二氧化碳中和法处理水合铝酸钙的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在碱法生产氧化铝过程中,水合铝酸钙是一种重要的化合物,很容易广泛生成于生产的各个阶段,造成氧化铝的损失。
     3CaO·Al203·6H20是众多水合铝酸钙中最主要的一种,与水化石榴石化学性质相似。所以研究从水合铝酸钙中回收氧化铝不仅可以提高水合铝酸钙中氧化铝的回收率,而且对于从钠硅渣脱碱后渣(主要含水化石榴石)中回收氧化铝有重要的指导意义,另外对其他工业中产生的固体铝酸钙的处理同样有参考价值。
     本文在常压、较低温度条件下对从C3AH6中回收氧化铝进行了研究,并对相关反应机理进行了探讨;研究分为两步,首先在水中用CO2对C3AH6进行分解处理,使之分解为Al(OH)3和CaCO3,然后再用碱液从分解渣中浸出氧化铝。主要研究内容和结论如下:
     (1)对铝酸钙分解和分解渣溶铝过程进行了热力学分析。计算结果表明,用CO2分解处理C3AH6和用碱液从分解渣中回收氧化铝是可行的,为本文的实验研究提供了理论指导。
     (2)研究了温度、CO2浓度、时间、液固比和水合铝酸三钙生成条件对铝酸钙分解过程的影响,并对分解机理进行了探讨。结果表明,在空气和乙醇介质中,C3AH6与CO2间的反应十分缓慢;而在水中时,C3AH6的水化与HCO3-的生成使C3AH6与CO2之间分子与分子的作用变为水溶液中众多离子之间的作用,促进了C3AH6与CO2的反应速率,生成CaCO3、结晶不完善的Al(OH)3和H2O。提高反应温度、CO2浓度及延长反应时间均能提高C3AH6在水中与CO2的反应速率。C3AH6在水中与CO2反应存在两种主要的反应方式,即在反应初期主要取决于C3AH6的水化作用,反应中后期则以HCO3-分解C3AH6为主。
     (3)研究了起始苛性碱浓度、液固比,温度、时间和铝酸钠溶液组成等对分解渣溶铝过程的影响,并对溶铝过程机理进行了探讨。结果表明溶铝过程中氧化铝溶出率随起始苛性碱浓度的升高先升高后降低,随温度的升高而升高;溶铝过程中Al(OH)3的溶解反应与CaCO3的反苛化反应同时进行,明确了Al(OH)4对反苛化的促进作用;增加起始碳碱浓度、提高温度能有效抑制反苛化反应,提高氧化铝的溶出率,而添加草酸钠不能有效提高氧化铝溶出率。
Hydrated calcium aluminates are important compounds in the alumina refining process by alkali method, which can be generated easily in various stages of production, resulting in the loss of alumina.
     3CaO·Al2O3·6H2O (C3AH6) is the foremost one among the numerous hydrated calcium aluminates, whose chemical property is similar with hydrogarnet. So to study the recovery of alumina from the hydrated calcium aluminates not only can raise alumina recovery rate, but also can be an important guideline for recovering alumina from dealkalization residue (mainly containing hydrogarnet); in addition, it can make reference to deal with the solid calcium aluminate produced by other industries.
     In this paper a novel method by which alumina is recovered from hydrated calcium aluminates at normal pressure and low temperature has been studied, and the related reaction mechanism has been discussed. The research consists of two steps, firstly hydrated calcium aluminates were decomposed into Al (OH) 3 and CaCO3 by using CO2 as the reagent in water medium, then alumina was dissolved from the residue by using alkali liquor. Main contents and conclusions are as follows:
     (1) Using C3AH6 as research object. Thermodynamic analysis of the process of decomposition and dissolving alumina were done. Results show that the decomposition by using CO2 as the reagent and the dissolving alumina by using alkali liquor are feasible, which provided a theoretical guidance for experimental research in this paper.
     (2) The influencing factors such as temperature, the concentration of CO2 in the mixture of CO2 and air, and reaction medium, the mechanism of decomposition were studied. Results show that the reaction rate of C3AH6 with CO2 is extremely slow both in the air and in the ethanol medium. However, in the medium of water, the reaction occurs quickly with the products of Al (OH) 3, CaCO3 and H2O, because the reaction of molecules between C3AH6 and CO2 has been changed into the reaction among the ions in aqueous solution as a result of the solvation of C3AH6 and the formation of HCO3. The reaction rate increases with the increase of the reaction temperature, CO2 concentration and reaction time. The mechanism of decomposition, that the reaction rate is determined mainly by the solvation of C3AH6 in the initial stage of the reaction and by the formation of HCO3 in the late reaction stage, is proposed by combining with the change of pH value in the reaction process.
     (3) The influencing factors such as initial concentration of Na2OK, L/S radio, reaction temperature, reaction time, CaCO3 and composition of aluminate solution and the mechanism of dissolving alumina were studied. Results show that the dissolution rate of alumina increases with temperature increment; it also increases with the elevation of initial concentration of Na2OK firstly, but decreases later. During the progress of dissolving alumina, the dissolution reaction of Al(OH)3 and the anti-causticization reaction of CaCO3 occur at the same time. Obviously the promotion of Al(OH)4- to the reaction of anti-causticization is confirmed. Increasing the initial concentration of Na2Oc and the reaction temperature can effectively inhibit the anti-causticization reaction, but the addition of sodium oxalate on the inhibition of anti-causticization is not obvious.
引文
[1]陈祺,关慧,勤熊慧.世界铝工业资源-铝土矿-氧化铝开发利用情况[J].矿业与投资,2007,(1):27-33
    [2]王安建,王高尚,张建华,等.矿产资源与国家经济发展[M].北京:地震出版社,2002:56-88
    [3]殷俐娟.我国铝土矿资源利用现状及未来管理政策[J].世界有色金属,2003,(11):4-8
    [4]赵恒勤,李劫,王立卓,等.中国铝土矿资源及氧化铝生产技术状况透析[J].矿产保护与利用,2001,(5):38-42
    [5]徐天仇.刘中凡.祝修怡.我国铝土矿资源对氧化铝工业保证程度的分析[C].中国有色金属学会第三届学术论文集(战略研究综述部分),1997,(10):210
    [6]欧阳坚,卢寿慈.我国铝土矿资源特征与选矿加工研究[J].矿产综合利用,1995,(02):24-27
    [7]Satpathy B K,Mohanty R C.Development of special grade hydrate and alumina [J]. Light Metals,1994:147-153
    [8]申慧.世界铝土矿和氧化铝的发展趋势[J].有色金属工业,2003,(8):24-28
    f91姚育弘,关西安,王俐,等.氧化铝工业可持续发展战略研究[J].世界有色金属,1999,(11):4-7
    [10]周国宝.略论发展我国氧化铝工业战略取向[J].世界有色金属,2004,(1):25
    [11]赵清杰,陈建华.中国氧化铝工业发展战略措施探讨[J].镁铝通讯,2001,(3):1-4
    [12]杨巧芳,赵清杰.我国氧化铝工业现状及世纪初发展战略探讨[J].世界有色金属,2001,(3):24-26
    [13]陶英君,杨玉华.我国氧化铝发展现状与发展建议[J].轻金属,1998,7(3):3-9
    [14]黄国智,方启学.铝土矿脱硅技术研究进展[J].轻金属,1999,3(4):41-43
    [15]陈咸章.当前我国氧化铝生产中的几个问题[J].有色金属,1999,3(9):26-28
    [16]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社,1993:47-251
    [17]毕诗文.氧化铝生产工艺[M].北京:化学工业出版社,2006:222
    [18]《联合法生产氧化铝》编写组.联合法生产氧化铝基础知识[M].北京:冶金工业出版社,1975:33-37
    [19]邢东生,管永诗.我国铝土矿资源及氧化铝工业的现状与分析[J].采矿技术,2001,6(7):53-55
    [20]顾松青.我国的铝土矿资源和高效低耗的氧化铝生产技术[J].中国有色金属学报,2004,14(5):92-97
    [21]何波.我国氧化铝工业发展方向[A].见:第八届全国氧化铝学术会议.暨第九届氧化铝技术信息交流会论文集[C].山西,1996:18-22
    [22]邵志博.中国氧化铝工业的发展方向[J].世界有色金属,1999,3(6):8-12
    [23]Guan Shuren. Measures for saving energy in alumina production [J]. Light Metals,1990, (9):1011-1014
    [24]Zheng Shangguan. Improvements of hydrometallurgical flow sheet in soda-lime sintering process [J]. Light Metals,1999, (5):77-83
    [25]Yan D 0, Li H L. Discussion on heat consumption in the manufacture of alumina by soda-lime sintering process [A]. In: Proceedings of the 119th TMS annual Meeting. Light Metals[C]. Orlando, Florida,1990:157-160
    [26]李小斌,张宝琦,程裕国,等.强化烧结法氧化铝生产工艺[P].中国:ZL99109676,2002-12-04:
    [27]Wieslawa Nocun-Wczelik. Effect of inorganic admixtures on the formation and properties of calcium silicate hydrates produced in hydrothermal conditions [J]. Cement and Concrete Research,1997,27(1):83-88
    [28]赵东峰.粗液一段常压脱硅工艺及产业化研究[D].长沙:中南大学,2005:
    [29]李小斌.铝酸钠溶液铝硅分离工艺与理论研究[D].沈阳:东北大学,2000:
    [30]Liu Guihua, Li Xiaobin, Peng Zhihong, et al. Formation and Solubility of Potassium Alumino-silicate [J], Transactions of Nonferrous Metals Society of China 1998,(8):120-122
    [31]Zhang Yifei, Li Yinghui, Zhang Yi, Supersolubility and induction of alumino-silicate nucleation from clear solution [J]. Journal of Crystal Growth, 2003, (254):156-163
    [32]J. Addai-Mensah, A.R. Gerson, K. Zheng, et al.The precipitation mechanism of sodium alumino-silicate scale in Bayer plant [A]. In: 126th TMS annuals meeting. Light Metals[C]. Orlando, Florida,1997:23-28
    [33]H. Muller-Steinhagen, M. Jamialahmadi, An investigation into the formation of DSP on heat transfer surface [A], In: 122nd TMS annuals meeting. Light Metals [C].San Diego, California,1992:159-165
    [34]张国范.铝土矿浮选脱硅基础理论及工艺研究[D].长沙:中南大学,2001:
    [35]胡岳华,蒋昊,邱冠周,王淀佐.一水硬铝石型铝土矿铝硅浮选分离的溶液化学[J].中国有色金属学报,2001,11(01):125-130
    [36]王恩孚,等.选矿-拜耳法处理中国高硅铝土矿生产氧化铝的探讨[J].轻金属,1996,(3):3-6
    [37]魏新超,韩跃新,印万忠,陈炳辰.河南铝土矿选择性磨矿的试验研究[J].黄金学报,2001,3(3):192-194
    [38]姜涛,邱冠周,李光辉,等.中低品位铝土矿选矿预脱硅的新进展[J].矿冶工程,1999,2(19):4-6
    [39]黄国智,方启学,崔吉让,等.铝土矿脱硅方法及其研究的进展[J].轻金属,999,(5):19-20
    [40]罗琳,刘永康.一水硬铝石-高岭石型铝土矿焙烧脱硅热力学机理研究[J].有色金属学报,1999,51(1):25-29
    [4l]姜涛,李光辉,范晓慧,黄柱成,邱冠周.一水硬铝石型铝土矿焙烧碱浸脱硅新工艺[J].有色金属学报,2000,10(4):534-538
    [42]李光辉.一水硬铝石型铝土矿焙烧碱浸脱硅工艺及机理研究[D].长沙:中南工业大学,1999:
    [43]李小斌,杨重愚,龙远志.焙烧过程对一水硬铝石型铝土矿溶出性能的影响[J].轻金属,1987,(4):9-13
    [44]刘桂华.铝土矿全湿法预处理工艺和机理研究[D].长沙:中南工业大学,1998:
    [45]刘桂华,李小斌,彭志宏,张传福,何伯泉.铝土矿湿法预处理的研究进展[J].矿冶工程,2000,20(3):55-58
    [46]刘桂华,何伯泉,李小斌,彭志宏,张传福.高岭石与氢氧化纳溶液反应动力学研究[J].有色金属,1998,(3):30-32
    [47]赵恒琴,金梅,王友和.山西中低品位铝土矿的石灰拜耳法溶出[J].矿产保护与利用,2002,(2):41-44
    [48]付高峰,田福泉,权 昆.中低品位铝土矿石灰拜耳法溶出的研究[J].东北大学学报,2005,26(11):1093-1095
    [49]马朝建,赵岚.用我国中低品位一水硬铝石矿生产氧化铝的新方法[J].轻金属,1998,(12):7-12
    [50]徐双.高浓度铝酸钠溶液脱硅工艺与理论研究[D].长沙:中南大学,2008:
    [51]刘连利,刘玉静,翟玉春.铝酸钠溶液脱硅的研究进展[J].化学研究与应用,2004,16(5):590-592
    [52]刘连利,翟玉春.铝酸钠溶液脱硅的研究现状及进展[J].锦州师范学院学报,2003,24(2):1-4
    [53]李新华,刘丕旺,朱金勇,等.添加水化铁酸钙拜耳法新工艺的机理、研究进展及应用前景[A].中国有色金属学会第六届学术年会议论文[C].长沙:中南大 学出版社,2005
    [54]F.Pawlek, M.J.Kheiri, R.Kammel. The Leaching Behavior of Bauxite during Mechano-chemical Treatment [J]. Light Metals,1992:91-95
    [55]赵福辉,芦东.拜耳法外排赤泥铝硅比升高原因及抑制措施的探讨[J].世界有色金属,2002,(2):25-29
    [56]朱应宝.烧结法硅渣浆氧化铝的回收[A].见:中州铝厂专集.轻金属论文集[C].河南郑州:沈阳铝镁设计研究院,2000:
    [57]张亚莉.钠硅渣湿法处理工艺与理论研究[D].长沙:中南大学,2003:
    [58]蔡留芳.拜耳法生产氧化铝过程中碱溶液反苛化与苛化问题浅析[J].轻金属,1990,(8):18-20
    [59]彭志宏.铝酸钠溶液添加水合碳铝酸钙脱硅的研究[D].长沙:中南工业大学,1993:
    [60]潘国耀,毛若卿,袁坚.水合铝酸钙(C3AH6)脱水相及脱水研究[J].武汉工业大学学报,1997,(19)3:25-27
    [61]巴布什金B.И,马特维耶夫Г.M.硅酸盐热力学[M].北京:中国建筑工业出社,1983:254-259
    [62]阮复,黄国水.铝的生物毒性及其防治策略[J].环境污染与防治,1999,21(5):32-36
    [63]刘邦煜,王宁,石莉,等.工业稀盐酸和铝酸钙制取结晶氯化铝研究[J].地球与环境,2008,36(3):226-229
    [64]金洪珠,邵延安,汪馥馨.用铝酸钙粉生产聚合氯化铝[J].无机盐工业,1993,(5):35-38
    [65]成都科技大学.高效复合混凝剂及其生产方法[P].中国:90106151,1991-09-25:
    [66]周玉龙.用硬铝矿石生产混凝剂的方法[P].中国:91110463,1996-08-21:
    [67]Eremin NI, Durandina MS. Interaction of 12CaO·7Al2O3 with sodium carbonate solutions [J]. Zhurnal Prikladnoi Khimii,1969,42(12):2663-2668
    [68]佟志芳,毕诗文,李慧莉,杨毅宏.高炉铝酸钙炉渣浸出过程动力学[J].过程工程学报,2005,5(4):399-402
    [69]仇振琢.苛化溶出铝酸钙[J].轻金属,1992,(4):18-21
    [70]邝中,李涛,杨世干.含铝酸钙的物料提取氧化铝工艺[P].中国:1562756,2005-01-12:
    [71]Peter G.Smith, Russell M. Pennifold, Michael G. Daviess. Reactions of carbon dioxide with Tri-calcium aluminate [A].In:Hydrometallurgy International Conference. Electrometallurgy and Environmental Hydrometallurgy [C].2003:1705-1715
    [72]Byпax AΓ.矿物学中热力学方法[M].北京:地质出版社,1982:136-142
    [73]温元凯,邵俊,陈德伟.含氧酸盐矿物生成自由能的计算[J].地质科学,1978,4(12):348-357
    [74]温元凯,邵俊,王三山.含氧酸盐矿物生成热的简单计算[J].金属学报,1979,15(3):98-103
    [75]李小斌,李永芳,刘桂华,等.复杂化合物硅酸盐吉布斯自由能和焓的一种近似算法[J].硅酸盐学报,2001,4(3):45-49
    [76]叶大伦著.冶金热力学[M].长沙:中南工业大学出版社,1987
    [77]Criss C M. The corresponding theory of ion entropy [J]. J Amer Chem Soc,1964, 45(86):53-85
    [78]Rusell A.S, Edwards J.D, and Taylor C.S. Solubility and density of hydrated aluminas in NaOH solutions [J]. Journal of Metals,1955,203(7):1123-1128
    [79]杨显万,何蔼平.高温水溶液热力学数据计算手册[M].北京:科学出版社,1983
    [80]李永芳.氧化铝生产数据库的研究与开发[D].长沙:中南大学,2001
    [81]陈滨.氧化铝生产孰料溶出二次反应与高浓度粗液制备技术[D].长沙:中南大学,2008
    [82]张家芸.冶金物理化学[M].北京:冶金工业出版社,2004
    [83]饶东升著.硅酸盐物理化学(修订版)[M].北京:冶金工业出版社,1991
    [84]LI Xiaobin, Lv Weijun, FENG Gangtao, et al. The applicability of Debye-Huckel model in NaAl(OH)4-NaOH-H2O system [J]. The Chinese Journal of Process Engineering,2005,5(5):525-528
    [85]LI Xiaobin, Lv Weijun, LIU Guihua, et al. An activity coefficients calculation model for NaAl(OH)4-NaOH-H2O system [J]. Journal of Central South University,2006,37(6):493-497
    [86]彭小奇,宋国辉,宋彦坡,张建智,刘振国.NaOH-NaAl(OH)4-Na2CO3-H2O体系活度因子的计算模型[J].有色金属学报,2009,(19)7:1332-1337
    [87]姚允斌,解涛,高英敏编.物理化学手册[M].上海:上海科学技术出版社,1985
    [88]Whittington BI.Tricalcium aluminate hexahydrate filter aid in the bayer industry: factors affecting TCA preparation and morphology [J]. International Journal of Mineral Processing,1997,49(1/2):1-29
    [89]梁英教.物理化学[M].北京:冶金工业出版社,1989:79
    [90]傅崇说.有色冶金原理(修订版)[M].北京:冶金工业出版社,1993:86
    [91]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987:193-212
    [92]黄胜涛等.非晶态材料的结构和结构分析[M].北京:科学出版社,1987
    [93]梁敬魁.粉末衍射法测定晶体结构[M].北京:科学出版社,2003
    [94]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出社,1989
    [95]Frost R L, Kloprogge J T. Vibrational Spectroscopy and Dehydroxylation of Aluminum Hydroxides:Gibbsite [J].Applied Spectroscopy,1999,53(4):423-428
    [96]Kloprogge J T, Ruan H D, Frost R L. Thermal Decomposition of Bauxite Minerals:Infrared Emission Spectroscopy of Gibbsite, Boehmite and Diaspore [J].J. Mater. Sci,2002,37(6):1121-1129
    [97]白颖,李建伟.红外光谱仪在PVC异型材生产中的应用[J].聚氯乙烯,2007,(5):37-38
    [98]王芹珠,杨增家.有机化学[M].北京:清华大学出版社,1997:203
    [99]李以圭,陆九芳.电解质溶液理论[M].北京:清华大学出版社,2005:68-69
    [100]华东理工大学无机化学教研室编[M].北京:化学工业出版社,2001:119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700