温度敏感性生物降解阴道凝胶的合成、性能及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阴道凝胶作为各种药物的载体在过去几十年中一直是研究热点,其包覆的各种抗艾滋病病毒的药物、避孕药物及阴道杀菌剂等取得的科研成果推动了女性生理、生殖安全的进步及生物医用材料学科的发展。本论文计划合成一种新型的可降解控释材料,即通过先“臂”后“核”法,合成以温敏性聚乙丙交酯-单甲氧基聚乙二醇二元嵌段共聚物(PLGA-mPEG)为臂和以羧基化的多元醇为核的多臂星形温敏性载药材料。这种多臂嵌段共聚物主要有以下特点:温敏性、两亲性、生物相容性、降解性可控、结构上为多臂星形及其水溶胶粘度低。采用溶液共混法将避孕药复方雌、孕激素和吲哚美辛载入高聚物载体,制备的载药系统作为阴道节育喷剂,其在室温时为液相,可以自由流动,在体温时成凝胶状,不能流动。这种喷剂可以制成小剂量包装,在妇女月经完后将一个包装喷入阴道中,在人体体温环境下迅速转变成网状通透凝胶附着于阴道壁上,缓慢、可控制地释放出雌孕激素和吲哚美辛,起到节育作用。同时,在30天左右的时间内,这种附着于阴道上的可降解凝胶缓慢降解完全,在妇女月经时间内不再有雌孕激素释放,直到月经完毕后再次喷入本品。
     本论文的主要研究内容与研究结果如下:
     1.采用先“臂”后“核”法设计合成了一系列具有不同臂数、PLGA/mPEG嵌段比例、mPEG嵌段长度及丙交酯/乙交酯单元摩尔比例(LA/GA)的星形嵌段共聚物。采用红外光谱、凝胶渗透色谱与核磁共振氢谱分析了这些共聚物的分子结构、分子量及其分布。
     2.采用静态流变曲线研究了确定溶胶-凝胶转变过程中各个转变温度的方法;并结合试管倒转法研究了一系列具有不同臂数、PLGA/mPEG嵌段比例、mPEG嵌段长度及LA/GA单元摩尔比例的星形嵌段共聚物浓溶液随温度改变时的溶胶-凝胶转变规律;同时探讨了亲水性添加剂对共聚物溶液溶胶-凝胶转变规律的影响。研究表明,PLGA/mPEG嵌段质量比例是决定星形共聚物是否具有溶胶-凝胶转变性能的最关键因素,其比例应该在2-3之间;mPEG嵌段长度是决定溶胶-凝胶转变温度最重要因素,要求在体温下能发生凝胶化转变一般需要选择的mPEG分子量为550道尔顿,可通过选择mPEG嵌段分子量来“粗调”溶胶-凝胶转变温度;再通过选择PLGA/mPEG嵌段质量比例、臂数与LA/GA摩尔比来“微调”溶胶-凝胶转变温度。
     3.采用核磁共振氢谱与电子透射电镜研究了核壳胶束的形成与形态,星形共聚物分子在浓度为1wt%的稀溶液中自组装形成30-50nm的核壳胶束;采用动态光散射进一步分析了胶束粒径及其分布随共聚物稀溶液浓度与温度改变的变化规律,探讨了胶束化与凝胶化机制;利用荧光染料-紫外光谱法分析了共聚物稀溶液临界胶束浓度的变化规律。我们发现临界凝胶浓度(CGC)远远大于临界胶束浓度(CMC),基于此,我们认为星形嵌段共聚物水溶液物理凝胶化过程为:共聚物先自组装形成核壳胶束,然后通过胶束间的互相堆积引起溶胶-凝胶转变,PLGA嵌段间的疏水相互作用是其内在的驱动力。
     4.采用称重法、凝胶渗透色谱法及核磁共振氢谱法分析了星形嵌段共聚物凝胶在体外阴道模拟液及SD大鼠颈部皮下在不同降解时间下的质量损失变化、分子量变化与嵌段组成变化;同时比较与分析了体外与体内降解规律的差异。研究发现,对于相同分子量及嵌段组成的星形四臂嵌段共聚物水凝胶, LA/GA摩尔比例越小,其在体外模拟阴道液及SD大鼠体内降解质量损失越大及分子量减小得越快,同时该水凝胶在体内的降解速率快于体外降解速率;通过各组成(EG单元、GA单元与LA单元)的相对质量分数随降解时间的变化规律,将星形共聚物的降解过程分为三个阶段:第一个阶段主要为与mPEG嵌段相连的酯键的水解,第二阶段主要为与mPEG嵌段相连的酯键及PLGA嵌段中GA单元的水解,最后一个阶段主要为PLGA嵌段中LA单元的水解。
     5.建立了同时检测三种药物含量(雌激素炔雌醇、孕激素孕二烯酮与消炎药吲哚美辛)的高效液相色谱条件:混合流动相甲醇/水最佳比例为53/47,吲哚美辛(IMC)、孕二烯酮(GSD)及炔雌醇(EE)的淋出时间依次为11.18min,13.11min和15.57min;通过对模拟阴道释放液中药物含量的测试,发现载药星形共聚物凝胶中LA/GA摩尔比值越小,三种药物的累积释放分数越大,说明各药物的释放由降解机制控制。而低药物含量的共聚物凝胶具有更高的IMC、GSD与EE累积释放分数。同时对不同LA/GA摩尔比值和不同载药量的星形共聚物凝胶的各药物累积释放曲线进行Higuchi模型、零级药物释放模型及一级药物释放模型拟合,发现拟合线性关系的好坏顺序仍为:Higuchi模型>零级药物释放模型>一级药物释放模型,说明IMC、GSD与EE的药物释放规律符合Higuchi模型。
     6.我们通过四甲基偶氮唑盐微量酶反应比色法(MTT实验)发现,星形嵌段共聚物不具有明显的细胞毒性。另外,尽管星形共聚物凝胶材料注射进SD大鼠体内于早期出现了急性的炎症反应,但后期炎症反应的消除表明温敏性凝胶材料仍然具有良好的生物相容性。另外,我们将载有不同药物剂量的星形共聚物水凝胶喷入SD大鼠阴道后,对比不同时间点与不同剂量下的SD大鼠的各器官宏观性状及微观组织,发现高剂量组下的SD大鼠出现了较严重的子宫水肿、阴道充血、部分肝细胞溶解坏死、肝细胞碎片状坏死及脾脏淋巴细胞增多等现象;中剂量组下的SD大鼠仅出现了子宫充血现象;而低剂量组与对照组(未添加药物的水凝胶)则未发现明显组织病变,表明低药物剂量组的水凝胶可作为女性节育喷剂。
     7.通过混合两种各自不具有温敏性星形嵌段共聚物水溶液,惊奇地发现其混合液出现了温敏性。初步研究了该混合凝胶的制备方法、胶束化性能、溶胶-凝胶转变性能、体外降解性能、体外细胞毒性及体内生物相容性。
In the past few decades, vaginal gels as the carriers of various drugs have garneredmuch attention. Vaginal gels encapsulated a variety of anti-HIV drugs, contraceptive drugsand vaginal microbicides were widely investigated to promote the progress of femalephysiology, reproductive safety and the subdiscipline of biomedical materials.
     In the present paper, a series of copolymer, multiarm star-shapedpoly(D,L-lactic-co-glycolic acid)-b-methoxy poly(ethylene glycol)(PLGA-mPEG), weresynthesized via the arm-first method using linear PLGA-mPEG diblock as a arm andcarboxylation of polyols as a core. These multiarm block copolymers have the followingcharacteristics, namely, temperature-sensitive nature, amphiphilicity, biocompatibility,controlled degradability, multiarm star-shape on the structure and low viscosity of sol.Ethinyl estradiol (EE), gestodene (GSD) and indomethacin (IMC) were loaded into thecopolymer solutions using mixed method. This drug release system as a vaginal spraycould flow freely at room temperature and could not flow due to formation of gel at bodytemperature. This spray could be made into a small packaging, and after womenmenstruation a packaging was sprayed into the vagina at body temperature. Themesh-shaped gel formed quickly and attached to the vaginal wall. Estrogen, progesteroneand indomethacin in gel slowly released. At the same time, this spray degraded slowly anddrugs were released within about30days in the vagina and were re-sprayed.
     The main achievements were summarized as follows:
     1. A series of star-shaped block copolymers with various arm numbers,PLGA/mPEG block ratios, mPEG block length and LA/GA mol ratios were synthesizedusing arm-first method. And molecular structure, molecular weight and molecular weightdistribution of these star-shaped block copolymers were analyzed via Fourier transforminfrared spectrometer (FT-IR), gel permeation chromatography (GPC) and1H nuclearmagnetic resonance spectroscopy (1H NMR).
     2. The new method, in order to determining sol-gel transition process and transition temperatures, was established using static rheological curves. Combining with theinverting tube method, sol-gel transition behaviours of a series of star-shaped blockcopolymers with different arm numbers, PLGA/mPEG block ratios, mPEG block lengthand LA/GA mol ratios were investigated with changing temperature. Simultaneously,sol-gel transition behaviours of star-shaped block copolymers with adding hydrophilicmPEG homopolymer were also studied. PLGA/mPEG block mass ratio was the mostcritical factor to decide whether star-shaped block copolymers solutions had performanceof the sol-gel transition, and the ratios should be between2and3. The mPEG block lengthwas the most important factor to determine the sol-gel transition temperatures. The mPEGmolecular weight of550daltons was selected in order to gelation of copolymer solution atbody temperature. The sol-gel transition temperatures were coarsely tuned by selecting themolecular weight of mPEG block, and fine tuned by selecting PLGA/mPEG block ratios,arm numbers and LA/GA mol ratios.
     3. Formation and morphology of core-shell micelles were investigated via1H NMRand TEM. Star-shaped block copolymers in dilute solution with the concentration of1wt%self-assemble to form core-shell micelles with size of30-50nm. Micelle sizes anddistributions were further investigated using dynamic light scattering (DLS) with changingconcentrations and temperatures of dilute solution. Micellization and gelation mechanismswere subsequently discussed. The critical micelle concentrations (CMC) of copolymers indilute solution were studied via hydrophobic dye-UV spectroscopy method. The resultsshowed the critical gel concentration (CGC) was far greater than the critical micelleconcentration. Based on this, physical gelation process of star-shaped block copolymeraqueous solutions was discussed by us. Copolymer macromolecules in aqueous solutionsself-assembled and formed core-shell micelles, and then accumulated each other betweenthe micelles to cause the sol-gel transition. The hydrophobic interaction of PLGA blockwas considered as intrinsic driving force.
     4. With degradation time increased, changes in weight loss, molecular weight andcomposite of blocks of star-shaped copolymer hydrogels incubated in simulated vaginalfluid solution (SVF) in vitro and injected in neck of SD rats in vivo were investigated via weight method, GPC and1H NMR. At the same time, the differences between in vitrodegradation and in vivo degradation were compared. Weight and molecular weight ofstar-shaped copolymer hydrogels incubated in simulated vaginal fluid solution (SVF) invitro and injected in neck of SD rats in vivo decreased with decreasing LA/GA mol ratiosof star-shaped copolymer with the same molecular weight and block composite.Meanwhile, in vivo degradation rate of the hydrogel was quicker than in vitro degradation.The relative weight fractions of EG, GA and LA units were calculated using NMRend-group analysis with degradation time increased. Subsequently, degradation process ofstar-shaped copolymers in hydrogels was divided into three stages. In the first stage, esterbonds connected with the mPEG block were hydrolyzed mainly. In the second stage, esterbonds connected with the mPEG block and GA units of PLGA blocks were hydrolyzedmainly. In the last stage, ester bonds in LA units of PLGA blocks were hydrolyzed mainly.
     5. High performance liquid chromatography (HPLC) conditions simultaneouslydetecting drug content of ethinyl estradiol, gestodene and indomethacin were determined.Namely, optimal volume ratio of methanol and water as mixed mobile phase of HPLC was53/47, the retention time of indomethacin (IMC), gestodene (GSD) and ethinyl estradiol(EE) were11.18min,13.11min and15.57min, respectively. By examining three drugcontents of SVF solutions, cumulative release fraction of three drugs became bigger withdecreasing LA/GA mol ratios of copolymers, indicating that release of these drugs werecontrolled by degradation mechanism. By means of fitting of cumulative release curves ofstar-shaped copolymer hydrogels with various LA/GA mol ratios and drug-loadingcontents using Higuchi model, zero-order release model and first-order release model,good or bad order of the linear fitting relationship was as follows: Higuchi model>zero-order release model> first-order release model, indicating that drug releases of IMC,GSD and EE were suitable to Higuchi model.
     6. The star-shaped copolymers were basically biocompatible with low cellcytotoxicity due to high cell viability at all culture concentration and time by an MTTassay. Even though an acute inflammatory response occurred at the surrounding injectedsite of SD rats in early stage, the inflammatory response disappeared at late stage indicating that star-shaped copolymer hydrogels had a good biocompatibility. In addition,after spraying hydrogels with various drug dosages into vagina of SD rats, macroscopiccharacters and microstructure of organs were observed at various dosage groups andsprayed time. As to high dosage group, severe uterine edema, vaginal hyperemia, partiallysis necrosis of the liver cell, piecemeal necrosis of hepatocytes, and increasing spleenlymphocyte were found in SD rats. As to middle dosage group, uterine hyperemia was justobserved. As to low dosage group and control group, no significant pathological changeswere found. As a result, hydrogels loaded drugs with low dosage group is suitable to applyin female birth control spray.
     7. Interestingly, temperature-sensitivity of mixed copolymer aqueous solution wasfound using simply mixing two star-shaped copolymer solutions withouttemperature-sensitive property at different mixing ratios. Preparation method of the mixedgels, the performance of the micellization, sol-gel transition properties, in vitrodegradation, in vitro cytotoxicity and in vivo biocompatibility were preliminary studied.
引文
[1] Debashish Roy, Jennifer N. Cambre, Brent S. Sumerlin. Future perspectives andrecent advances in stimuli-responsive Materials. Progress in Polymer Science2010,35:278-301.
    [2] Carolina de las Heras Alarcón, Sivanand Pennadam, Cameron Alexander. Stimuliresponsive polymers for biomedical applications. Chem. Soc. Rev.,2005,34,276-285.
    [3] Christine Weber, Richard Hoogenboom, Ulrich S. Schubert. Temperature responsivebio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s.Progress in Polymer Science2012,37:686-714.
    [4] Huaping Tan, Kacey G. Marra. Injectable, Biodegradable Hydrogels for TissueEngineering Applications. Materials2010,3:1746-1767.
    [5] Fang Liu, Marek W. Urban. Recent advances and challenges in designingstimuli-responsive polymers. Progress in Polymer Science2010,35:3-23.
    [6] Min Kyung Joo, Min Hee Park, Bo Gyu Choi, Byeongmoon Jeong. Reversethermogelling biodegradable polymer aqueous solutions. J. Mater. Chem.,2009,19:5891-5905.
    [7] Yulin Li, Joǎo Rodrigues, Helena Tomás. Injectable and biodegradable hydrogels:gelation, biodegradation and biomedical applications. Chem Soc Rev.2012,41(6):2193-2221.
    [8] Chang-Zheng Wei, Chun-Lin Hou, Qi-Sheng Gu, Li-Xia Jiang, Bin Zhu, Ai-LianSheng. A thermosensitive chitosan-based hydrogel barrier for post-operativeadhesions’ prevention. Biomaterials2009,30:5534-5540.
    [9] Zheng Zhang, Jian Ni, Liang Chen, Lin Yu, Jianwei Xu, Jiandong Ding.Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier forprevention of post-operative adhesion. Biomaterials2011,32:4725-4736.
    [10] Yeo Y, Kohane DS. Polymers in the prevention of peritoneal intestinal adhesion. Eur JPharm Biopharm2008,68:57-66.
    [11] Segura T, Schmokel H, Hubbell JA. RNA interference targeting hypoxia induciblefactor1α reduces post-operative intestinal adhesion in rats. J Surg Res2007,141:162-170.
    [12] Orita H, Girgis W, Dizerega GS. Prevention of postsurgical peritoneal adhesionformation by intraperitoneal administration of ibuprofen. Drug Dev Res1987,10:97-105.
    [13] Aysan E, Bektas H, Ersoz F, Sari S, Huq G. Effects of contractubex on the preventionof postoperative peritoneal adhesion. J Surg Res2010,164:193-197.
    [14] Ishiyama N, Moro T, Ishihara K, Ohe T, Miura T, Konno T, et al. The prevention ofperitendinous intestinal adhesion by a phospholipid polymer hydrogel formed in situby spontaneous intermolecular interactions. Biomaterials2010,31:4009-4016.
    [15] Dai ZW, Zou XH, Chen GQ. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as aninjectable implant system for prevention of post-surgical tissue adhesion. Biomaterials2009,30:3075-3083.
    [16] Zawaneh PN, Singh SP, Padera RF, Henderson PW, Spector JA, Putnam D. Design ofan injectable synthetic and biodegradable surgical biomaterial. Proc Natl Acad SciUSA2010,107:11014-11019.
    [17] Zawaneh PN, Putnam D. Materials in surgery: a review of biomaterials in postsurgicaltissue adhesion and seroma prevention. Tissue Eng Part B-Rev2008,14:377-391.
    [18] Connors RC, Muir JJ, Liu YC, Reiss GR, Kouretas PC, Whitten MG, et al.Postoperative pericardial adhesion prevention using Carbylan-SX in a rabbit model. JSurg Res2007,140:237-242.
    [19] Weis C, Odermatt EK, Kressler J, Funke Z, Wehner T, Freytag D. Poly(vinyl alcohol)membranes for adhesion prevention. J Biomed Mater Res Part B2004,70B:191-202.
    [20] Falabella CA, Melendez MM, Weng LH, Chen WL. Novel macromolecularcrosslinking hydrogel to reduce intra-abdominal intestinal adhesion. J Surg Res2010,159:772-778.
    [21] Walsh WR, Evans RON, Iliopoulos J, Cornwall GB, Thomas KA. Evaluation of abioresorbable polylactide sheet for the reduction of pelvic soft tissue attachments in aporcine animal model. J Biomed Mater Res Part B2006,79B:166-175.
    [22] Iliopoulos J, Cornwall GB, Evans RON, Manganas C, Thomas KA, Newman DC,et al.Evaluation of a bioabsorable polylactide film in a large animal model for the reductionof retrosternal intestinal adhesion. J Surg Res2004,118:144-153.
    [23] Seeger JM, Kaelin LD, Staples EM, Yaacobi Y, Bailey JC, Normann S, et al.Prevention of postoperative pericardial intestinal adhesion using tissueprotectivesolutions. J Surg Res1997,68:63-66.
    [24] R. De Souza, P. Zahedi, C. J. Allen, M. Piquette-Miller. Biocompatibility of injectablechitosan–phospholipid implant systems. Biomaterials2009,30:3818-3824.
    [25] N. Bhattarai, J. Gunn, M. Q. Zhang, Chitosan-based hydrogels for controlled,localized drug delivery. Adv. Drug Delivery Rev.2010,62,83-99.
    [26] E. Ruel-Gariepy,M. Shive, A. Bichara,M. Berrada, D. Le Garrec, A. Chenite, J. C.Leroux. In situ-forming hydrogels-review of temperature-sensitive systems. Eur. J.Pharm. Biopharm.2004,57,53-63.
    [27] P. D. Nair, S. Nair, N. S. Remya, S. Remya. A biodegradable in situ injectablehydrogel based on chitosan and oxidized hyaluronic acid for tissue engineeringapplications. Carbohydr. Polym.2011,85,838-844.
    [28] A. Chenite, C. Chaput, D. Wang, C. Combes, M. D. Buschmann, C. D. Hoemann, J. C.Leroux, B. L. Atkinson, F. Binette, A. Selmani. Novel injectable neutral solutions ofchitosan form biodegradable gels in situ. Biomaterials2000,21:2155-2161.
    [29] P. Roughley, C. Hoemann, E. DesRosiers, F. Mwale, J. Antoniou, M. Alini. Thepotential of chitosan-based gels containing intervertebral disc cells for nucleuspulposus supplementation. Biomaterials2006,27:388-396.
    [30] S. Kim, S. K. Nishimoto, J. D. Bumgardner, W. O. Haggard, M. W. Gaber, Y. Yang.A chitosan/β-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid forthe treatment of brain cancer. Biomaterials2010,31:4157-4166.
    [31] J.Cho, M.C.Heuzey, A. Begin, P. J. Carreau. Physical Gelation of Chitosan in thePresence of β-Glycerophosphate: The Effect of Temperature. Biomacromolecules2005,6:3267-3275.
    [32] S. M. Richardson, N. Hughes, J. A. Hunt, A. J. Freemont, J. A. Hoyland. Humanmesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphatehydrogels. Biomaterials2008,29:85-93.
    [33] J. Ngoenkam, A. Faikrua, S. Yasothornsrikul, J. Viyoch. Potential of an injectablechitosan/starch/β-glycerol phosphate hydrogel for sustaining normal chondrocytefunction. Int. J. Pharm.2010,391,115-124.
    [34] L. Wang, J. P. Stegemann. Thermogelling chitosan and collagen composite hydrogelsinitiated with β-glycerophosphate for bone tissue engineering. Biomaterials2010,31:3976-3985.
    [35] B. Sun, W. Ma, F. Su, Y. Wang, J. Liu, D. Wang, H. Liu. The osteogenicdifferentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitiveinjectable chitosan/collagen/β-glycerophosphate hydrogel: in vitro and in vivo. J.Mater. Sci. Mater. Med.2011,22,2111-2118.
    [36] D. S. Couto, Z. Hong, J. F. Mano. Development of bioactive and biodegradablechitosan-based injectable systems containing bioactive glass nanoparticles. ActaBiomater.2009,5,115-123.
    [37] K. M. Park, S. Y. Lee, Y. K. Joung, J. S. Na, M. C. Lee, K. D. Park. Thermosensitivechitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilageregeneration. Acta Biomater.2009,5,1956-1965.
    [38] J. P. Chen, T. H. Cheng. Thermo-Responsive Chitosan-graft-poly(N-isopropylacrylamide) Injectable Hydrogel for Cultivation of Chondrocytes andMeniscus Cells. Macromol. Biosci.2006,6,1026-1039.
    [39] Y. X. Cao, C. Zhang, W. B. Shen, Z. H. Cheng, L. L. Yu, Q. N. Ping. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system forocular drug delivery. J. Controlled Release2007,120,186-194.
    [40] J. P. Chen and T. H. Cheng. Thermosensitive hydrogels synthesized by fastDiels-Alder reaction in water. Polymer2009,50,107-116.
    [41] E. J. Oh, K. Park, K. S. Kim, J. Kim, J. A. Yang, J. H. Kong, M. Y. Lee, A. S.Hoffman, S. K. Hahn. Target specific and long-acting delivery of protein, peptide, andnucleotide therapeutics using hyaluronic acid derivatives. J. Controlled Release2010,141,2-12.
    [42] D. D. Allison, K. J. Grande-Allen. Review. Hyaluronan: a powerful tissue engineeringtool. Tissue Eng.2006,12,2131-2140.
    [43] E. M. Ehlers, P. Behrens, L.Wunsch, W. Kuhnel, M. Russlies. Effects of hyaluronicacid on the morphology and proliferation of human chondrocytes in primary cellculture. Ann. Anat.2001,183,13-17.
    [44] K. S. Kim, S. J. Park, J. A. Yang, J. H. Jeon, S. H. Bhang, B. S. Kim, S. K. Hahn.Injectable hyaluronic acid-tyramine hydrogels for the treatment of rheumatoid arthritis.Acta Biomater.2011,7,666-674.
    [45] J. Kim, I. S. Kim, T. H. Cho, K. B. Lee, S. J. Hwang, G. Tae, I. Noh, S. H. Lee, Y.Park, K. Sun. Bone regeneration using hyaluronic acid-based hydrogel with bonemorphogenic protein-2and human mesenchymal stem cells. Biomaterials2007,28:1830-1837.
    [46] H. H. Jung, K. Park, D. K. Han. Preparation of TGF-[beta]1-conjugatedbiodegradable pluronic F127hydrogel and its application with adipose-derived stemcells. J. Controlled Release2010,147,84-91.
    [47] T. Nakaji-Hirabayashi, K. Kato, H. Iwata. Hyaluronic acid hydrogel loaded withgenetically-engineered brain-derived neurotrophic factor as a neural cell carrier.Biomaterials2009,30:4581-4589.
    [48] A. K. Jha, X. Xu, R. L. Duncan, X. Jia. Controlling the adhesion and differentiation ofmesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks.Biomaterials2011,32:2466-2478.
    [49] L. H. Nguyen, A. K. Kudva, N. L. Guckert, K. D. Linse, K. Roy. Unique biomaterialcompositions direct bone marrow stem cells into specific chondrocytic phenotypescorresponding to the various zones of articular cartilage. Biomaterials2011,32:1327-1338.
    [50] E. C. Collin, S. Grad, D. I. Zeugolis, C. S. Vinatier, J. R. Clouet, J. J. Guicheux, P.Weiss, M. Alini, A. S. Pandit. An injectable vehicle for nucleus pulposus cell-basedtherapy. Biomaterials2011,32:2862-2870.
    [51] A. Skardal, J. X. Zhang, G. D. Prestwich. Bioprinting vessel-like constructs usinghyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates.Biomaterials2010,31:6173-6181.
    [52] L. Mayol, F. Quaglia, A. Borzacchiello, L. Ambrosio, M. I. La Rotonda. A novelpoloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: Rheological,mucoadhesive and in vitro release properties. Eur. J. Pharm. Biopharm.2008,70,199-206.
    [53] D. I. Ha, S. B. Lee, M. S. Chong, Y. M. Lee, S. Y. Kim, Y. H. Park. Preparation ofthermo-responsive and injectable hydrogels based on hyaluronic acid and poly(N-isopropylacrylamide) and their drug release behaviors. Macromol. Res.,2006,14,87-93.
    [54] J. P. Chen, T. H. Cheng. Application of biocathode in microbial fuel cells: cellperformance and microbial community. J. Biotechnol.,2008,136, S128-S129.
    [55] H. P. Tan, C. M. Ramirez, N. Miljkovic, H. Li, J. P. Rubin, K. G. Marra.Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering.Biomaterials2009,30:6844-6853.
    [56] Byeongmoon Jeong, Sung Wan Kim, You Han Bae. Thermosensitive sol–gelreversible hydrogels. Advanced Drug Delivery Reviews2002,54:37-51.
    [57] T.P. Johnston, M.A. Punjabi, C.J. Froelich. Sustained delivery of interleukin-2from aPoloxamer407gel matrix following intraperitoneal injection in mice. Pharm. Res.1992,9:425-434.
    [58] K.A. Fults, T.P. Johnston. Sustained release of urease from a Poloxamer gel matrix. J.Parent. Sci. Technol.1989,44:58-65.
    [59] F.H. Davidorf, R.B. Chambers, O.W. Kwon, W. Doyle, P. Gresak, S.G. Frank. Oculartoxicity of vitreal pluronic polyol F-127. Retina1990,10:297-300.
    [60] S.D. Desai, J. Blanchard. In vitro evaluation of Pluronic PF-127based controlledrelease ocular delivery systems for pilocarpine. J. Pharm. Sci.1998,87:226-230.
    [61] A. Wade, P. Weller (Eds.). Handbook of Pharmaceutical Excipients,2nd Edition.1994,352-354.
    [62] G.W. Lu, H.W. Jun, M.T. Dzimianski, H.C. Qiu, J.W. McCall. Pharmacokineticstudies of methotrexate in plasma and synovial fluid following i.v. bolus and topicalroutes of administration in dogs. Pharm. Res.1995,12:1474-1477.
    [63] H.R. Lin, K.C. Sung. Carbopol/pluronic phase change solutions for ophthalmic drugdelivery. J. Controlled Release2000,69:379-388.
    [64] M. Morishita, J.M. Barichello, K. Takayama, Y. Chiba, S. Tokwa, T. Nagai. PluronicF-127gels incorporating highly purified unsaturated fatty acids for buccal delivery ofinsulin. Int. J. Pharm.2001,212:289-293.
    [65] J.M. Barichello, M. Morishita, K. Takayama, T. Nagai. Absorption of insulin fromPluronic F-127gels following subcutaneous administration in rats. Int. J. Pharm.1999,184:189-198.
    [66] G.J. Fulton, M.G. Davies, L. Barber, J.L. Gray, E. Svendsen, P.O. Hagen. Localeffects of nitric oxide supplementation and suppression in the development of initialhyperplasia in experimental vein grafts. Eur. J. Vasc. Endovasc. Surg.1998,15:279-289.
    [67] Y. Castier, E. Chemla, J. Nierat, D. Heudes, M.A. Vasseur, C. Rajnoch, P. Bruneval,A. Carpentier, J.N. Fabaini. The activity of c-myb antisense oligonucleotide to preventintimal hyperplasia is nonspecific. J. Cardiovasc. Surg.1998,39:1-7.
    [68] M. Gottsauner-Wolf, Y. Jang, A.M. Lincoff, J.L. Cohen, V. Labhasetwar, E.J. Poptic,F. Forudi, L.A. Guzman, P.E. DiCorleto, R.J. Levy, E.J. Topol, S.G. Ellis. Influenceof local delivery of protein tyrosine kinase receptor inhibitor tryphostin-47on smoothmuscle cell proliferation in a rat carotid balloon injury model. Am. Heart J.1997,133:329-334.
    [69] E.A. Pec, Z.G. Wout, T.P. Johnston. Biological activity of urease formulated inpoloxamer407after intraperitoneal injection in the rat. J. Pharm. Sci.1992,81:626-630.
    [70] T.P. Johnston, M.A. Punjabi, C.J. Froelich. Sustained delivery of interlukin-2from apoloxamer407gel matrix following intraperitoneal injection in mice. Pharm. Res.1992,9:425-434.
    [71] M.D. DiBiase, C.T. Rhodes. Investigations of epidermal growth factor in semisolidformulations. Pharm. Acta Helv.1991,66:165-169.
    [72] C.W. Cho, Y.S. Cho, H.K. Lee, Y.I. Yeom, S.N. Park, D.Y. Yoon. Improvement ofreceptor-mediated gene delivery to HepG2cells using an amphiphilic gelling agent.Biotechnol. Appl. Biochem.2000,32:21-26.
    [73] A. Paavola, I. Kilpelainen, J. Yliruusi, P. Rosenberg. Controlled release injectableliposomal gel of ibuprofen for epidural analgesia. Int. J. Pharm.2000,199:85-93.
    [74] C.M. Clokie, M.R. Urist. Bone morphogenic protein excipients: comparativeobservations on poloxamer. Plast. Reconstr. Surg.2000,105:628-637.
    [75] M.L. Veyries, G. Couarraze, S. Geiger, F. Agnely, L. Massias, B. Kunzli, F. Faurisson,B. Rouveix. Controlled release of vancomycin from poloxamer407gels. Int. J. Pharm.1999,192:183-193.
    [76] A. Paavola, P. Tarkkila, M. Xu, T. Wahlstrom, J. Yliruusi, P. Rosenberg. Controlledrelease gel of ibuprofen and lidocaine in epidural use-analgesia and systemicabsorption in pigs. Pharm. Res.1998,15:482-487.
    [77] A.J. Gear, T.B. Hellewell, H.R. Wright, P.M. Mazzarese, P.B. Arnold, G.T.Rodeheaver, R.F. Edlich. A new silver sulfadiazine water soluble gel. Burns1997,23:387-391.
    [78] D.B. Hom, K. Medhi, G. Assefa, S.K. Juhn, T.P. Johnston. Vascular effects ofsustained-release fibroblast growth factors. Ann. Otol. Rhinol. Laryngol.1996,105:109-116.
    [79] A. Paavola, J. Yliruusi, Y. Kajimoto, E. Kalso, T. Wahlstrom, P. Rosenberg.Controlled release lidocaine from injectable gels and efficacy in rat sciatic nerve block.Pharm. Res.1995,15:1997-2002.
    [80] D.V. Sweet. Registry of Toxic Effects of Chemical Substances, US Department ofHealth, CT (1987)
    [81] B. Jeong, Y. H. Bae, D. S. Lee, S. W. Kim. Biodegradable block copolymers asinjectable drug-delivery systems. Nature1997,388:860-862.
    [82] B. Jeong, Y. H. Bae, J. Shon, Y. H. Bae, S. W. Kim. Thermoreversible gelation ofpoly(ethylene oxide) biodegradable polyester block copolymers. J. Polym. Sci.,Part A:Polym. Chem.1999,37:751-760.
    [83] S. W. Choi, S. Y. Choi, B. Jeong, S. W. Kim, D. S. Lee. Thermoreversible gelation ofpoly(ethylene oxide) biodegradable polyester block copolymers. II. J. Polym. Sci.,Part A: Polym. Chem.1999,37:2207-2218.
    [84] F. Li, S. Li, A. E. Ghzaoui, H. Nouailhas, R. Zhuo. Synthesis and Gelation Propertiesof PEG-PLA-PEG Triblock Copolymers Obtained by Coupling MonohydroxylatedPEG-PLA with Adipoyl Chloride. Langmuir2007,23:2778-2783.
    [85] B. Jeong, Y. H. Bae, S. W. Kim. Thermoreversible Gelation of PEG-PLGA-PEGTriblock Copolymer Aqueous Solutions. Macromolecules1999,32,7064-7069.
    [86] M. J. Park, K. Char. Gelation of PEO-PLGA-PEO Triblock Copolymers Induced byMacroscopic Phase Separation. Langmuir2004,20:2456-2465.
    [87] K. Kwon, M. J. Park, Y. H. Bae, H. D. Kim, K. Char. Gelation behavior ofPEO-PLGA-PEO triblock copolymers in water. Polymer2002,43,3353-3358.
    [88] B. Jeong, Y. H. Bae, S. W. Kim. In situ gelation of PEG-PLGA-PEG triblockcopolymer aqueous solutions and degradation thereof. J. Biomed. Mater. Res.2000,50,171-177.
    [89] D. S. Lee, M. S. Shim, S. W. Kim, H. Lee, I. Park, T. Chang. Novel thermoreversiblegelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers inaqueous solution. Macromol. Rapid Commun.2001,22,587-592.
    [90] G. M. Zentner, R. Rathi, C. Shih, J. C. McRea, M. Seo, H. Oh, B. G. Rhee, J.Mestecky, Z. Moldoveanu, M. Morgan, S. Weitman. Biodegradable block copolymersfor delivery of proteins and water-insoluble drugs. J. Controlled Release2001,72,203-215.
    [91] M. S. Shim, H. T. Lee, W. S. Shim, I. Park, H. Lee, T. Chang, S. W. Kim, D. S. Lee.Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lacticacid-co-glycolic acid) triblock copolymer and thermoreversible phase transition inwater. J. Biomed. Mater. Res.2002,61,188-196.
    [92] Lin Yu, Huan Zhang, and Jiandong Ding. A Subtle End-Group Effect on MacroscopicPhysical Gelation of Triblock Copolymer Aqueous Solutions. Angew. Chem. Int. Ed.2006,45,2232-2235.
    [93] B. Jeong, L. Wang, A. Gutowska. Biodegradable thermoreversible gellingPLGA-g-PEG copolymers. Chem. Commun.2001,1516-1517.
    [94] Y. Chung, K. L. Simmons, A. Gutowska, B. Jeong. Sol-Gel Transition Temperature ofPLGA-g-PEG Aqueous Solutions. Biomacromolecules2002,3:511-516.
    [95] B. Jeong, M. R. Kibbey, J. C. Birnbaum, Y. Won, A. Gutowska. ThermogellingBiodegradable Polymers with Hydrophilic Backbones: PEG-g-PLGA.Macromolecules2000,33,8317-8322.
    [96] B. Jeong, C. F. Windisch, M. J. Park, Y. S. Sohn, A. Gutowska, K. Char. PhaseTransition of the PLGA-g-PEG Copolymer Aqueous Solutions. J. Phys. Chem. B2003,107,10032-10039.
    [97] M. S. Kim, K. S. Seo, G. Khang, C. H. Cho, H. B. Lee. Preparation of poly(ethyleneglycol)-block-poly(caprolactone) copolymers and their applications asthermo-sensitive materials J. Biomed. Mater. Res.2004,70A,154-158.
    [98] M. S. Kim, H. Hyun, K. S. Seo, Y. H. Cho, J. W. Lee, C. R. Lee, G. Khang, H. B. Lee.Preparation and characterization of MPEG-PCL diblock copolymers withthermo-responsive sol-gel-sol phase transition. J. Polym. Sci., Part A: Polym. Chem.2006,44:5413-5423.
    [99] M. J. Hwang, J. M. Suh, Y. H. Bae, S. W. Kim, B. Jeong. Caprolactonic PoloxamerAnalog: PEG-PCL-PEG. Biomacromolecules2005,6:885-890.
    [100] S. J. Bae, J. M. Suh, Y. S. Sohn, Y. H. Bae, S. W. Kim, B. Jeong. ThermogellingPoly(caprolactone-b-ethylene glycol-b-caprolactone) Aqueous Solutions.Macromolecules2005,38,5260-5265.
    [101] S. H. Park, B. G. Choi, M. K. Joo, D. K. Han, Y. S. Sohn, B. Jeong.Temperature-Sensitive Poly(caprolactone-co-trimethylene carbonate)-Poly(ethyleneglycol)-Poly(caprolactone-co-trimethylene carbonate) as in Situ Gel-FormingBiomaterial. Macromolecules2008,41,6486-6492.
    [102] S. J. Bae, M. K. Joo, Y. Jeong, S. W. Kim, W. Lee, Y. S. Sohn, B. Jeong. GelationBehavior of Poly(ethylene glycol) and Polycaprolactone Triblock and MultiblockCopolymer Aqueous Solutions. Macromolecules2006,39,4873-4879.
    [103] M. K. Joo, Y. S. Sohn, B. Jeong. Stereoisomeric Effect on Reverse Thermal Gelationof Poly(ethylene glycol)/Poly(lactide) Multiblock Copolymer. Macromolecules2007,40,5111-5115.
    [104] J. Lee, M. K. Joo, H. Oh, Y. S. Sohn, B. Jeong. njectable gel: Poly(ethyleneglycol)-sebacic acid polyester. Polymer2006,47,3760-3766.
    [105] T. Fujiwara, T. Mukose, T. Yamaoka, H. Yamane, S. Sakurai, Y. Kimura. NovelThermo-Responsive Formation of a Hydrogel by Stereo-Complexation betweenPLLA-PEG-PLLA and PDLA-PEG-PDLA Block Copolymers. Macromol. Biosci.2001,1,204-208.
    [106] T. Mukose, T. Fujiwara, J. Nakano, I. Taniguchi, M. Miyamoto, Y. Kimura, I.Teraoka, C. W. Lee. Stereoisomeric effect on reverse thermal gelation of poly(ethylene glycol)/poly (lactide) multiblock copolymer. Macromol. Biosci.2004,4,361-367.
    [107] C. Hiemstra, Z. Y. Zhong, X. Jiang, W. E. Hennink, P. J. Dijkstra, J. Feijen.PEG–PLLA and PEG–PDLA multiblock copolymers: Synthesis and in situ hydrogelformation by stereocomplexation. J. Controlled Release2006,116, e17-e19.
    [108] X. J. Loh, S. H. Goh, J. Li. New Biodegradable Thermogelling Copolymers HavingVery Low Gelation Concentrations. Biomacromolecules2007,8:585-593.
    [109] X. J. Loh, S. H. Goh, J. Li. Hydrolytic degradation and protein release studies ofthermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate],poly(ethylene glycol), and poly(propylene glycol). Biomaterials2007,28,4113-4123.
    [110] B. H. Lee, Y. M. Lee, Y. S. Sohn, S. Song. A Thermosensitive Poly(organophosphazene) Gel. Macromolecules2002,35,3876-3879.
    [111] J. Seong, Y. J. Jun, B. Jeong, Y. S. Sohn. New thermogelling poly(organophosphazenes) with methoxypoly(ethylene glycol) and oligopeptide as sidegroups. Polymer2005,46,5075-5081.
    [112] B. H. Lee, S. Song. Synthesis and Characterization of Biodegradable ThermosensitivePoly(organophosphazene) Gels. Macromolecules2004,37,4533-4537.
    [113] W. A. Petka, J. L. Harden, K. P. McGrath, D. Wirtz, D. A. Tirrel. ReversibleHydrogels from Self-Assembling Artificial Proteins. Science1998,281,389-392.
    [114] C. Wang, R. J. Steward, J. Kopecek. Hybrid hydrogels assembled from syntheticpolymers and coiled-coil protein domains. Nature1999,397,417-420.
    [115] A. P. Nowak, V. Breedveld, L. Pakstis, B. Ozbas, D. J. Pine, D. Pochan, T. J. Deming.Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptideamphiphiles. Nature2002,417,424-428.
    [116] Hye Jin Oh, Min Kyung Joo, Youn Soo Sohn, Byeongmoon Jeong. SecondaryStructure Effect of Polypeptide on Reverse Thermal Gelation and Degradation ofL/DL-Poly(alanine)-Poloxamer-L/DL-Poly(alanine) Copolymers. Macromolecules2008,41:8204-8209.
    [117] Eun Hae Kim, Min Kyung Joo, Kyung Hyun Bahk, Min Hee Park, Bo Chi, Young MiLee, Byeongmoon Jeong. Reverse Thermal Gelation of PAF-PLX-PAF BlockCopolymer Aqueous Solution. Biomacromolecules2009,10:2476-2481.
    [118] Hyo Jung Moon, Bo Gyu Choi, Min Hee Park, Min Kyung Joo, Byeongmoon Jeong.Enzymatically Degradable Thermogelling Poly(alanine-co-leucine)-poloxamer-poly(alanine-co-leucine). Biomacromolecules2011,12:1234-1242.
    [119] S. Y. Kim, H. J. Kim, K. E. Lee, S. S. Han, Y. S. Sohn, B. Jeong. Reverse ThermalGelling PEG-PTMC Diblock Copolymer Aqueous Solution. Macromolecules2007,40,5519-5525.
    [120] R. Chapanian, M. Y. Tse, S. C. Pang, B. G. Amsden. The role of oxidation andenzymatic hydrolysis on the in vivo degradation of trimethylene carbonate basedphotocrosslinkable elastomers. Biomaterials2009,30,295-306.
    [121] E. Behravest, A. K. Shung, S. Jo, A. G. Mikos. Synthesis and Characterization ofTriblock Copolymers of Methoxy Poly(ethylene glycol) and Poly(propylene fumarate).Biomacromolecules2002,3:153-158.
    [122] J. Wang, D. D. N. Sun, Y. Shin-ya, K. W. Leong. Stimuli-Responsive Hydrogel Basedon Poly(propylene phosphate). Macromolecules2004,37,670-672.
    [123] B. G. Choi, Y. S. Sohn, B. Jeong. Closed-Loop Sol-Gel Transition of PEG-PECAqueous Solution. J. Phys. Chem. B.2007,111,7715-7718.
    [124] Koji Nagahama, Yuichiro Imai, Teppei Nakayama, Junpei Ohmura, Tatsuro Ouchi,Yuichi Ohya. Thermo-sensitive sol-gel transition of poly (depsipeptide-co-lactide)-g-PEG copolymers in aqueous solution. Polymer2009,50:3547-3555.
    [125] Kazuro L. Fujimoto, Zuwei Ma, Devin M. Nelson, Ryotaro Hashizume, Jianjun Guan,Kimimasa Tobita, William R. Wagner. Synthesis, characterization and therapeuticefficacy of a biodegradable, thermoresponsive hydrogel designed for application inchronic infarcted myocardium. Biomaterials2009,30:4357-4368.
    [126] Feng Wang, Zhenqing Li, Mahmood Khan, Kenichi Tamama, Periannan Kuppusamy,William R. Wagner, Chandan K. Sen, Jianjun Guan. Injectable, rapid gelling andhighly flexible hydrogel composites as growth factor and cell carriers. ActaBiomaterialia2010,6:1978-1991.
    [127] X. Wang, X. Li, Y. Li, Y. Zhou, C. Fan, W. Li, S. Ma, Y. Fan, Y. Huang, N. Li, Y.Liu. Synthesis, characterization and biocompatibility of poly(2-ethyl-2-oxazoline)-poly(D,L-lactide)-poly(2-ethyl-2-oxazoline) hydrogels. Acta Biomaterialia,2011,7:4149-4159.
    [128] B. Jeong, Y. H. Bae, S. W. Kim. Drug release from biodegradable injectablethermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J. ControlledRelease2000,63,155-163.
    [129] Z. Li, W. Ning, J. Wang, A. Choi, P. Lee, P. Tyagi, L. Huang. Controlled GeneDelivery System Based on Thermosensitive Biodegradable Hydrogel. Pharm. Res.2003,20,884-888.
    [130] P. Lee, Z. Li, L. Huang. Thermosensitive Hydrogel as a Tgf-β1Gene DeliveryVehicle Enhances Diabetic Wound Healing. Pharm. Res.2003,20,1995-2000.
    [131] P. Tiagy, Z. Li, M. Chancellor, W. C. D. Groat, N. Yoshimura, L. Huang. SustainedIntravesical Drug Delivery Using Thermosensitive Hydrogel. Pharm. Res.2004,24,832-837.
    [132] Y. J. Kim, S. Choi, J. J. Koh, M. Lee, K. S. Ko, S. W. Kim. Controlled Release ofInsulin from Injectable Biodegradable Triblock Copolymer. Pharm. Res.2001,18,548-550.
    [133] S. Choi, M. Baudys, S. W. Kim. Control of Blood Glucose by Novel GLP-1DeliveryUsing Biodegradable Triblock Copolymer of PLGA-PEG-PLGA in Type2DiabeticRats. Pharm. Res.2004,21,827-831.
    [134] S. Chen, J. Singh. Controlled delivery of testosterone from smart polymer solutionbased systems: In vitro evaluation. Int. J. Pharm.2005,295,183-190.
    [135] M. Qiao, D. Chen, X. Ma, Y. Liu. Injectable biodegradable temperature-responsivePLGA-PEG-PLGA copolymers: Synthesis and effect of copolymer composition onthe drug release from the copolymer-based hydrogels. Int. J. Pharm.2005,294,103-112.
    [136] S. Duvvuri, K. G. Janoria, A. K. Mitra. Development of a novel formulationcontaining poly (d,l-lactide-co-glycolide) microspheres dispersed inPLGA-PEG-PLGA gel for sustained delivery of ganciclovir. J. Controlled Release2005,108,282-293.
    [137] S. Chen, J. Singh. In Vitro Release of Levonorgestrel from Phase Sensitive andThermosensitive Smart Polymer Delivery Systems. Pharm. Dev. Technol.2005,10,319-325.
    [138] W. E. Samlowski, J. R. McGregor, M. Jurek, M. Baudys, G. M. Zentner, K. D.Fowers. ReGel(R) Polymer-based Delivery of Interleukin-2as a Cancer Treatment. J.Immunother.2006,29,524-535.
    [139] H. Lin, H. Y. Tian, J. R. Sun, X. L. Zhuang, X. S. Chen, Y. S. Li, X. B. Jing.Synthesis, Characterization and Drug Release of Temperature-sensitivePLGA-PEG-PLGA Hydrogel. Chem. J. Chin. Univ.2006,27,1385-1388.
    [140] B. Jeong, K. M. Lee, A. Gutowska, Y. H. An. Thermogelling BiodegradableCopolymer Aqueous Solutions for Injectable Protein Delivery and Tissue Engineering.Biomacromolecules2002,3:865-868.
    [141] M. S. Kim, S. K. Kim, S. H. Kim, H. Hyun, G. Khang, H. B. Lee. In Vivo OsteogenicDifferentiation of Rat Bone Marrow Stromal Cells in Thermosensitive MPEG-PCLDiblock Copolymer Gels. Tissue Eng.2006,12,2863-2873.
    [142] H. Hyun, Y. H. Kim, I. B. Song, J. W. Lee, M. S. Kim, G. Khang, K. Park, H. B. Lee.In Vitro and in Vivo Release of Albumin Using a Biodegradable MPEG-PCL DiblockCopolymer as an in Situ Gel-Forming Carrier. Biomacromolecules2007,8:1093-1100.
    [143] M. S. Kim, K. S. Seo, H. Hyun, G. Khang, S. H. Cho, H. B. Lee. Controlled release ofbovine serum albumin using MPEG-PCL diblock copolymers as implantable proteincarriers. J. Appl. Polym. Sci.2006,102,1561-1567.
    [144] G. D. Kang, S. H. Cheon, G. Khang, S. C. Song. Thermosensitive poly(organophosphazene) hydrogels for a controlled drug delivery. Eur, J. Pharm.Biopharm.2006,63,340-346.
    [145] G. D. Kang, S. H. cheon, S. C. Song. Controlled release of doxorubicin fromthermosensitive poly(organophosphazene) hydrogels. Int. J. Pharm.2006,319,29-36.
    [146] G. D. Kang, S. Song. Effect of chitosan on the release of protein from thermosensitivepoly(organophosphazene) hydrogels. Int. J. Pharm.2008,349,188-195.
    [147] K. Park, S. Song. A thermo-sensitive poly(organophosphazene) hydrogel used as anextracellular matrix for artificial pancreas. J. Biomater. Sci. Polym. Edn.2005,16,1421-1431.
    [148] K. Park, S. Song. Morphology of spheroidal hepatocytes within injectable,biodegradable, and thermosensitive poly(organophosphazene) hydrogel as celldelivery vehicle. J. Biosci. Bioeng.2006,101,238-242.
    [149] C. Chun, S. M. Lee, S. Y. Kim, H. K. Yang, S. Song. Thermosensitivepoly(organophosphazene)-paclitaxel conjugate gels for antitumor applications.Biomaterials2009,30,2349-2360.
    [150] M. Berrada, A. Serreqi, F. Dabbarh, A. Owusu, A. Gupta, S. Lehnert. A novelnon-toxic camptothecin formulation for cancer chemotherapy. Biomaterials2005,26,2115-2120.
    [151] S. Kempe, H. Metz, M. Bastrop, A. Hvilsom, R. V. Contri, K. Mader.Characterization of thermosensitive chitosan-based hydrogels by rheology andelectron paramagnetic resonance spectroscopy. Eur. J. Pharm. Biopharm.2008,68,26-33.
    [152] K. M. Park, S. Y. Lee, Y. K. Young, J. S. Na, M. C. Lee, K. D. Park. Thermosensitivechitosan–Pluronic hydrogel as an injectable cell delivery carrier for cartilageregeneration. Acta Biomater.2009,5,1956-1965.
    [153] Grzegorz Lapienis. Star-shaped polymers having PEO arms. Progress in PolymerScience.2009,34,852-892.
    [154] Sang Yeob Park, Dong Keun Han, Sung Chul Kim. Synthesis and Characterization ofStar-Shaped PLLA-PEO Block Copolymers with Temperature-Sensitive Sol-GelTransition Behavior. Macromolecules2001,34:8821-8824.
    [155] Sang Yeob Park, Bo Ryeong Han, Kwang Myoung Na, Dong Keun Han, Sung ChulKim. Micellization and Gelation of Aqueous Solutions of Star-Shaped PLLA-PEOBlock Copolymers. Macromolecules2003,36:4115-4124.
    [156] C. Hiemstra, Z. Zhong, P. J. Dijkstra, J. Feijen, Stereocomplex Mediated Gelation ofPEG-(PLA)2and PEG-(PLA)8Block Copolymers. Macromol.Symp.2005,224:119-131.
    [157] Christine Hiemstra,Zhiyuan Zhong, Liangbin Li, Pieter J. Dijkstra, Jan Feijen. In-SituFormation of Biodegradable Hydrogels by Stereocomplexation of PEG-(PLLA)8andPEG-(PDLA)8Star Block Copolymers. Biomacromolecules2006,7:2790-2795.
    [158] Christine Hiemstra,Wei Zhou, Zhiyuan Zhong, Marielle Wouters, Jan Feijen. Rapidlyin Situ Forming Biodegradable Robust Hydrogels by Combining Stereocomplexationand Photopolymerization. J. AM. CHEM. SOC.2007,129:9918-9926.
    [159] KOJI NAGAHAMA, KANAE FUJIURA, SHUNSUKE ENAMI, TATSURO OUCHI,YUICHI OHYA. Irreversible Temperature-Responsive Formation of High-StrengthHydrogel from an Enantiomeric Mixture of Starburst Triblock Copolymers Consistingof8-Arm PEG and PLLA or PDLA. Journal of Polymer Science: Part A: PolymerChemistry2008,46:6317-6332.
    [160] Koji Nagahama, Tatsuro Ouchi, Yuichi Ohya. Temperature-Induced HydrogelsThrough Self-Assembly of Cholesterol-Substituted Star PEG-b-PLLA Copolymers:AnInjectable Scaffold for Tissue Engineering. Adv. Funct. Mater.2008,18:1220-1231
    [161] WEIPU ZHU, ALPER NESE, KRZYSZTOF MATYJASZEWSKI.Thermoresponsive Star Triblock Copolymers by Combination of ROP and ATRP:From Micelles to Hydrogels. Journal of Polymer Science Part A: Polymer Chemistry2011,49:1942-1952.
    [162] Alexander, N.J., Baker, E., Kaptein, M., Karck, U., Miller, L., Zampaglione,E. Whyconsider vaginal drug administration? Fertil. Steril.2004,82:1-12.
    [163] Garg, S., Tambwekar, K.R., Vermani, K., Kandarapu, R., Garg, A., Waller,D.P.,Zaneveld, L.J.D. Development pharmaceutics of microbicide formulations. Part II.Formulation, evaluation, and challenges. AIDS Patient Care STDs2003,17:377-399.
    [164] Vermani, K., Garg, S. The scope and potential of vaginal drug delivery. Pharm. Sci.Technol. Today2000,3:359-364.
    [165] Hussain, A., Ahsan, F. The vagina as a route for systemic drug delivery. J. Control.Release2005,103:301-313.
    [166] Justin-Temu, M., Damian, F., Kinget, R., Van Den Mooter, G. Intravaginal gels asdrug delivery systems. J. Womens Health (Larchmt.)2004,13:834-844.
    [167] Chang, J.Y., Oh, Y.K., Choi, H., Kim, Y.B., Kim, C.K. Rheological evaluation ofthermosensitive and mucoadhesive vaginal gels in physiological conditions. Int. J.Pharm.2002,241:155-163.
    [168] Jeong, B., Kim, S.W., Bae, Y.H. Thermosensitive sol–gel reversible hydrogels. Adv.Drug Deliv. Rev.2002,54:37-51.
    [169] Chang, J.Y., Oh, Y.K., Kong, H.S., Kim, E.J., Jang, D.D., Nam, K.T.,Kim, C.K.Prolonged antifungal effects of clotrimazole-containing mucoadhesivethermosensitive gels on vaginitis. J. Control. Release2002,82:39-50.
    [170] Ruel-Gariepy, E., Leroux, J.C. In situ-forming hydrogels-review oftemperature-sensitive systems. Eur. J. Pharm. Biopharm.2004,58:409-426.
    [171] Tirnaksiz, F., Robinson, J.R. Rheological, mucoadhesive and release properties ofpluronic F-127gel and pluronic F-127/polycarbophil mixed gel systems. Pharmazie2005,60:518-523.
    [172] Sanchez-Gurrero J, Uribe A G, Jimenez-Santana L. A trial of contraceptive methodsin women with systemic lupis erythematosus. N Engl J Med,2005,353:2539-2549.
    [173] Cronin M. The long term safety of oral contraceptives. The2st Congress of theAsia-Pacific Council on Contraception (APCOC).2008, Dec5th, Macau, China.
    [174]李玮,吴建国,张玲,王福影.女性口服避孕药安全性问题探讨.医学与哲学,2007,28(2):47-49.
    [175] Milsom Ian. Medical and surgical treatment of heavy menstrual bleeding compared toMirena. The2st Congress of the Asia-Pacific Council on Contraception (APCOC).2008, Dec5th, Macau, China.
    [176] Arancibia V, Pena C, Allen H E, Lagos G. Characterization of copper in uterine fluidof patients who use the copper T-380A intrauterine device[J]. Clinica Chimica Acta,2003,332(1-2):69-78
    [177]杜天竹,李明,罗新.三种新型含铜宫内节育器宫底及宫颈部Cu2+浓度的初步探讨[J].实用妇产科杂志,2003,19(6):341-342
    [178] Beltran-Garcia M J, Espinosa Adriana E, et al. Formation of copper oxychloride andreactive oxygen species as causes of uterine injury during copper oxidation of Cu-IUD.Contraception,2000,61:99-103.
    [179] Cai S Z, Xia X P, Xie C S. Corrosion behavior of copper/LDPE nanocomposites insimulated uterine solution [J]. Biomaterials,2005,26:2671-2676
    [180] Mora N, Cano E, Mora E M, Bastidas J M. Influence of pH and oxygen on coppercorrosion in simulated uterine fluid [J]. Biomaterials,2002,23(3):667-671
    [181] Juan Li, Jinping Suo, Shifang Wang. The effect of copper(Ⅱ) on the thermal andmechanical properties of poly (vinyl alcohol)/silica hybrid, Polymer Engineering&Science,2009,49(8):1484-1490.
    [182] Juan Li, Jinping Suo, Xunbin Huang, Chang Ye, Xiwang Wu. Comparison of therelease behaviors of cupric ions from metallic copper and a novel composite insimulated body fluid, Journal of biomedical material research part B: Appliedbiomaterials,2008,85B:172-179.
    [183] Juan Li, Jinping Suo, Xunbin Huang, Lintao Jia. Study on a novel copper-containingcomposite for contraception. Contraception,2009,79(6):439-444.
    [184] Debashish Roy, Jennifer N. Cambre, Brent S. Sumerlin. Future perspectives andrecent advances in stimuli-responsive Materials. Progress in Polymer Science2010,35:278-301.
    [185] Min Kyung Joo, Min Hee Park, Bo Gyu Choi, Byeongmoon Jeong. Reversethermogelling biodegradable polymer aqueous solutions. J. Mater. Chem.,2009,19:5891-5905.
    [186] Yulin Li, Joǎo Rodrigues and Helena Tomás. Injectable and biodegradable hydrogels:gelation, biodegradation and biomedical applications. Chem Soc Rev.2012,41(6):2193-2221.
    [187] Grzegorz Lapienis. Star-shaped polymers having PEO arms. Progress in PolymerScience2009,34:852-892.
    [188] Sang Yeob Park, Dong Keun Han, Sung Chul Kim. Synthesis and Characterization ofStar-Shaped PLLA-PEO Block Copolymers with Temperature-Sensitive Sol-GelTransition Behavior. Macromolecules2001,34:8821-8824.
    [189] Sang Yeob Park, Bo Ryeong Han, Kwang Myoung Na, Dong Keun Han, Sung ChulKim. Micellization and Gelation of Aqueous Solutions of Star-Shaped PLLA-PEOBlock Copolymers. Macromolecules2003,36:4115-4124.
    [190] C. Hiemstra, Z. Zhong, P. J. Dijkstra, J. Feijen, Stereocomplex Mediated Gelation ofPEG-(PLA)2and PEG-(PLA)8Block Copolymers. Macromol.Symp.2005,224:119-131.
    [191] Christine Hiemstra,Zhiyuan Zhong, Liangbin Li, Pieter J. Dijkstra, Jan Feijen. In-SituFormation of Biodegradable Hydrogels by Stereocomplexation of PEG-(PLLA)8andPEG-(PDLA)8Star Block Copolymers. Biomacromolecules2006,7:2790-2795.
    [192] Christine Hiemstra,Wei Zhou, Zhiyuan Zhong, Marielle Wouters, Jan Feijen. Rapidlyin Situ Forming Biodegradable Robust Hydrogels by Combining Stereocomplexationand Photopolymerization. J. AM. CHEM. SOC.2007,129:9918-9926.
    [193] KOJI NAGAHAMA, KANAE FUJIURA, SHUNSUKE ENAMI, TATSURO OUCHI,YUICHI OHYA. Irreversible Temperature-Responsive Formation of High-StrengthHydrogel from an Enantiomeric Mixture of Starburst Triblock Copolymers Consistingof8-Arm PEG and PLLA or PDLA. Journal of Polymer Science: Part A: PolymerChemistry,2008,46:6317-6332.
    [194] Koji Nagahama, Tatsuro Ouchi, Yuichi Ohya. Temperature-Induced HydrogelsThrough Self-Assembly of Cholesterol-Substituted Star PEG-b-PLLA Copolymers:AnInjectable Scaffold for Tissue Engineering. Adv. Funct. Mater.2008,18:1220-1231
    [195] Lin Yu, Zheng Zhang, Huan Zhang, Jiandong Ding. Mixing a Sol and a Precipitate ofBlock Copolymers with Different Block Ratios Leads to an Injectable Hydrogel.Biomacromolecules2009,10:1547-1553.
    [196] Byeongmoon Jeong, Sung Wan Kim, You Han Bae. Thermosensitive sol-gelreversible hydrogels. Advanced Drug Delivery Reviews,2002,54:37-51.
    [197] Su Jeong Lee, Bo Ryeong Han, Sang Yeob Park, Dong Keun Han, Sung Chul Kim.Sol-Gel Transition Behavior of Biodegradable Three-arm and Four-arm Star-ShapedPLGA-PEG Block Copolymer Aqueous Solution. Journal of Polymer Science: Part A:Polymer Chemistry,2006,44:888-899.
    [198] Piotr Dobrzynski, Janusz Kasperczyk, Henryk Janeczek, Maciej Bero. Synthesis ofbiodegradable glycolide/L-lactide copolymers using iron compounds as initiators.Polymer,2004,43:2595-2601.
    [199] Lin Yu. Jiandong Ding. Injectable hydrogels as unique biomedical materials. Chem.Soc. Rev.,2008,37,1473–1481.
    [200] Byeongmoon Jeong, Sung Wan Kim, You Han Bae. Thermosensitive sol–gelreversible hydrogels. Advanced Drug Delivery Reviews.2002,54:37–51.
    [201] Yun Mi Kang, Sang Hyo Lee, Ju Young Lee,etal. A biodegradable, injectable, gelsystem based on MPEG-b-(PCL-ran-PLLA) diblock copolymers with an adjustabletherapeutic window. Biomaterials.2010,31:2453-2460.
    [202] Byeongmoon Jeong, Li Qiong Wang, Anna Gutowska. Biodegradablethermoreversible gelling PLGA-g-PEG copolymers. Chem. Commun.,2001,1516–1517.
    [203] Byeongmoon Jeong, Charles F. Windisch, Jr., Moon Jeong Park. Phase Transition ofthe PLGA-g-PEG Copolymer Aqueous Solutions. J. Phys. Chem. B2003,107,10032-10039.
    [204] Jeong BM, Lee DS, Shon Ji, Bae YH, Kim SW. Thermoreversible gelation ofpoly(ethylene oxide) biodegradable polyester block copolymers. J Polym Sci PartA:Polym Chem1999,37:751–760.
    [205] Choi SW, Choi SY, Jeong BM, Kim SW, Lee DS. Thermoreversible gelation ofpoly(ethylene oxide) biodegradable polyester block copolymers II. J Polym Sci Part A:Polym Chem1999,37:2207–2218.
    [206] Myung Seob Shim, Hyung Tak Lee, Woo Sun Shim, Insun Park, Hyunjung Lee,Taihyun Chang, Sung Wan Kim, Doo Sung Lee. Poly(D,L-lactic acid-co-glycolicacid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblockcopolymer and thermoreversible phase transition in water.Journal of BiomedicalMaterials Research Part A,2002,61:188-196.
    [207] Doo Sung Lee, Myung Seob Shim,Sung Wan Kim, Hyunjung Lee, Insun Park,Taihyun Chang. Novel Thermoreversible Gelation of BiodegradablePLGA-block-PEO-block-PLGA Triblock Copolymers in Aqueous Solution.Macromol. Rapid Commun.2001,22:587-592.
    [208] Halperin A, Tirrell M, Lodge T P. Tethered chains in polymer microstructures. Adv.Polym. Sci.,1992,100:31.
    [209] Allen C, Eisenberg A, Maysinger D. Copolymer drug carriers: conjugates micellesand microspheres. S.T.P. Pharma Sci.,1999,9:139.
    [210] Hwang MJ, Suh JM, Bae YH, Kim SW, and Jeong B. Caprolactonic PoloxamerAnalog: PEG-PCL-PEG. Biomacromolecules2005,6:885–890.
    [211] Lee J, Bae YH, Sohn YS, and Jeong B. Thermogelling Aqueous Solutions ofAlternating Multiblock Copolymers of Poly(l-lactic acid) and Poly(ethylene glycol).Biomacromolecules2006,7:1729–1734.
    [212] Nichole Fairley, Bryan Hoang, Christine Allen. Morphological Control ofPoly(ethylene glycol)-block-poly(ε-caprolactone) Copolymer Aggregates in AqueousSolution. Biomacromolecules2008,9,2283–2291.
    [213] Sandie Piogé, Laurent Fontaine, Cédric Gaillard, Erwan Nicol, Sagrario Pascual.Self-Assembling Properties of Well-Defined Poly(ethylene oxide)-b-poly(ethylacrylate) Diblock Copolymers. Macromolecules2009,42,4262-4272.
    [214] Prachur Bhargava, Yingfeng Tu, Joseph X. Zheng, Huiming Xiong, Roderic P. Quirk,Stephen Z. D. Cheng. Temperature-Induced Reversible Morphological Changes ofPolystyrene-block-Poly(ethylene Oxide) Micelles in Solution. J. AM. CHEM. SOC.2007,129,1113-1121.
    [215] Xuechang Zhou, Xiaodong Ye, Guangzhao Zhang. Thermoresponsive TriblockCopolymer Aggregates Investigated by Laser Light Scattering. J. Phys. Chem. B2007,111,5111-5115.
    [216] Paschalis Alexandridis, Josef F. Holzwarth, T. Alan Hatton. Micellization ofPoly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) TriblockCopolymers in Aqueous Solutions Thermodynamics of Copolymer Association.Macromolecules1994,27,2414-2425.
    [217] KOJI NAGAHAMA, KANAE FUJIURA, SHUNSUKE ENAMI, TATSURO OUCHI,YUICHI OHYA. Irreversible Temperature-Responsive Formation of High-StrengthHydrogel from an Enantiomeric Mixture of Starburst Triblock Copolymers Consistingof8-Arm PEG and PLLA or PDLA. Journal of Polymer Science: Part A: PolymerChemistry,2008,46,6317-6332.
    [218] Byeongmoon Jeong, Li-Qiong Wang, Anna Gutowska. Biodegradablethermoreversible gelling PLGA-g-PEG copolymers. Chem. Commun.,2001,1516-1517.
    [219] Loh XJ, Goh SH, and Li J. New Biodegradable Thermogelling Copolymers HavingVery Low Gelation Concentrations. Biomacromolecules2007,8:585-593.
    [220] Jeong B, Bae YH, and Kim SW. In situ gelation of PEG-PLGA-PEG triblockcopolymer aqueous solutions and degradation thereof. J Biomed Mater Res2000,50:171-177.
    [221] Kang Y M, Lee SH, Lee JY, Son JS, Kim BS, Lee B, Chun HJ, Min BH, Kim JH,Kim MS. A biodegradable, injectable, gel system based on MPEG-b-(PCL-ran-PLLA)diblock copolymers with an adjustable therapeutic window. Biomaterials2010,31:2453-2460.
    [222] Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectabledrug-delivery systems. Nature1997,388:860-862.
    [223] Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers forovercoming drug resistance in cancer. Adv Drug Deliv Rev2002,54(5):759-779.
    [224] Aamer KA, Sardinha H, Bhatia SR, Gregory N. Tew Rheological studies ofPLLA-PEO-PLLA triblock copolymer hydrogels. Biomaterials2004,25(6):1087-1093.
    [225] Kallrot M, Edlund U, Albertsson AC. Covalent Grafting of Poly(l-lactide) to Tune theIn Vitro Degradation Rate.Biomacromolecules2007,8:2492-2496.
    [226] Wu LB, Ding JD. In vitro degradation of three-dimensional porouspoly(d,l-lactide-co-glycolide) scaffolds for tissue engineering.Biomaterials2004,25:5821-5830.
    [227] Lin Yu, Zheng Zhang, Huan Zhang, Jiandong Ding. Biodegradability andBiocompatibility of Thermoreversible Hydrogels Formed from Mixing a Sol and aPrecipitate of Block Copolymers in Water. Biomacromolecules2010,11:2169-2178.
    [228] Pan Jie, Subbu S Venkatraman, Feng Min, Boey Yin Chiang Freddy, Gan Leong Huat.Micelle-like nanoparticles of star-branched PEO-PLA copolymers aschemotherapeutic carrier. Journal of Controlled Release2005,110:20-33.
    [229] Chengfei Lu, Li Liu, Sheng-Rong Guo, Yaqiong Zhang, Zonghai Li, Jianren Gu.Micellization and gelation of aqueous solutions of star-shaped PEG-PCL blockcopolymers consisting of branched4-arm poly(ethylene glycol) and polycaprolactoneblocks. European Polymer Journal2007,43:1857-1865.
    [230] YAHIA LEMMOUCHI, MICHAEL C. PERRY, ALLAN J. AMASS, KHIRUDCHAKRABORTY, ETIENNE SCHACHT. Novel synthesis of biodegradable starpoly(ethylene glycol)-block-poly(lactide) copolymers. Journal of Polymer Science:Part A: Polymer Chemistry,2007,45:3966-3974.
    [231] Keon Hyeong Kim, Guo Hua Cui, Hyung Jun Lim, June Huh, Cheol-Hee Ahn, WonHo Jo. Synthesis and Micellization of Star-Shaped Poly (ethylene glycol)-block-Poly(ε-caprolactone). Macromol. Chem. Phys.2004,205:1684-1692.
    [232] Chunhua Shen, Shengrong Guo, Chengfei Lu. Degradation behaviors of star-shapedpoly(ethylene glycol)-poly(ε-caprolactone) nanoparticles in aqueous solution. PolymerDegradation and Stability2007,92:1891-1898.
    [233] Owen DH, Katz DF, A vaginal fluid stimulant. Contraception1999,59:91-95.
    [234] Sandor M, Harris J, and Mathiowitz E. A novel polyethylene depot device for thestudy of PLGA and P (FASA) microspheres in vitro and in vivo. Biomaterials2002,23:4413-4423.
    [235] Cai Q, Shi GX, Bei JZ, and Wang SG. Enzymatic degradation behavior andmechanism of Poly(lactide-co-glycolide) foams by trypsin. Biomaterials2003,24:629-638.
    [236] Athanasiou KA, Niederauer GG, and Agrawal CM. Sterilization, toxicity,biocompatibility and clinical applications of polylactic acid/polyglycolic acidcopolymers. Biomaterials1996,17:93-102.
    [237]张炜。复方口服避孕药在妇科疾病治疗中的应用。上海医药,2011,32(3):110-112.
    [238]修瑞杰,顾向应。含吲哚美辛宫内节育器中吲哚美辛的作用及其机制。国际生殖健康/计划生育杂志,2011,30(6):454-457。
    [239] Yi Sun, JianCheng Wang, Xuan Zhang, ZhiJun Zhang, Yan Zheng, DaWei Chen,Qiang Zhang. Synchronic release of two hormonal contraceptives for about one monthfrom the PLGA microspheres: In vitro and in vivo studies. Journal of ControlledRelease2008,129:192-199.
    [240] Takahashi M, Onishi H, Maehida Y. Development of implant tablet for a week-longsustained release. J.Control.Release2004,100:63-74.
    [241] Onishi H, Takahashi M, Maehida Y. PLGA implant tablet of ketoprofen: comparisonof in vitro and in vivo releases. Biol.Pharm.BulL.2005,28:2011-2015.
    [242] Sun HF, Mei L, Song CX, Cui XM, Wang PY. The in vivo degradation, absorptionand excretion of PCL-based implant. Biomaterials2006,27,1735-1740.
    [243] Ma GL, Song CX, Sun HF, Yang J, Leng XG. A biodegradablelevonorgestrel-releasing implant made of PCL/F68compound as tested in rats anddogs. Contraception2006,74:141-147.
    [244] Intemational Conference on Harmonization of Technical Requirements for theRegistration of Pharmaceuticals for Human Use. Residual Solvents. Draft No1,1995.
    [245] Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGAmierospheres. Adv.Drug Deliv.Rev.1997,28:5-24.
    [246] Freiberg S, Zhu X. Polymer microspheres for controlled drug release. Int. J. Pharm.2004,282:1-18.
    [247] Tamber H, Johansen P, Merkle HP, Gander B. Formulation aspects of biodegradablepolymeric microspheres for antigen delivery. Adv. Drug Deliv. Rev.2005,57:357-376.
    [248] Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation proeesstechnology. J.Control.Release2005,102:313-332.
    [249] Wang YC, Tang LY, Li Y, Wang J. Thermoresponsive Block Copolymers ofPoly(ethylene glycol) and Polyphosphoester: Thermo-Induced Self-Assembly,Biocompatibility, and Hydrolytic Degradation. Biomacromolecules2009,10:66-73.
    [250] Lee J, Bae YH, Sohn YS, Jeong B. Thermogelling Aqueous Solutions of AlternatingMultiblock Copolymers of Poly(l-lactic acid) and Poly(ethylene glycol).Biomacromolecules2006,7:1729–1734.
    [251] Loh XJ, Tan YX, Li Z, Teo LS, Goh SH, Li J. Biodegradable thermogelling poly(esterurethane)s consisting of poly(lactic acid)-Thermodynamics of micellization andhydrolytic degradation. Biomaterials2008,29:2164-2172.
    [252] Jeong B, Bae YH, Kim SW. Thermoreversible Gelation of PEG-PLGA-PEG TriblockCopolymer Aqueous Solutions. Macromolecules1999,32:7064-7069.
    [253] Lee DS, Shim MS, Kim SW, Lee HJ, Chang T. Novel thermoreversible gelation ofbiodegradable PLGA-b-PEO-b-PLGA triblock copolymers in aqueous solution.Macromol Rapid Commun2001,22:587–592.
    [254] Hwang MJ, Suh JM, Bae YH, Kim SW, Jeong B. Caprolactonic Poloxamer Analog:PEG-PCL-PEG. Biomacromolecules2005,6:885–890.
    [255] Kim MS, Hyun H, Seo KS, Cho YH, Lee JW. Preparation and characterization ofMPEG-PCL diblock copolymers with thermo-responsive sol-gel-sol phase transition.J. Polym. Sci., Part A: Polym. Chem.2006,44:5413-5423.
    [256] Zentner GM, Rathi R, Shih C, McRea JC, Seo MH. Biodegradable block copolymersfor delivery of proteins and water-insoluble drugs. J. Controlled Release2001,72:203–215.
    [257] Li Z, Ning W, Wang J, Choi A, Lee PY. Controlled Gene Delivery System Based onThermosensitive Biodegradable Hydrogel. Pharm. Res.2003,20:884-888.
    [258] Choi S, Kim SW. Controlled Release of Insulin from Injectable BiodegradableTriblock Copolymer Depot in ZDF Rats. Pharm. Res.2003,20:2008-2010.
    [259] Yu L, Chang GT, Zhang H, Ding JD. Injectable block copolymer hydrogels forsustained release of a PEGylated drug. Int. J. Pharm.2008,348:95-106.
    [260] Yu L, Zhang Z, Zhang H, Ding J. Mixing a Sol and a Precipitate of Block Copolymerswith Different Block Ratios Leads to an Injectable Hydrogel. Biomacromolecules2009,10:1547-1553.
    [261] Yu L, Zhang Z, Zhang H, Ding JD. Biodegradability and Biocompatibility ofThermoreversible Hydrogels Formed from Mixing a Sol and a Precipitate of BlockCopolymers in Water. Biomacromolecules2010,11:2169-2178.
    [262] Jeong BM, Lee DS, Shon Ji, Bae YH, Kim SW. Thermoreversible gelation ofpoly(ethylene oxide) biodegradable polyester block copolymers. J Polym Sci Part A:Polym Chem1999,37:751-760.
    [263] Choi SW, Choi SY, Jeong BM, Kim SW, Lee DS. Thermoreversible gelation ofpoly(ethylene oxide) biodegradable polyester block copolymers II. J Polym Sci Part A:Polym Chem1999,37:2207-2218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700