间充质干细胞内皮分化前流动加载对所得细胞表型及生物学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过研究流动切应力因素作用于大鼠骨髓间充质干细胞(mesenchymal stem cells, MSCs)后,对其内皮诱导所得细胞抗血栓形成、血管活性物质生成及粘附因子表达等生物学性质的变化,探讨流动切应力加载与MSCs内皮分化过程相结合后,能否在体外构建出满足缺血性心脏病(ischemic heart disease, IHD)治疗及心血管组织工程需要的种子细胞。
     方法:1.采用Percoll分离液密度梯度分离法,体外分离及纯化SD大鼠MSCs,经过形态学特征、表面标志物表达及多向分化潜能等多方面鉴定所得细胞。将纯化后细胞置入含VEGF及bFGF的内皮诱导液中定向诱导2周后,倒置相差显微镜观察细胞形态变化,免疫荧光染色观察细胞CD31表达情况,免疫组织化学方法检测Ⅷ因子表达情况,透射电子显微镜观察细胞内超微结构。2.将分离纯化所得的大鼠MSCs按照加载切应力大小分为静态对照组、5 dyn/cm~2切应力加载组和10dyn/cm~2切应力加载组,切应力加载组完成3小时切应力加载后,三组均于静态下定向内皮诱导14天,分别以荧光实时定量逆转录-聚合酶链反应(real-time fluorescent quantitation reverse transcription-polymerase chain reaction,real-time RT-PCR)及流式细胞仪(flow cytometry)观察所得细胞的t-PA、eNOS、ET-1、ICAM-1、VCAM-1等因子mRNA及蛋白表达水平的变化情况。流动切应力加载组所得细胞培养3天后传代,再次检测传代后细胞上述因子的表达情况。3.同时也观察所得细胞的NO合成量、总抗氧化能力(T-AOC)、及NADPH氧化酶gp91phox亚单位mRNA的变化情况。
     结果:1.内皮诱导2周后,培养细胞获得了内皮特异性细胞形态、排列方式及超微结构,并表达内皮特异性抗原CD31及Ⅷ因子相关抗原。2.对MSCs施加生理范围内大小的层流切应力3h后,其内皮诱导所得P1代细胞的t-PA、eNOS、ET-1、ICAM-1、VCAM-1等因子mRNA表达水平均明显升高,且与切应力强度呈依赖关系。传代后P2代细胞上述因子中,除ICAM-1表达继续升高外,其余因子表达下降,其中eNOS和ET-1表达下降明显,而t-PA和VCAM-1表达下降不明显。3.所得P1代细胞的eNOS、ET-1、ICAM-1、VCAM-1等因子蛋白表达水平变化趋势不同。5 dyn/cm~2加载后,eNOS表达下降,而10 dyn/cm~2加载后eNOS表达增加。其余因子无论切应力强度大小,均表达增加。传代后P2代细胞中,5 dyn/cm~2组eNOS表达仍低于对照水平,而10dyn/cm~2组水平降低至对照水平。同时其余因子蛋白表达下降至对照水平。4.对MSCs施加生理范围内大小的层流切应力3h后,其内皮诱导所得细胞的NO产量及T-AOC增加,gp91phox亚单位mRNA表达下降,均与切应力强度呈依赖关系。
     结论:1.成年SD大鼠骨髓MSCs能在体外定向诱导为内皮细胞,有望成为心血管疾病的细胞治疗及相关心血管组织工程理想的种子细胞来源。2.生理范围内流动切应力能对由MSCs分化而来的内皮细胞抗血栓能力、抗氧化能力、血管活性物质生成及粘附分子表达等多方面进行精细的调控。其调控效果及强度因细胞因子的不同而不同。这可能是由于不同的细胞因子是通过各自特异的分子机制来对同一类型切应力作出反应的结果。3.向MSCs阶段施加生理范围大小的层流切应力,可作为一种有效的种子细胞预处理方法及手段,能使种子细胞具有更强的增殖分化能力,更优良的抗血栓形成、抗炎症及抗动脉粥样硬化性质,有助于IHD细胞治疗及心血管组织工程的发展。
Objective: Through investigating the effects on the abilities of anti-thrombus, synthesis of vasoactive substances and expression of adhesion molecules of the endothelial cells induced from rat bone marrow mesenchymal stem cells (MSCs) after flow loading. And approaching possibility to construct seeded cells which can well satisfied with the needs for ischemic heart disease treatment and cardiovascular tissue engineering by connecting flow shear stress and the process of endothelial differentiation of MSCs.
     Methods: (1). S-D rats bone marrow MSCs could be separated and purified in vitro by the Percoll density gradient separation,. Morphology characteristics, cell surface markers and the potency of multi-directional differentiation were applied to identify the cells. The purified cells were induced to endothelial linage in special media contain VEGF and bFGF for 2 weeks, the changes of cell morphology were observed under an inverted phase contrast microscope, the expression of CD31 was measured by immunofluorescence strain(IF), immunohisto- chemistry (IH) strain were used to investigate the factorⅧrelated antigen, a transmission electron microscope (TEM) was applied to observe the cells ultramicro-structure.. (2) the purified MSCs were divided into control group, 5 dyn/cm~2 group and 5 dyn/cm~2 group according the intensity of shear stress loading. As soon as the 3 hours stress loading finished , all groups were induced to endothelial linage for 14 days, the mRNA and protein expression levels of t-PA, eNOS, ET-1, ICAM-1, VCAM-1 were measured by real-time RT-PCR and flow cytometry. The shear loading groups cells were cultured for more 3 days and then passaged to next generation, and all mentioned factors were measured again. (3). At the same time, the amount of NO synthesis, total anti-oxidation competence(T-AOC), and the mNRA expression level of gp91phox, a subunit of NADPH oxidase, were all detected.
     Results: (1). After induced for 2 weeks ,the cells acquired endothelial cell morphology, arrangement and ultramicro structure, and expressed the endothelial special antigen-CD31 andⅧfactor. (2). after exposing to physiological shear stress, the mRNA expression levels of t-PA, eNOS, ET-1, ICAM-1, VCAM-1 of P1 group had a obviously increase in an intensity depend manner. When the cells were passaged ,the mRNA expression levels of ICAM-1 kept on increasing,and that of the rest decreased .among them , mRNA expression of eNOS and ET-1 decreased significantly. (3). after exposing to physiological shear stress, the change of the protein expression levels of eNOS、ET-1、ICAM-1、VCAM-1 of P1 group differed with shear stress intensity, the expression levels of eNOS decreased in 5 dyn/cm~2 and increased in 10 dyn/cm~2. the other factors level increased regardless of shear intensity. When cells passaged to next generation, eNOS remained lower in 5 dyn/cm~2 and decreased to control level in 10dyn/cm~2. (4). after exposing to physiological shear stress for 3 hours, the yield of NO and T-AOC of endothelial cells induced from MSCs increased, and the mRNA level of gp91phox decreased in an intensity-dependent manner.
     Conclusion: (1). Adult SD rat bone marrow MSCs can be induced to endothelial cells in vitro,it would be an ideal seeded cell source for cardiovascular disease treatment and cardiovascular tissue engineering. (2). Physiological fluid shear stress could refined regulate the anti-thrombus ability, the anti-oxidation ability, the formation of vasoactive substances and the expression levels of cell adhesion molecules. The effects and intensity of regulation differed with different factors, which may due to different factors reacted to shear stress in respectively special molecule mechanism. (3). It would be a efficient method for preconditioning the seeded cells by exposing physiological fluid shear stress to MSCs, it could make the cells acquire strong proliferation and differentiation ability, superordinary anti-thrombokinesis, anti-inflammation and anti atherosclerotic character, and it would helpful to the development of IHD treatment and cardiovascular tissue engineering.
引文
1. Braunwald E. Shattuck lecture-cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. New England Journal of Medicine. 1997; 337(19):1360-9
    2. Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest, 1999 ,103 : 1231-1236.
    3. Friedenstein AJ, Piatetzky-Shapiro II,Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol, 1966,16(3): 381-390
    4. Pittenger M F, Mackay AM ,Beck SC ,et al. Multilineage potential of Adult human mesenchymal stem cells[J]. Science. 1999,284(5411):143
    5. Tremain N. Korkko J. Ibberson D. et al. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells.2001; 19(5):408-18
    6. Joachim Oswald, Sabine Boxberger, Birgitte Jorgensen, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem cells. 2004;22:377
    7. Slager CJ, Wentzel JJ, Gijsen FJ, et al. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Pract Cardiovasc Med, 2005, 2: 456-464.
    8. Slager CJ, Wentzel JJ, Gijsen FJ, et al. The role of shear stress in the generation of rupture prone vulnerable plaques. Nat Clin Pract CardiovascMed, 2005, 2: 401-407.
    9. Box FM. van der Geest RJ. Rutten MC. et al. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow. Investigative Radiology. 2005; 40(5):277-94
    10. Wang GX. Cai SX. Wang PQ. et al. Shear-induced changes in endothelin-1 secretion of microvascular endothelial cells. Microvascular Research.2002; 63(2):209-17
    11. Yamamoto K, Takahashi T, Asahara T, et al. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol. 2003;95(5):2081-2088
    12. Yamamoto K. Sokabe T. Watabe T. et al. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. American Journal of Physiology-Heart & Circulatory Physiology. 2005; 288(4):H1915-1924
    13.赁可,谢艳,武忠,等.流动对兔动脉缩窄区域内皮细胞形态的影响.中国胸心血管外科临床杂志.2003;10(1):35-38.
    14.赁可,谢艳,张尔永,等.湍流流动对血管内皮细胞黏附分子表达的影响.中国胸心血管外科临床杂志.2003;20(4):638-641
    15.石应康,刘欣,陈槐卿,等.不同条件培养的内皮细胞耐受流体剪切力的比较研究。生物医学工程学杂志。2001:18(2):188-191
    16. Schmidt D. Breymann C. Weber A. et al. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Annals of Thoracic Surgery. 2004; 78(6):2094-8
    17. Yow KH. Ingram J. Korossis SA. et al. Tissue engineering of vascular conduits. British Journal of Surgery. 2006; 93(6):652-61
    18.赁可,石应康,张尔永,等。体外培养的不同子代血管内皮细胞间黏附分子静态表达及对流动响应性的对比研究。四川大学学报(医学版)(待发表)
    1. Jonathan MH, Alexander JD, Raman VK, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation. 2003, 108:1009-1014
    2.刘肖珩,尹红梅,陈槐卿,等.Flow Chamber流动试验模型.生物数学学报,2002,17(4):416-420
    3.陈槐卿。流体切应力对血管内皮细胞的作用。医用物物力学2000;15(2):72-75
    4.王怀阳,郑振声.体外反搏对剪切应力影响的实验研究.生物医学工程学杂志.2001;18(4):520-522
    5. Oshinski JN; Curtin JL; Loth F. Mean-average wall shear stress measurements in the common carotid artery. Journal Of Cardiovascular Magnetic Resonance.2006; 8 (5): 717-22
    6. Kitano Y, Radu A, Shabban A, et al. Selection, enrichment, and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells. Exp Hematol, 2000,28(12): 1460-1469
    7. Majumdar MK, Thide MA, Mosea JD, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells and stromal cells. J Cell Phsiol, 1998,176(1):57-66
    8. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999,181(1):67-73
    9. Seshi B, Kumar S, Sellers D. Human bone marrow stromal cell: coexpression of markers specific for multiple mesenchymal cell lineages. Blood Cells Mol Dis, 2000,26(3): 234-246
    10. Bautch VL. Stanford WL. Rapoport R. et al. Blood island formation in attached cultures of murine embryonic stem cells. Developmental Dynamics. 1996; 205(1): 1-12
    11. Livak KJ; Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 ;25 (4):402-8
    12. Kastrup J. Ripa RS. Wang Y. et al. Myocardial regeneration induced by granulocyte-colony -stimulating factor mobilization of stem cells in patients with acute or chronic ischaemic heart disease: a non-invasive alternative for clinical stem cell therapy? European Heart Journal. 2006;27(23):2748-54
    13. Hoenig MR. Campbell GR. Rolfe BE. et al Tissue-engineered blood vessels: alternative to autologous grafts? Arteriosclerosis, Thrombosis & Vascular Biology. 2005;25(6):1128-34
    14. Huang Deqing, Qin Yang. Progress in research and application of the tissue engineering blood vessels. J Biomed Eng 2002; 19(4):688-91
    15. Schmidt D. Breymann C. Weber A. et al. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Annals of Thoracic Surgery. 2004; 78(6):2094-8
    16. Yow KH. Ingram J. Korossis SA. et al. Tissue engineering of vascular conduits. British Journal of Surgery. 2006; 93(6):652-61
    17. Pittenger M F, Mackay AM, Beck SC, et al. Multilineage potential of Adult human mesenchymal stem cells[J]. Science. 1999, 284(5411):143
    18. Tremain N. Korkko J. Ibberson D. et al. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells. 2001; 19(5):408-18
    19. Joachim Oswald, Sabine Boxberger, Birgitte Jorgensen, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem cells. 2004; 22: 377
    20. Morayma R, Arkadiusz D, Balkrishna J, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 2002;109(3):337-46
    21. Jiang Y. Jahagirdar BN. Reinhardt RL. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002; 418(6893):41-9
    22. Ballermann BJ, Dardik A, Eng E, Liu A. Shear stress and the endothelium. Kidney Int Suppl. 1998; 67: S100-S108.
    23. Lehoux S, Tedgui A. Cellular mechanics and gene expression in blood vessels. J Biomech. 2003; 36: 631-643.
    24.石应康,刘欣,陈槐卿,等。不同条件培养的内皮细胞耐受流体剪切力的比较研究。生物医学工程学杂志 2001;18(2):188-191
    25.赁可,谢艳,武忠,等.流动对兔动脉缩窄区域内皮细胞形态的影响.中国胸 心血管外科临床杂志.2003;10(1):35-38.
    26.赁可,谢艳,张尔永,等.湍流流动对血管内皮细胞黏附分子表达的影响.中国胸心血管外科临床杂志.2003;20(4):638-641
    27. Pittenger MF, Mackay AM ,Beck SC ,et al. Multilineage potential of Adult human mesenchymal stem cells. Science. 1999,284(5411): 143-147
    28. Kimura T. Minamiguchi H. Wang J. et al. Impaired stem cell function of CD34+ cells selected by two different immunomagnetic beads systems. 2004; Leukemia. 18(3):566-74
    29. Zohar R, Sodek J, McCullon CA. Characterization of stromal progenitor enriched by flow cytometry[J]. Blood, 1998, 90(9): 3471-3481.
    30. Vlasselaer PV, Falla N, Snoeck H, et al. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-sca-1 monoclonal antibody and wheat germ agglutinin. Blood, 1994, 84(3): 753-763
    31.朱慧勇,赵军,吴求亮,等。人骨髓间充质干细胞分离培养的细胞周期及表面抗原研究。口腔医学,2004,24(5):257-260
    32. Kitano Y, Radu A, Shabban A, et al. Selection, enrichment, and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells. Exp Hematol, 2000,28(12): 1460-1469
    33. Dexter TM, Allen TD, Lajtha LG.. Conditions controlling the proliferation of hematopoietic stem cells in vitro. J Cell Physiol, 1997,91(10):335
    34.秦宏敏,李强,马怀忠,等。骨髓间充质干细胞实验室分离的方法。中国临床康复。2005;9(6):68-69
    35.张晓东,徐治立,叶丽虹,等。人胎儿骨髓间充质干细胞的分离及生物学鉴定。南开大学学报。2006;39(1):107-110
    36.呼莹,马丽,马冠杰,等。成人和胎儿骨髓间充质干细胞的比较研究。中华血液学杂志。2002;23(12):645-648
    37. Young JM, Myoung WL,Mal SY. et al. Expression Profile of Genes Representing Varied Spectra of Cell Lineages in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Acta Haematol 2005; 114:117-120
    38. Silva GV. Litovsky S. Assad JA. et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005;111 (2): 150-6
    39. Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial ceils for angiogenesis. Science 1997;275:964-967
    40. Gehling UM, Ergun S, Schumacher U et al. In vitro differentiation of endothelial cells from AC 133-positive progenitor cells. Blood 2000;95:3106-3112
    41. Reyes M, Lund T, Lenvik T et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001 ;98:2615-2625
    42. Shi Q. Rafii S. Wu MH. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92(2):362-7
    43. Kalka C. Masuda H. Takahashi T.et al.Transptantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(7):3422-7
    44. Pardanaud L, Altmann C, Kitos P, et al. Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development, 1987; 100(2): 339-349
    45. Nishikawa SI. Nishikawa S. Hirashima M..et al. Progressive lineage analysis by cell sorting and culture identifies FLKl+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development. 1998; 125(9):1747-57
    46.赁可,石应康,张尔永,等。体外培养的不同子代血管内皮细胞间黏附分子静态表达及对流动响应性的对比研究。四川大学学报(医学版)(待发表)
    47. Tsukurov, OI. Kwolek, C J. L'Italien, et al. The response of adult human saphenous vein endothelial cells to combined pressurized pulsatile flow and cyclic strain, in vitro. Annals of Vascular Surgery. 2000;14(3):260-7
    48. H.R. Laube, J. Duwe, W. Rutsh, K. Wolfgang, Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts, J. Thorac. Cardiovasc. Surg. 120 (2000) 134-141.
    49. J. Meinhart, M. Deutsch, P.Zilla, Eight years of clinical endothelial cell transplantation, ASAIO J. 43 (1997) M515-M521.
    50. P.Zilla, M. Deutsch, J. Meinhart, R. Pussmann, T. Eberl, E. Minar, R. Dudczak, H. Lugmaier, P. Schmidt, I. Noszian, Clinical in vitro endothelialization of femoropopliteal bypass grafts: an actuarial follow up over three years, J. Vasc. Surg. 19 (1994) 540-548.
    51. Y. Noishiki, Y. Yamane, Y. Tomizawa, T. Okoshi, S. Satoh, C.R. Wildevuur, K. Suzuki, Rapid endothelialization of vascular prostheses by seeding autologous venous tissue fragments, J. Throac. Cardiovasc. Surg. 104 (1992) 770-778.
    52. S.L. Diamond, S.G.Eskin, L.V. McintiRe, Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells, Science 241 (1989) 1483-1485.
    53. S.L. Diamond, J.B. Sharefkin, C. Dieffenbach, et al. Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress, J. cell. physiol. 143 (1990) 364-371.
    54. Yang Z. Tao J. Wang JM. et al. Shear stress contributes to t-PA mRNA expression in human endothelial progenitor cells and nonthrombogenic potential of small diameter artificial vessels. Biochemical & Biophysical Research Communications. 2006;342(2):577-84
    55. Frank P.Barry, J Mary Murphy. Mesenchymal stem cells: clinical applications and biological characterization. The international journal of biochemistry and cell biology.2004;36:568-584
    56. Walford G, Loscalzo J. Nitric oxide in vascular biology. Journal Of Thrombosis And Haemostasis. 2003, 1 (10): 2112-8.
    57. Yanagisawa N, Inoue A, Takuwa Y, et al. The human preproendothelin·1 possible regulation by endothelial phosphoinositide turnover signaling. J Cardiorose Pharmacol, 1989, 13, supply5:s13~s17
    58. Xiao Z, Zhang Z, Ranjan V, et al. Shear stress induction of the endothelial nitric oxide synthase gene is calcium dependent but not calcium—activated. J Cell Physiol.1997; 171(2) :205-211.
    59.付四海,孙继虎,张旭静,等.切应力对内皮细胞一氧化氮合酶及细胞凋亡的影响.中华国际医学杂志.2004;4(6):313-316.
    60. Malek AM, Izumo S. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am J Physiol. 1992; 263: C389-C396.
    61. Mateen Akhtar, Gui-Fu Wu, Zhi-Min Du, et al. Effect of External Counterpulsation on Plasma Nitric Oxideand Endothelin-1 Levels. Am J Cardiol 2006;98:28-30
    62. Michael B. Dancu, Danielle E.et al. Asynchronous Shear Stress and Circumferential Strain Reduces Endothelial NO Synthase and Cyclooxygenase-2 but Induces Endothelin-1 Gene Expression in Endothelial Cells. Arterioscler Thromb Vasc Biol. 2004 ;24:2088-2094.
    63. Ken Masatsugu, Hiroshi Itoh, Tae-Haw Chun,et al. Shear stress attenuates endothelin and endothelin-converting enzyme expression through oxidative stress. Regulat Peptid, 2003; 111:13-19
    64.刘波,周瑾,刘艳春,等.低切应力作用下体外培养动脉的内皮素表达.生物物理学报,2005;21(3):200-204.
    65. Yingjia Zhang, Tzong-Shyuan Lee, Erik M. Kolb,et al. AMP-Activated Protein Kinase Is Involved in Endothelial NO Synthase Activation in Response to Shear Stress. Arterioscler Thromb Vasc Biol. 2006;26:1281-1287.
    66. Madhulika Dixit, Annemarieke E. Loot, Annisuddin Mohamed,et al. Gabl, SHP2, and Protein Kinase A Are Crucial for the Activation of the Endothelial NO Synthase by Fluid Shear Stress. Circ Res. 2005;97:1236-1244.
    67. Dimmeler S, Fleming I, Fisslthaler B, et al.Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601-605.
    68. Caroline Cheng, Dennie Yempel, Rien van Haperen,et al. Atherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of Fluid Shear Stress. Circulation.2006; 113:2744-2753.
    69. O'Brien KD ,McDonald TO ,Chait A ,et al. Neovascular expression of E-selectin, intercellular adhesion molecule21 in human atherosclerosis and their relation to intimal leukocyte content. Circulation,1996;93 (4) :672-682.
    70. Suo J. Ferrara DE. Sorescu D. Guldberg RE. Taylor WR. Giddens DE Hemodynamic shear stresses in mouse aortas: implications for atherogenesis.Arteriosclerosis, Thrombosis & Vascular Biology. 2007; 27(2):346-51
    71. Mcintire LV.1992 ALZA Distinguished lecture; Bioengineering and vascular biology.Annals of Biomedical Engineering. 1994; 22(1):2-13
    72. Yamawaki H. Lehoux S. Berk BC. Chronic physiological shear stress inhibits tumor necrosis factor-induced proinflammatory responses in rabbit aorta perfused ex vivo. Circulation. 2003; 108(13):1619-25
    73. Chiu JJ. Lee PL. Chen CN.et al.Shear stress increases ICAM-1 and decreases VCAM-1 and E-selectin expressions induced by tumor necrosis factor-[alpha] in endothelial cells. Arteriosclerosis, Thrombosis & Vascular Biology. 2004; 24(1):73-9
    74. Sabena Sultan, Martin Gosling, Hideaki Nagase,et al. Shear stress-induced shedding of soluble intercellular adhesion molecule-1 from saphenous vein endothelium. FEBS Letters. 2004;564:161-165.
    75. Yeh LH. Kinsey AM. Chatterjee S.et al. Lactosylceramide mediates shear-induced endothelial superoxide production and intercellular adhesion molecule-1 expression. Journal of Vascular Research. 2001; 38(6):551-9
    76. van Thienen JV. Fledderus JO. Dekker RJ. et al.Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovascular Research.2006; 72(2):231-40
    1. De Keulenaer GW. Chappell DC. Ishizaka N. et al. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circulation Research. 1998;82(10): 1094-101
    2. Yan C. Takahashi M. Okuda M.et al. Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells. Dependence on tyrosine kinases and intracellular calcium. Journal of Biological Chemistry. 1999;274(1):143-50
    3. Drummond GR. Cai H. Davis ME.et al.Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circulation Research. 2000;86(3):347-54
    4. Paravicini TM. Touyz RM. Redox signaling in hypertension. Cardiovascular Research. 2006;71(2):247-58
    5. Furchgott RF; Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980; 288 (5789):373-6
    6. Napoli C; de Nigris F; Williams-Ignarro S. et al. Nitric oxide and atherosclerosis: an update. Nitric Oxide: Biology And Chemistry .2006; 15 (4): 265-79.
    7. Cameron IT. Campbell S. Nitric oxide in the endometrium. Human Reproduction Update. 1998,4(5):565-9
    8. Stankevicius E; Lopez-Valverde V; Rivera L. et al. Combination of Ca2+ -activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery. British Journal Of Pharmacology. 2006;149(5):560-72
    9. Walford G, Loscalzo J. Nitric oxide in vascular biology. Journal Of Thrombosis And Haemostasis. 2003, 1(10): 2112-8.
    10. Wessells H; Teal TH; Engel K.et al. Fluid shear stress-induced nitric oxide production in human cavernosal endothelial cells: inhibition by hyperglycaemia. BJU International.2006;97 (5),:1047-52
    11. Tao J; Yang Z; Wang JM. et al. Effects of fluid shear stress on eNOS mRNA expression and NO production in human endothelial progenitor cells. Cardiology . 2006;106(2):82-8
    12.丁纪明,陈平,张林,等。切应力对大鼠肝窦内皮细胞分泌功能的影响。中国普外基础与临床杂志。2005;12(5):455-458
    13. Nathan C. Xie QW. Regulation of biosynthesis of nitric oxide. Journal of Biological Chemistry. 1994; 269(19):13725-8
    14. Griendling KK, FitzGerald GA. Oxidative Stress and cardiovascular Injury. Part Ⅱ: Animal and Human Studies. Circulation 2003; 108:2034-40.
    15. Zalba G, San Jose G, Moreno MU, Fortuno MA, Fortufio A,Beaumont F J, et al. Oxidative stress in arterial hypertension. Role of NAD (P)H. Hypertension 2001; 38: 1395-9.
    16. Griendling KK. Novel NAD(P)H oxidases in the cardiovascular system. Heart. 2004; 90: 491-3.
    17. Zhou MS; Hernandez Schulman I; Pagano PJ.et al. Reduced NAD(P)H oxidase in low renin hypertension: link among angiotensin Ⅱ, atherogenesis, and blood pressure. Hypertension.2006; 47 (1):81-6
    18. Hwang J; Ing MH; Salazar A.et al. Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ Res. 2003;93 (12):1225-32
    19.牟华明,朱慧民,祝之明。去除外膜对血管内膜增殖及反应性的影响。心血管康复医学杂志。2004;13(6):532-535
    20. Maike Schmelter, Bernadette Ateghang, Simone Helmig, et al. Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. The FASEB Journal. 2006;20:1182-1184
    1. Ballermann BJ, Dardik A, Eng E,et al. Shear stress and the endothelium. Kidney Int Suppl. 1998; 67: S100-S108.
    2. Lehoux S, Tedgui A. Cellular mechanics and gene expression in blood vessels. J Biomech. 2003; 36(5): 631-643.
    3. Gloe T, Sohn HY, Meininger GA,et al. Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via integrin alpha(v)beta3. J Biol Chem. 2002; 277(26):23453-23458.
    4. Yamamoto K, Takahashi T, Asahara T, et al. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol. 2003;95(5): 2081-2088
    5. Riha GM. Lin PH. et al. Roles of hemodynamic forces in vascular cell differentiation. Annals of Biomedical Engineering, 2005: 33(6): 772-9
    6. Ando J, T Komatsuda, C Ishikawa, et al.Fluid shear stress enhanced DNA synthesis in cultured endothelial cells during repair of mechanical denudation. Biorheology 1990; 27(5):675-684
    7. Akimoto S, M Mitsumata, T Sasaguri, et al. Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21 (Sdil/ Cipl/Wafl). Circ. Res. 2000; 86(2):185-190
    8. Wasserman SM., F Mehraban, LG Komuves, et al. Gene expression profile of human endothelial cells exposed to sustained fluid shear stress. Physiol. Genomics, 2002;12(1):13-23
    9. Dancu MB. Berardi DE. Vanden Heuvel JP.et al. Asynchronous Shear Stress and Circumferential Strain Reduces Endothelial NO Synthase and Cyclooxygenase-2 but Induces Endothelin-1 Gene Expression in Endothelial Cells. Arterioscler Thromb Vasc Biol. 2004;24(11):2088-2094.
    10. Walshe TE. Ferguson G. Connell P. et al. Pulsatile flow increases the expression of eNOS, ET-1, and prostacyclin in a novel in vitro coculture model of the retinal vasculature. Investigative Ophthalmology & Visual Science. 2005;46(1):375-82.
    11. Masatsugu K. Itoh H. Chun TH. et al. Shear stress attenuates endothelin and endothelin -converting enzyme expression through oxidative stress. Regulatory Peptides. 2003;111(1-3):13-9
    12. Walford G, Loscalzo J. Nitric oxide in vascular biology. Journal Of Thrombosis And Haemostasis. 2003, 1(10): 2112-8.
    13. Wessells H; Teal TH; Engel K.et al. Fluid shear stress-induced nitric oxide production in human cavemosal endothelial cells: inhibition by hyperglycaemia. BJU International.,2006;97 (5),:1047-52
    14. Tao J; Yang Z; Wang JM. et al. Effects of fluid shear stress on eNOS mRNA expression and NO production in human endothelial progenitor cells. Cardiology . 2006;106(2):82-8
    15. Lu X; Kassab GS. Nitric oxide is significantly reduced in ex vivo porcine arteries during reverse flow because of increased superoxide production. The Journal Of Physiology .2004 ;561 (Pt 2):575-82.
    16. BC Berk, W Min, C Yan, et al. Atheroprotective mechanisms activated by fluid shear stress in endothelial cells.Drug News Perspect. 2002; 15 :133-139.
    17. SL Diamond, SG Eskin, LV McintiRe, Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 1989; 241(4897): 1483-1485.
    18. Diamond SL, Sharefkin JB, Dieffenbach C, et al. Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress. J Cell Physiol, 1990; 143(2): 364-371.
    19. Sjogren LS, Gan L, Doroudi R, et al. Fluid shear stress increases the intra-cellular storage pool of tissue-type plasminogen activator in intact human conduit vessels. thrombosis & Haemostasis. 2000;84(2):291-8.
    20. Tsukurov OI. Kwolek CJ. L'Italien GJ. et al. The response of adult human saphenous vein endothelial cells to combined pressurized pulsatile flow and cyclic strain, in vitro. Annals of Vascular Surgery. 2000;14(3):260-7
    21. Baguneid M,D Murray, HJ Salacinski, et al. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Biotechnol. Appl. Biochem. 2004; 39(Pt2):151-157,
    22. Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci. 1971; 177(46): 109-159.
    23. Zarins CK, Giddens DP, Bharadvaj BK, et al. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res.1983;53(4):502-514.
    24. Ku DN, Giddens DP, Zarins CK, et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5(3):293-302.
    25. Caroline Cheng, Dennie Tempel, Rien van Haperen,et al. Atherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of Fluid Shear Stress. Circulation.2006; 113(23): 2744-2753.
    26. O'Brien KD ,McDonald TO ,Chait A ,et al . Neovascular expression of E-selectin , intercellular adhesion molecule21 in human atherosclerosis and their relation to intimal leukocyte content. Circulation ,1996;93 (4) :672-682.
    27. Suo J. Ferrara DE. Sorescu D. et al. Hemodynamic shear stresses in mouse aortas: implications for athemgenesis.Arteriosclerosis, Thrombosis & Vascular Biology. 2007; 27(2):346-51
    28. Miao H. Hu YL. Shiu YT. et al. Effects of flow patterns on the localization and expression of VE-cadherin at vascular endothelial cell junctions: in vivo and in vitro investigations. Journal of Vascular Research. 2005; 42(1):77-89
    29. Chen Y. Chen H. Zhang W. et al. Effects of shear stress and lysopho-sphatidylcholine on adhesion molecules expression of endothelial cells. Journal of Biomedical Engineering. 2002;19(4):648-51, 672
    30. .Oswald J, Boxberger S, Jorgensen B.et al.Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004; 22(3):377-384.
    31. Davani S, Marandin A, Mersin N, et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation. 2003; 108 (suppl II): II-253 -II-258.
    32. Gloe T, HY Sohn, GA Meininger, et al.Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interactionvia integrin alpha(v)beta3. J. Biol. Chem. 2002;277(26):23453-23458
    33. Singh TM, KY Abe, T Sasaki, et al.Basic fibroblast growth factor expression precedesflow-induced arterial enlargement. J. Surg. Res. 1998; 77(2): 165-173
    34. Shi Q, S Rafii, MH Wu, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92(2):362-367
    35. Heng BC, Haider H, Sim EK, et al. Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc Res. 2004;62(1): 34-42.
    36. Hove JR, Koster RW, Forouhar AS, et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003; 421(6919): 172-177
    37. Yamamoto K. Sokabe T. Watabe T. et al.Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. American Journal of Physiology - Heart & Circulatory Physiology. 2005; 288(4):H1915-24
    38. Huang H. Nakayama Y. Qin K. et al. Differentiation from embryonic stem cells to vascular wall cells under in vitro pulsatile flow loading. Journal of Artificial Organs, 2005; 8(2): 110-8
    39. Hao Wang, Gordon M. Riha, Shaoyu Yan, et al. Shear Stress Induces Endothelial Differentiation From a Murine Embryonic Mesenchymal Progenitor Cell Line. Arterioscler Thromb Vasc Biol. 2005;25(9):1817-1823.
    40. Wang H. Yan S. Chai H.et al. Shear stress induces endothelial trans- differentiation from mouse smooth muscle cells. Biochemical & Biophysical Research Communications. 2006; 346(3):860-5
    41. Jr Gimbrone MA, Topper JN, Nagel T,et al .endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann NY Acad Sci,2000;902:230-239
    42. Chen XL, SE Varner, AS Rao, et al. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J. Biol. Chem. 2003; 278(2):703-711,
    43. Nitzan R, Hava Y, Ayelet SS, et al. Fluid shear stress and the vascular endothelium: For better and for worse. Prog Biophys Mol Biol,2003,81(3): 117-193
    44. McCormick SM, Eskin SG, McLntire LV, et al. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Nat Acad Sci, 2001.98(16):8955-8960
    45. Brooks AR, Lelkes PI, Rubanyi GM. Gene expression profiling of human aortic endothelial cells exposed to disturbed flow and steady laminar flow .Phys Genom, 2002,9(1):27-41
    46. Chien S. Molecular basis of rheological modulation of endothelial functions: importance of stress direction. Biorheology. 2006; 43(2):95-116
    47. Thi MM. Tarbell JM. Weinbaum S. et al. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a "bumper-car" model. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(47):16483-8
    48. Ma W. Sun Y. Han D.et al. Cytoskeletal response of microvessel endothelial cells to an applied stress force at the submicrometer scale studied by atomic force microscopy. Microscopy Research & Technique. 2006;69(10):784-93
    49. Inoguchi H. Tanaka T. Maehara Y. et al. The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft. Biomaterials. 2007;28(3):486-95
    50. Sato M. Ohashi T. Biorheological views of endothelial cell responses to mechanical stimuli. Biorheology. 2005;42(6):421-41
    51. Osborn EA. Rabodzey A. Dewey CF Jr.et al. Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress. American Journal of Physiology-Cell Physiology. 2006; 290(2):C444-52
    52.吴江,陈槐卿,曹慧,等.钛颗粒负荷对切应力作用下骨髓间质干细胞F-actin表达和DNA含量的影响.生物医学工程学杂志.2004;21(1):1-7
    53. Sastry, S.K., Horwitz, A.F., Integrin cytoplasmic domains:mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signaling. Current Opinion in Cell Biology 1993 ;5(5), 819-831.
    54. Liu, Y., Chen, B.P., Lu, M., et al. Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arteriosclerosis, Thrombosis, and Vascular Biology 2002;22(1), 76-81.
    55. Jalali, S., del Pozo, M.A., et al.. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proceedings of National Academic Science USA .2001;98(3), 1042-1046.
    56. Orr AW. Ginsberg MH. Shattil SJ. et al. Matrix-specific suppression of integrin activation in shear stress signaling. Molecular Biology of the Cell. 2006; 17(11):4686-97
    57. Shay-Salit A. Shushy M. Wolfovitz E. et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(14):9462-7
    58. Chen KD. Li YS. Kim M.et al. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. Journal of Biological Chemistry. 1999; 274(26): 18393-400
    59. [59] Jin ZG, Ueba H, Tanimoto T, et al. Ligand- independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circulation Research 2003;93(4),354-363.
    60. Wang Y, Miao H, Li S, et al, Interplay between integrins and FLK-1 in shear stress-induced signaling. American Journal of Physiology: Cell Physiology.2002; 283(5), C1540-C1547.
    61. Olesen SP, Clapham DE, Davies PF, Haemodynamic shear stress activates a K~+ current in vascular endothelial cells. Nature. 1988. 331(6152), 168-170.
    62. Hoger JH, Ilyin VI, Forsyth S, et al. Shear stress regulates the endothelial Kir2.1 ion channel. Proceedings of the National Academy of Sciences USA .2002;99(11), 7780-7785.
    63. Alevriadou BR, Eskin SG, McIntire LV, et al, Effect of shear stress on 86Rb+ efflux from calf pulmonary arteryendothelial cells. Annals of Biomedical Engineering 1993;21(1), 1-7.
    64. Sackin H. Stretch-activated ion channels. Kidney International 1995;48(4),1134- 1147.
    65. Yamamoto K, Korenaga R, Kamiya A, et al. Fluid shear stress activates Ca(2+) influx into human endothelial cells via P2X4 purinoceptors. Circulation Research. 2000; 87(5), 385-391.
    66. Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium . Physiological Reviews .2001;81(4), 1415-1459.
    67. Gautam M. Shen Y. Thirkill TL. et al. Flow-activated chloride channels in vascular endothelium. Shear stress sensitivity, desensitization dynamics, and physiological implications. Journal of Biological Chemistry.2006;281(48):36492-500,
    68. Ohno M, Gibbons GH, Dzau VJ, et al. Shear stress elevated endothelial cGMP. Role of a potassium channel and G protein coupling. Circulation 1993;88(1), 193-197.
    69. Gudi SR, Clark CB, Frangos JA., Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circulation Research 1996;79(4), 834-839.
    70. Frangos JA, Gudi SR, Shear stress activates reconstituted G proteins in the absence of protein receptors by changes in membrane fluidity. FASEB Journal 1997; 11, A521
    71. Gudi S, Huvar I, White CR, et al. Rapid activation of Ras by fluid flow is mediated by G{alpha}q and G{beta}{gamma} subunits of heterotrimeric G proteins in human endothelial cells. Arteriosclerosis,Thrombosis, and Vascular Biology.2003; 23(6), 994-1000.
    72. Uhlenbrock K. Huber J. Ardati A.et al. Fluid shear stress differentially regulates gpr3, gpr6, and gprl2 expression in human umbilical vein endothelial cells. Cellular Physiology & Biochemistry. 2003;13(2):75-84
    73. Chachisvilis M. Zhang YL. Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103(42): 15463-8
    74. Harada N, Masuda M, Fujiwara K. Fluid flow and osmotic stress induce tyrosine phosphorylation of an endothelial cell 128 kDa surface glycoprotein. Biochemical and Biophysical Research Communications. 1995;214(1), 69-74.
    75. Osawa M, Masuda M, Harada N, et al. Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells. European Journal of Cell Biology. 1997;72(3), 229-237.
    76. Osawa M, Masuda M, Kusano K. et al. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? Journal of Cell Biology .2002.; 158(4), 773-785.
    77. Fleming I. Fisslthaler B. Dixit M. et al. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. Journal of Cell Science. 2005; 118(Pt 18):4103-l 1
    78. Tzima E. Irani-Tehrani M. Kiosses WB. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005; 437(7057):426-31
    79. Sumpio BE. Yun S. Cordova AC. et al. MAPKs (ERK1/2, p38) and AKT can be phosphorylated by shear stress independently of platelet endothelial cell adhesion molecule-1 (CD31) in vascular endothelial cells. Journal of Biological Chemistry. 2005; 280(12):11185-91
    80. Labrador V. Chen KD. Li YS. et al. Interactions of mechanotransduction pathways . Biorheology. 2003; 40(1-3):47-52
    81. Cobb MH, Goldsmith EJ. How MAP kinases are regulated.Journal of Biological Chemistry, 1995;270(25), 14843-14846.
    82. Chang L, Karin M. Mammalian MAP kinase signaling cascades. Nature, 2001; 410,37-40.
    83. Li YS, Shyy JY, Li S, et al. The Ras-JNK pathway is involved in shear-induced gene expression.Molecular and Cellular Biology 1996;16(11), 5947-5954.
    84. Jalali S, Li YS, Sotoudeh M, et al. Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells. Arteriosclerosis, Thrombosis and Vascular Biology 1998;18(2), 227-234.
    85. Go YM, Boo YC, Park H. et al .Protein kinase B/Akt activates c-Jun NH(2) -terminal kinase by increasing NO production in response to shear stress. Journal of Applied Physiology 2001; 91(4), 1574-1581.
    86. Yan, C, Takahashi, M., Okuda, M. et al. Fluid shear stress stimulates big mitogen-activated protein kinase 1(BMK1) activity in endothelial cells. Dependence on tyrosine kinases and intracellular calcium. Journal of Biological Chemistry. 1999; 274(1), 143-150.
    87. White CR. Stevens HY. Haidekker M. et al.Temporal gradients in shear, but not spatial gradients, stimulate ERK1/2 activation in human endothelial cells. American Journal of Physiology - Heart & Circulatory Physiology. 2005;289(6):H2350-5
    88. Cheng JS. Yuan YJ. Comparison of JNK (c-Jun N-terminal kinase)-like MAPK (mitogen-activated protein kinase) phosphorylation between immobilized cultures and Couette-type shear reactor cultures of Taxus cuspidata (Japanese yew) cells. Biotechnology & Applied Biochemistry.2006; 44(Pt 2):109-17
    89. Kadohama T. Akasaka N. Nishimura K.et al. p38 Mitogen-activated protein kinase activation in endothelial cell is implicated in cell alignment and elongation induced by fluid shear stress. Endothelium: Journal of Endothelial Cell Research. 2006;13(1):43-50
    90. Idris I., Gray S., Donnelly R. Protein kinase C activation: isozyme-specific effects on metabolism and cardiovascular complications in diabetes. Diabetologia 2001;44(6),659-673.
    91. Ni CW, Wang DL, Lien SC, et al. Activation of PKC-epsilon and ERK1/2 participates in shear-induced endothelial MCP-1 expression that is repressed by nitric oxide. Journal of Cellular Physiology 2003;195(3), 428-434.
    92. Traub O, Monia BP, Dean NM.et al. PKC-epsilon is required for mechano-sensitive activation of ERK1/2 in endothelial cells. Journal of Biological Chemistry 1997.;272(50),31251-31257.
    93. Ishida T, Peterson TE, Kovach NL, et al. MAP kinase activation by flow in endothelial cells. Role of beta-1 integrins and tyrosine kinases. Circulation Research. 1996;79(2),310-316.
    94. Moon SY, Zheng Y, Rho GTPase-activating proteins in cell regulation. Trends in Cell Biology . 2003;13(1), 13-22.
    95. Tzima E, Del Pozo MA, Kiosses WB. et al. Activation of Racl by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO Journal .2002;21(24), 6791-6800.
    96. Tzima E, Kiosses WB, Del Pozo MA, et al. Localized cdc42 activation, detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid shear stress. Journal of Biological Chemistry.2003; 278(33), 31020-31023.
    97. Boo YC, Sorescu G, Boyd N, et al. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A. Journal of Biological Chemistry . 2002. 277(5),3388—3396.
    98. Resnick N. Collins T. Atkinson W. et al.Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proceedings of the National Academy of Sciences of the United States of America. 1993; 90 (10): 4591-5
    99. Shyy JY, Lin MC, Han J, et al. The cis-acting phorbol ester "12-O-tetradecanoyl-phorbol 13-acetate"-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proceedings of the National Academy of Sciences USA 1995;92(17), 8069-8073.
    100. Khachigian LM, Resnick N, Gimbrone Jr MA, et al. Nuclear factor-kappa B interacts functionally with the platelet derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. Journal of Clinical Investigation 1995.;96(2), 1169-1175.
    101. Khachigian LM, Anderson KR, Halnon NJ, et al. Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter.Arteriosclerosis, Thrombosis, and Vascular Biology . 1997; 17 (10),2280-2286.
    102. Lin MC, Almus-Jacobs F, Chen HH, et al. Shear stress induction of the tissue factor gene. Journal of Clinical Investigation .1997.;99(4), 737-744.
    103. Miyagi M. Miwa Y. Takahashi-Yanaga F.et al. Activator protein-1 mediates shear stress-induced prostaglandin d synthase gene expression in vascular endothelial cells. Arteriosclerosis, Thrombosis & Vascular Biology. 2005;25(5):970-5
    104. Miyakawa AA. de Lourdes Junqueira M. Krieger JE. Identification of two novel shear stress responsive elements in rat angiotensin I converting enzyme promoter. Physiological Genomics. 2004; 17(2):107-13
    105. Abumiya T. Sasaguri T. Taba Y.et al. Shear stress induces expression of vascular endothelial growth factor receptor Flk-1/KDR through the CT-rich Spl binding site. Arteriosclerosis, Thrombosis & Vascular Biology. 2002;22(6):907-13
    106. Huddleson JP. Srinivasan S. Ahmad N.et al. Fluid shear stress induces endothelial KLF2 gene expression through a defined promoter region. Biological Chemistry. 2004;385(8):723-9
    107. Fisslthaler B. Boengler K. Fleming I. et al. Identification of a cis-element regulating transcriptional activity in response to fluid shear stress in bovine aortic endothelial cells. Endothelium: Journal of Endothelial Cell Research. 2003;10(4-5):267-75
    108. Houston P, White BP, Campbell CJ, et al. Delivery and expression of fluid shear stress- inducible promoters to the vessel wall: Application for cardiovascular gene therapy. Hum Gene Ther.1999:10(18):3031-3044
    109. Hoerstrup SP, G Zund, R Sodian, et al. Tissue engineering of small caliber vascular grafts. Eur. J. Cardiothorac. Surg. 2001 ;20(1): 164-169,.
    110. Kaushal S, GE Amiel, KJ Guleserian OM. et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med. 2001;7(9):1035-1040
    111. MM Bori, ST John, IB Abdul, A model for shear stress sensing and transmission in vascular endothelial cells, Biophys. J. 2003;84(6):4087-4101.
    112. Gulbins H. Pritisanac A. Petzold R.et al. A low-flow adaptation phase improves shear-stress resistance of artificially seeded endothelial cells. Thoracic & Cardiovascular Surgeon. 2005;53(2):96-102
    113. Inoguchi H. Tanaka T. Maehara Y.et al. The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft. Biomaterials. 2007;28(3):486-95
    114. Baguneid M. Murray D. Salacinski HJ. et al. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Biotechnology & Applied Biochemistry. 2004;39(Pt 2):151-7
    115. Cebotari S. Mertsching H. Kallenbach K.et al. Construction of autologous human heart valves based on an acellular allograft matrix. Circulation. 2002; 106 (12 Suppl 1):I63-I68
    116. Sutherland FW. Perry TE. Yu Y. et al. From stem cells to viable autologous semilunar heart valve. Circulation 2005; 111(21): 2783-91
    117. Engelmayr GC Jr. Sales VL. Mayer JE Jr. et al. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissues. Biomaterials. 2006;27(36):6083-95
    118. Imberti B, D Seliktar, RM Nerem, et al.The response of endothelial cells to fluid shear stress using a co-culture model of the arterial wall. Endothelium,2002; 9(1):11-23
    119. Williams C, Wick TM. Endothelial cell-smooth muscle cell co-culture in a perfusion bioreactor system. Annals of Biomedical Engineering. 2005;33(7):920-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700