],北京:科学出版社, 1993.
    [89] J. R. Marti, A.C. Soudack. Ferroresonance in Power systems : Fundamental solutions [J]. IEE Proceedings-C, 1991 (138): 321-329.
    [90] Kopell N. Chaotic motions in the two degrees of freedom swing equations [J]. IEEE Transactions on CAS, 1982 (11): 34-40.
    [91] Chiang H D, Liu C C. Chaos in a simple power system [J]. IEEE Transactions on Power Systems, 1993, 8 (4):1407-1417.
    [92] Hua O W, Eyad H A. Bifurcation, chaos and crises in voltage collapse of a model power system [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 1994, 41(3): 294-302.
    [93]檀斌,薛禹胜.多机系统混沌现象的研究[J].电力系统自动化, 2001, 25(2): 3-8.
    [94] K.N. Srivastava, S.C. Srivastava. Elimination of dynamic bifurcation and chaos in power systems using facts devices [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1998, 45(1): 72-78.
    [95] B. T. Alona, V. Kirk, G. Wake. Banded chaos in Power systems [J]. IEEE Transactions on Power Delivery, 2001(16): 105-110.
    [96] P. S. Bodger, G. D. Irwin et al. Bifurcation route to chaos for a Ferroresonant circuit using an electromagnetic transients program [J]. IEE Proceedings Generation, Transmission and Distribution, 1996(143): 238-242.
    [97] V. Ajjarapu, B. Lee. Bifurcation theory and its application to nonlinear dynamical in electrical power system [J]. IEEE transactions on Power Systems, 1992 (7): 424-431.
    [98] K. G. Rajesh, K.R. Padiyar. Bifurcation analysis of a three node power system with detailed models [J]. Electrical Power Energy Systems, 1999(21): 375-393.
    [99] W. D. Rosehart, C.A.Canizares. Bifurcation analysis of various power system models [J].Electrical Power Energy Systems, 1999(21): 171-182.
    [100]王建,刘永强,吴捷.分岔方法及其在电力系统的应用[J].电力系统及其自动化, 2001(13): 5-7.
    [101] Z. Li, J. B. Park et al. Bifurcations and chaos in a Permanent-Magnet Synchronous Motor [J]. IEEE Trans. CAS-1, 2002 (49):383-387
    [102] L. F. C. Alberto, N.G. Bretas. Application of Melnikov’s method for computing heteroclinic orbits in a classical SMIB system [J]. IEEE Trans. CAS-I, 2000 (47): 1085-l089.
    [103] T. Senjyu, K. Uezato. Stability analysis and suppression control of rotor oscillation for stepping motors by Lyapunov’s direct method [J]. IEEE Transactions on Power Electronics, 1995 (10): 333-339.
    [104]陈敏等.混沌振子在转子系统早期碰摩故障检测中的应用[J].国防科技大学学报, 2001 (23): 36-39.
    [105]梁志珊等.基于Lyapunov指数的电力系统短期负荷预测[J].中国电机工程学报, 1998 (18): 368-371.
    [106]吕金虎等.电力系统短期负荷预测的非线性混沌改进模型[J].中国电机工程学报, 2000 (20): 80-83.
    [107]赵翔,孙月明. Lypaunov指数在转子剩余寿命预报中的应用[J].中国电机工程学报, 1999 (19): 10-13.
    [108]柳明,吴捷.微扰电力系统中的次谐及混沌轨道[J].电力系统自动化, 2002, 26(15): 9-14.
    [109] B. M. Vinagre, I. Petras, I. Podlubny, Y. Q. Chen. Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control [J]. Nonlinear Dynamics, 2002 (29): 369-279.
    [110]高心.分数阶动力学系统的混沌控制和同步的研究[D].成都:电子科技大学, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700