利用辐射能信号优化锅炉主蒸汽温度控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型火力发电厂锅炉主蒸汽温度控制是电厂热工自动控制系统的重要组成部分。由于主蒸汽温度大迟延、大惯性等特点,采用传统PID控制器的主蒸汽温度控制系统的品质难以满足电厂安全、经济运行的需要。尽管国内外多位专家、学者多方研究对其进行优化,但局限于以锅侧参数信号为反馈信息变参数PID控制器仍然解决不了大迟延的问题。
     通过锅炉燃烧可视化检测技术获取的反映实时炉膛燃烧总能量的辐射能信号,可以引入到主蒸汽温度控制回路中,提前调节减温水量,从而有效的控制主蒸汽温度,从根本上解决了大迟延问题。基于这一思想,本课题在两个电厂各一台300MW机组锅炉上装设了炉内燃烧三维可视化检测系统,获取炉膛燃烧实时的辐射能信号。通过现场变工况动态试验,探寻了辐射能信号的变化规律,揭示水冷壁、过热器等与辐射能之间的静态关系。
     在现场试验积累的大量数据基础上,利用Matlab工具箱对主蒸汽温度被控对象进行模型辨识以及数值仿真。动态仿真结果表明辐射能信号响应时间快、超调量小;传统的热量信号初调易超调且响应时间慢。因此,融合辐射能信号与传统的热量信号的主蒸汽温度控制策略将获得较好的控制效果。
     将快速反映的炉侧辐射能信号与稳定性的锅侧热量信号进行联合控制的新策略应用在两台300MW机组锅炉主蒸汽温度控制系统中,通过各项对比性现场试验证明,引入辐射能信号的锅炉主蒸汽温度控制系统的品质得到了较大的提高:对应相同的大负荷扰动下主蒸汽温度波动值由±10℃减少到±3℃,减温水流量波动值也大幅减少。
The boiler main steam temperature control system in large-scale coal-fired power plant plays a key role in improving the economic efficiency and ensuring the safety of the unit operation. The main steam temperature can be seen as the controlled object of multicapacity distribution parameters, in which the over high temperature of flue gas is the main reason for overheating of the superheated steam. The dynamic test of steam temperature and the analysis on power plant operation show that the superheated steam temperature delays little under the flue gas disturbances, while delays great under the disturbances caused by the spray water quantity. This characteristic will make the control of the overheating steam delayed, and induce it difficult to maintain the main steam temperature steady in operation by using the usual regulate method. Many domestic and foreign researchers introduced the intelligent control technology into the control of the boiler steam temperature, including predict control technology, adaptive technology, fuzzy control technology, neural network technology, genetic algorithm and so on, with a view to resolve the problems encountered in PID control system. However, it is difficult to satisfy the main steam temperature control, whether the traditional PID control system or the control strategy blended with advanced intelligence technology. That's because these systems still use the heat signal to reflect the variety of fuel into the boiler, since the heat signal essentially belongs to the boiler steam side parameters, the characteristics of the heat transfer resistance, delay and lag still restrict the respond speed of the heat signal.
     It can make the lag weak by detecting the furnace combustion situation and temperature distribution to adjust spray water quantity in advance, so as to control main steam temperature effectively. The technology to monitor burning temperature distribution by flame radiation image, can detect furnace temperature distribution in real-time. Import furnace side signal to the main steam temperature control circuit, then adjust spray water quantity in advance, so as to control the superheating steam temperature effectively. The subject adopts the solution based on visual furnace combustion 3D temperature pattern, to get real-time furnace combustion information and temperature distribution, so as to extract furnace combustion radiation energy signal. Based on dynamic test on variable work conditions, the relation between the radiation energy signal and unit's main operating parameters is analyzed to explore the change regulation of radiation energy signal during the thermal process. Through studying the heat absorption capacity of each heat transfer surface, the change rule between the heat release in furnace and the heat absorbing by heat transfer surface, as well as the static relation between radiation energy and heat transfer both in furnace and flue are explored.
     Contraposing lag problem in the traditional PID control system of the main steam temperature, and combining with the result of variable work condition tests and the analysis of heat transfer law, the paper put forward a new control tragedy which combined with the steady heat signals of boiler and furnace side radiation energy signal with rapid response. Make the radiation energy signals plus steam flow correction circuit signals as the original leading steam temperature control signals, and to form the new leading control signals of main control circuit by multiplied with the heat signal. Under the guidance of the qualitative analysis conclusion, the model identification and numerical simulation are realized by Matlab toolbox about experimental data which is gathered under certain conditions. Furthermore, two different main steam temperature control strategies depending on whether the furnace radiation energy signals imported or not are analyzed and compared, and a preferable simulation control effect is acquired.
     The main steam temperature optimization and control strategy based on radiation energy signals by importing it to the main steam control circuit have been carried out. The main steam temperature adjustment quality, with in-situ expriments in two 300MW boiler, is improved and the change range is from±10°C to±3°C by adjusting their weights.
引文
[1] 查明.基于辐射能信号的过热汽温建模仿真的试验研究:[硕士thesis].热能工程,华中科技大学,2005.
    [2] 赵祥生.热力过程自动化.北京:中国电力出版社,1996.
    [3] 刘敏,张智,吴飞君,et al.一台660MW单元机组主蒸汽温度控制系统的设计与调试.现代电力.2006,23(2):60-63.
    [4] 王沛然.主汽温新型控制系统设计与研究:[硕士thesis].控制工程,华北电力大学,2005.
    [5] 黄孝彬.火电厂控制系统故障检测与诊断的研究:[博士thesis].热能工程,华北电力大学,2004.
    [6] Rolf Isermarm, Fault Diagnosisi of Machines Via. Parameter Estimation and Knowledge Processing, Tutorial Paper, Automatical, 1993;
    [7] Liang Xingang, Guo Zengyuan, Liu Yunlong, et al, Ground Simulation of the Flow and Heat Transfer Under Microgravity, Sci. China(Series A), Vol. 27, 1997, 27(11): 1009-1013.
    [8] 张魏,参数自校正模糊-PI控制.化工自动化及仪表,2000(1):58-60.
    [9] 李少远,陈增强,等.智能控制的新进展.控制与决策,2000,15(1):1-5
    [10] 杜永春,周君芬.亚临界机组主汽温控制的困难及其对策.浙江电力,1996,5(5):10-13.
    [11] 林永君.基于复杂机理模型的过程预测控制研究:[博士thesis].热能工程,华北电力大学,2001.
    [12] Jin, X., Sun, J., Liu, J., et al. Design of adaptive internal model for main steam temperature control system based on single neuron, in: Sun, J., editor. Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on: vol. 4, 2004. 3560-3564 Vol. 3564.
    [13] Zhi-Ming, Q., Luan-Ying, Z., Jun-Jie, G., et al. Single-neuron PSD adaptive control based-on Smith predictor for the main steam temperature, in: Luan-Ying, Z., editor. Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on: vol. 2, 2004. 1088-1092 vol. 1082.
    [14] Kalogirou, S. A. Artificial intelligence for the modeling and control of combustion processes: a review. Progress in Energy and Combustion Science. 2003, 29(6): 515-566.
    [15] Kocaarslan, I., Cam, E. An adaptive control application in a large thermal combined power plant. Energy Conversion and Management. 2007, 48(1): 174-183.
    [16] Docquier, N., Candel, S. Combustion control and sensors: a review. Progress in Energy and Combustion Science. 2002, 28(2): 107-150.
    [17] Al-Alawi, A., M Al-Alawi, S., M Islam, S. Predictive control of an integrated PV-diesel water and power supply system using an artificial neural network. Renewable Energy. 2007, 32(8): 1426-1439.
    [18] Vallero, D. A. Engineering Control Concepts. in. Fundamentals of Air Pollution (Fourth Edition), Burlington: Academic Press; 2007.
    [19] Zhang, L., Zhang, Y., Wang, D., et al. Multiple Models Generalized Predictive Control for Superheated Steam Temperature Based On MLD Model. in: Zhang, Y., editor. Automation and Logistics, 2007 IEEE International Conference on: 2007. 2740-2743.
    [20] Qigang, G., Dongfeng, W., Pu, H., et al. Multi-model adaptive predictive control for steam temperature system of Circulating Fluidized Bed Boiler. in: Dongfeng, W., editor. Systems, Man and Cybernetics, 2003. IEEE International Conference on: vol. 1, 2003. 648-653 vol. 641.
    [21] Matsumura, S., Ogata, K., Fujii, S., et al. Adaptive control for the steam temperature of thermal power plants, in: Ogata, K., editor. Control Applications, 1998. Proceedings of the 1998 IEEE International Conference on: vol. 2, 1998. 1105-1109.
    [22] Sato, Y., Nomura, M., Matsumoto, H., et al. Steam Temperature Prediction Control for Thermal Power Plant. IEEE Transactions on Power Apparatus and Systems. 1984, PAS-103(9): 2382-2387.
    [23] 田涛.自适应预估控制及其在火电厂DCS中的应用:[博士thesis].热能工程, 华北电力大学,2000.
    [24] 荣雅君,窦春霞,袁石文.过热汽温模糊神经网络预测控制器的设计.中国电机工程学报.2003,23(1):177-180.
    [25] 朱丽玲.基于自抗扰技术的主汽温控制策略研究:[硕士thesis].控制理论与控制工程,华北电力大学,2005.
    [26] Xiang-Jie, L., Ji-Zhen, L. Neuro-Fuzzy Generalized Predictive Control of Boiler Steam Temperature. in: Ji-Zhen, L., editor. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on: vol. 2, 2006. 6531-6535.
    [27] Changbo, X., Congcong, L., Zhenfu, B., et al. PID Self-tuning Immune Fuzzy Control of Steam Temperature Control System in Fossil-fired Power Plant. in: Congcong, L., editor. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on: vol. 1, 2006. 3973-3977.
    [28] Xiu-Zhang, J., Gen-Yuan, W., Yao-Quan, Y. Multi-IMC adaptive control system for main steam temperature in the power plant, in: Gen-Yuan, W., editor. Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on: vol. 2, 2005. 676-681 Vol. 672.
    [29] 张樱.火电厂汽温模糊控制:[硕士thesis].热能工程,华北电力大学,2000.
    [30] 赵君,仇林庆,关硕.模糊免疫PID在主汽温控制系统中的应用.东北电力大学学报.2006,26(4):75-79.
    [31] 张丽香,于晋春,谢克明.模糊自适应导前微分方式的过热汽温控制系统.动力工程.2002,22(4):1893-1896.
    [32] 张自华.模糊预测控制在热工过程控制中的研究与应用:[硕士thesis].控制理论与控制工程,华北电力大学,2006.
    [33] 刘长良,刘吉臻,牛玉广,et al.一种模糊控制算法在主汽温控制系统中的应用上海大学学报(自然科学版)2001,7(5):388-391.
    [34] 杨振勇.模糊控制器的优化及其在电厂热工控制中的应用:[硕士thesis].热能工程,华北电力大学,2002.
    [35] 王国玉,梅华,韩璞,et al.主汽温系统模糊自适应预测函数控制.中国电机工 程学报.2003,23(10):130-135.
    [36] 杨苹,许礼尉.聚焦式模糊变结构控制及其在主汽温控制中的应用.控制理论与应用.2007,24(1):137-142.
    [37] 杨延西,刘丁,高异.火电厂锅炉主汽温模糊免疫PID-Smith预估控制.系统仿真学报.2005,17(11):2756-2758.
    [38] Eliasi, H., Davilu, H., Menhaj, M. B. Adaptive fuzzy model based predictive control of nuclear steam generators. Nuclear Engineering and Design. 2007, 237(6): 668-676.
    [39] Baus, Z., Intelligent control of power plants and processes, Journal of Electrical Engineering, 1997, 48(7-8): 214-218.
    [40] Guillermo J. Siva, Aniruddha Datta, et al., Robust Control Design Using the PID Controller, Proeedings of IEE, 2002, Vol. 167, 1313-1318.
    [41] Ogden-Swifg, A., Applying new control technologies to improve process profit, Measurement and Control, 1996, 29(8): 223-236.
    [42] David St. and Scott Samuelsen, Robust Optimal Control of a Natural Gas-Fired Burner for the Control of Oxides of Nitrogen (NO). Combusi. Sic. and Tech, Vol. 128, 1997: 1-21.
    [43] J. Darlington, C. C. Pantelides, B. Rustem, at el., An Algorithm For Constrained Nonlinear Optimization Under Uncertainty. Automatical. Vol. 35, 1999.
    [44] Rolf Isermann, Fault Diagnosis of Machines Via. Parameter Estimation and Knowledge Processing, Tutorial Paper, Automatical, 1993.
    [45] 丁轲轲.神经网络模糊控制在电厂主汽温系统中的应用研究.热力发电.2003,(12):38-42.
    [46] 潘笑,汪璐,邓培敏,et al.神经网络PID在直流炉汽温控制中的应用.微计算机信息.2007,23(6):34-36.
    [47] 黄宇,韩攻,王东风,et al.基于BP神经网络整定的PID控制在过热汽温系统中的应用.仪器仪表学报.2006,26(7):1180-1181.
    [48] 金秀章.热工大迟延过程的内模控制算法及应用研究:[博士thesis].热能工程,华北电力大学,2005.
    [49] 冯晓露.智能控制在电厂主蒸汽温度控制系统中的应用研究:[博士thesis].热能工程,浙江大学,2006.
    [50] 王东风,韩璞.基于免疫遗传算法优化的汽温系统变参数PID控制.中国电机工程学报.2003,23(9):212-217.
    [51] 赵亮.遗传算法在热工过程建模与优化控制中的应用研究:[硕士thesis].热能工程,东南大学,2006.
    [52] 王鑫鑫.热力系统模拟进化新技术研究:[博士thesis].清华大学热能工程系,清华大学,2003.
    [53] 马涛,徐向东,王鑫鑫.基于辐射能检测的智能燃烧进化优化系统研究.热能动力工程.2004,19(3):281-284.
    [54] 李阳春,卫成业,罗志浩,蒋静坪.以炉膛辐射能信号为中间被调量的串级模糊调节策略研究.中国电机工程学报.2001,21(6):80-83,89.
    [55] 于达仁,范轶,徐志强.炉膛辐射能信号和热量信号的信息融合方法.中国电机工程学报.2003,23(4):158-161,171.
    [56] 周怀春.炉内火焰可视化检测原理与技术.北京:科学出版社,2005.
    [57] 张师帅,周怀春,黄勇理,et al.采用辐射能反馈信号的火电单元机组负荷控制系统仿真研究.中国电机工程学报.2001,21(2):85-88.
    [58] 张师帅,周怀春,彭敏,et al.基于炉膛辐射能信号的电站燃煤机组燃烧控制研究.中国电机工程学报.2002,22(11):156-160.
    [59] 张师帅,周怀春,彭敏,et al.基于火焰图像处理的炉膛辐射能信号的检测及分析.热能动力工程.2002,17(98):166-170.
    [60] 张师帅,周怀春,贾涛,et al.基于炉膛辐射能信号的主汽压特性及仿真研究.华中科技大学学报(自然科学版).2002,30(2):54-56.
    [61] 吴吕斌,罗自学,杨超,et al.炉内燃烧三维可视化诊断及机组负荷控制新技术.热力发电.2004,(12):55-58.
    [62] 吴吕斌,罗自学,杨超,et al.300MW锅炉燃烧三维温度场可视化监测系统设计及运行分析.中国电力.2004,37(10):62-65.
    [63] 罗自学,杨超,周怀春.炉膛辐射能信号的提取机理及其应用研究.动力工程.2005,25(3):374-377.
    [64] 罗自学,杨超,周怀春.燃烧三维温度场及辐射能信号特性的分析.电站系统工程.2005,21(2):18-20.
    [65] 罗自学.引入辐射能信号的锅炉燃烧检测及优化控制:[博士thesis].热能工程,华中科技大学,2007.
    [66] 罗自学,梁培露,周怀春,et al.引入辐射能信号的锅炉氧量寻优控制研究.中国电机工程学报.2006,26(23):100-103.
    [67] 周赟,周怀春.300 MW燃煤机组辐射能信号建模研究.湖北电力.2005,29(3):22-25.
    [68] 周赟.300MW燃煤机组辐射能信号检测、分析与建模:[硕士thesis].热能工程,华中科技大学,2005.
    [69] 夏猛.基于辐射能信号的电站锅炉燃烧控制系统研究:[硕士thesis].热能工程,华中科技大学,2005.
    [70] 王淅芬.基于炉内温度场可视化的燃烧优化控制方法研究:[博士thesis].热能工程,华中科技大学,2005.
    [71] 初云涛,周怀春.基于炉内三维燃烧检测的蒸发系统分布参数建模.中国电机工程学报.2006,26(9):20-25.
    [72] Chu, Y. -t., Lou, C., Cheng, Q., et al. Distributed parameter modeling and simulation for the evaporation system of a controlled circulation boiler based on 3-D combustion monitoring. Applied Thermal Engineering. 2008, 28(2-3): 164-177.
    [73] 查明,周怀春.基于辐射能信号的过热汽温控制系统优化.华中电力.2005,18(3):1-4.
    [74] 徐桦.基于辐射能的主汽温模型辨识与模糊PID控制:[硕士thesis].热能工程,华中科技大学,2007.
    [75] 黄本元,罗自学,胡光明,et al.基于炉膛辐射能信号的主汽温控制试验研究.电站系统工程.2006,22(5):21-23.
    [76] 300MW火力发电机组丛书,第四分册.计算机控制系统,高伟主编,中国电力 出版社,2000.08.
    [77] R. G. Hammaker, et al. An evalution of internal boiler components and gases using a high temperature lens. PROC. of SPIE, 1996, Vol. 2766: 74-82.
    [78] H. C. Van de Hulst. Light Scattering by Small Particles. New York: Wiley, 1957.
    [79] 甄成刚.基于图像处理技术的炉膛火焰检测方法研究[博士thesis].热能工程,华北电力大学,2004.
    [80] 周怀春,娄新生,等.单色火焰图像处理技术在锅炉燃烧监控中的应用.电力系统自动化,1996,20(10):18-22.
    [81] 贾涛.煤粉燃烧火焰图像处理系统装置研究:[硕士thesis].热能工程,华中科技大学,2002.
    [82] 李小波.辐射能信号与锅内吸热量关系的实验分析及其应用:[硕士thesis].热能工程,华中科技大学,2006.
    [83] 唐辉.基于辐射能的过热汽温预测控制研究:[硕士thesis].热能工程,华中科技大学,2007.
    [84] 石兆三,模糊控制在热力过程控制中的应用.中国电力,1995,28(4):46-51
    [85] 朱志坚.过热汽温的模糊控制.湖南电力,1998,6:16-19.
    [86] 张小桃,倪维斗等,主元分析与现场数据的过热汽温动态建模研究.中国机电工程学报,2005,25(5):131-135.
    [87] 范永胜,徐治皋,陈来久.基于动态特性热力分析的锅炉过热汽温自适应模糊控制系统研究.中国电机工程学报,1997:23-28.
    [88] 章臣樾.锅炉动态特性及其数学模型.北京:水利电力出版社,1987.
    [89] 陈来九等,热工过程自动调节原理和应用.北京:水利电力出版社,1982.
    [90] 薛志斌,李平.先进控制策略在电厂热工过程控制中的应用.青海电力,2000,(1):37-46.
    [91] Chia-Ju Wu, Ching-Huo Huang, A hybrid method for parameter turningof PID controllers, Journal of the Franklin Institutc, 1997, 334B(4): 547-562.
    [92] 唐永哲,PID控制系统的鲁棒性研究.工业仪表与自动化装置,1996.4:7-10.
    [93] 林金栋.自动调节原理及系统.北京:中国电力出版社,1996.
    [94] The International Association for the Properties of Water and Steam (IAPWS). Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. Erlangen, Germany. 1997.
    [95] The International Association for the Properties of Water and Steam (IAPWS). Supplementary Release on Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h s) to the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. Gaithersburg, Maryland, USA. 2001.
    [96] The International Association for the Properties of Water and Steam (IAPWS). Supplementary Release on Backward Equations for the Functions T(p, h), v(p, h) and T(p, s), v(p, s) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. Vejle, Denmark. 2003.
    [97] Palmor Z J. Stability Properties of Smith Dead Time Compensator Controller [J]. Int. J. Control, 1980, 32(6): 937-949.
    [98] 乐建兵.燃烧控制系统的辨识技术研究及其控制系统仿真:[硕士thesis].热能工程,华中科技大学,2007.
    [99] 李言俊,张科编著.系统辨识理论及其应用.北京:国防工业出版社 2003,5.
    [100] 任锦堂,系统辨识.上海交大出版社,1996年4月.
    [101] 崇智,萧德云,过程辨识.清华大学出版社,1991.
    [102] Zadeh, L. A. From Circuit Theory to System Theory. Proc. TRE, Vol. 50.
    [103] 曾广达,系统辨识与仿真.电子科技大学出版社,1995.
    [104] 夏天长,(美),系统辨识.清华大学出版社,1990年.
    [105] Akaike, H., New Look at the Statistical Identification Mode, IEEE Trans. Auto. Control, Vol. 19, 1974: 716-723.
    [106] Lee Ying Chin, Hwang Chyi, Shih Yen Ping, A Combined Approach to Fuzzy Model Identification, IEEE Transactions on System, Man. and Cybemetics, Vol. 24(5), 1994.
    [107] Schoen P., Dynamic Modeling and Control of Integrated Coal Gasification Combined Cycle Units, Delft: Delft University of Technology, 1993.
    [108] 张箭.基于BP网络的锅炉过热汽温系统动态特性的辨识.电工技术学报,1997,12(5):57-60.
    [109] 鲁宏伟,吴雅,杨叔子.快速采样数据建模的最小二乘算法[J].华中理工大学学报,1994,22(7):44-48.
    [110] Mohand Mokhtari, Michel Marie. Engineering Applications of MATLAB6.5 and SIMULINK 3, 2002: 1-430
    [111] W. P. Linak and J. O. L Wendt. Toxic Metal Emissions from Incineration, Mechanisms and Control Program Energy. Combustion Science & Technology, 1993, 124(3): 145-185.
    [112] A. Williams. Modeling of Coal Combustion in Low NO_x. Journal of Flames and Fuel, 1994, 73(7): 1006-1016.
    [113] X. Querol, J. L. Ferandez-Turie and A. Lopez-Soler. Trace Element in Coal and Their Behavior During Combustion in a Large Power Station. Fuel, 1995, 74(3): 331-343.
    [114] D. S. John and S. Samuelsen. Robust Optimal Control of a Natural Gas-Fired Burner for the Control of Oxides of Nitrogen. Combustion Science & Technology, 1997, 128(4): 1-21.
    [115] Astrom K J, et al. Towards Intelligent PID Control [J]. Automatica, 1992, 28(1): 1-9.
    [116] G. P. Liu. Daley Optimal-tuning PID Control for Industrial Systems [J]. Control Engineering Practice, 2001(9): 1185-1194.
    [117] Palmor Z J. Stability Properties of Smith Dead Time Compensator Controller [J]. Int. J. Control, 1980, 32(6): 937-949.
    [118] Watanabe K. A Process-model Control for Linear System with Delay [J]. IEEE. Trans. AC-26, 1981(6): 1261-1269.
    [119] Watanabe K, Ishiyama Y. Modified Smith Predictor Control for Multivariable Systems with Delays and Unmeasurable Step Disturbances [J]. Int. J. Control, 1983, 37: 959-973.
    [120] Alberto Leva, Claudio Maffezzoni, et al. Validation of Drum Boiler Models through Complete Dynamic Tests. Control Engineering Practice, 1999(7): 11-26.
    [121] P. H. Jenkins and A. H. Williams. Self-optimizing Combustion Control of an Oil-fired Power Station Boiler. IEE Proceedings, 1981, 128(2): 843-849.
    [122] N. W. Rees, P. T. Nicholson, et al. Modelling, Simulation and Control of Boiler-turbine Plant. IFAC Modelling &Control of Electric Power Plant, Italy, 1983.
    [123] H. Nakamura and M. Uchida. Optimal Regulation for Thermal Power Plants. IEEE Control Systems Magazine, 1989(111): 511-520.
    [124] E. Cheres. Small and Medium Size Drum Boiler Models Suitable for Long Time Dynamic Response. IEEE Transactions on Energy Conversion. 1990, 5(4): 686-692.
    [125] Z. Y. Yang, Z. J. Shen, et al. Model Reference Adaptive Prediction Control of Steam Temperature Process in Power Plant. IFAC 11~(th) Triennial World Congress, Tallinn, Estonia, USSR, 1990, 6: 55-59.
    [126] U. Holmberg, S. Valentinotti, et al. An identification-for-control procedure with robust performance. Control Engineering Practice. 2000(8): 1107-1117.
    [127] R. Kulessky, G. Nudelman, et al. Thermal Power Plant Dynamics Identification. Proceeding of the American Control Conference, San Diego, California, 1999: 843-847.
    [128] G. Irwin. Neural Network Modeling of A 200MW Boiler System. IEE Proceedings Control Theory Application, 1995, 142(6): 529-536.
    [129] 翁思义.自动控制系统计算机仿真与辅助设计,西安交通大学出版社,1987.
    [130] Kurihara et al. A combustion diagnosis method for pulverized coal boilers using flame recognition technology. IEEE Trans. On Energy Conversion. 1986, 1(2): 99-103.
    [131] S. Collins. Advanced flame monitors take on combustion control. Power. 1993, 10: 75-77.
    [132] Correia D P, Ferrao P, Calderira-Pires A. Advanced 3D emission tomography flame temperature sensor. Combustion Science and Technology. 2001, 16(3): 1-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700