麻疯树EST-SSR和SSR标记开发及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻疯树是新兴能源植物,属于大戟科多年生灌木,起源于中南美洲,广泛分布于全球热带亚热带地区。野生或半栽培的麻疯树能够在干热的气候和贫瘠的土壤条件下生长。麻疯树的种仁含有高比例的油酸和亚油酸,这些不饱和脂肪酸具有半干性特性,与石化柴油性能相近,可以开发作为生物柴油利用。近年来,利用麻疯树发展生物柴油使用潜力的经济价值逐渐被人们重视。
     但目前对麻疯树的资源收集和相关基础性研究非常有限,本研究通过对大戟科木薯的SSR引物在麻疯树的通用性检测,成功转化241对麻疯树SSR引物,并利用其中56对引物评价了本实验室所收集的45份麻疯树的遗传多样性。同时,利用这些SSR构建了麻疯树的初级分子标记遗传连锁图谱。具体结果如下:
     1.本研究共获得302个在麻疯树中有特异扩增产物EST-SSR和SSR标记,241个在5个供试品系中具有多态性。其中EST-SSR标记187个,SSR标记54个,全部多态性标记的引物序列、扩增参数均登录在Genebank数据库共享。这些具有多态性的EST-SSR的核苷酸碱基重复类型分别是双核苷酸重复类型(26.20%)、三核苷酸重复类型(57.75%)、四核苷酸重复类型(8.56%)和五核苷酸重复类型(7.49%)。此外,在具有多态性的SSR中,主要是双核苷酸重复类型(62.96%)。
     2.利用36对EST-SSR和20对SSR引物分析45份麻疯树的遗传多样性,总共获得183个多态性位点,基于这些多态性位点将45份麻疯树种质分为6个类群(类群Ⅰ、类群Ⅱ、类群Ⅲ、类群Ⅳ、类群Ⅴ和类群Ⅵ),与其地理起源基本相似。类群内的遗传多样性指数在0.4099到0.5072之间,物种水平的遗传多样性指数为0.5572,表明本实验室收集的麻疯树资源具有较高的遗传多样性水平。
     3.用遗传差异较大的云南株系YN049和海南株系H001-31-1杂交,构建了包含240个F1单株的分离群体,试图构建麻风树的分子遗传图谱。初步选用31对EST-SSR引物对作图群体进行了遗传多态性检测,共获得83个多态性位点,其中45个满足1:1或3:1的分离比例。利用JoinMap3.0软件进行连锁群分析,获得3个较大的连锁群,共包含21个SSR标记,该连锁群的总图距为158.67cM,标记间的平均图距为7.56cM,相关工作有待进一步完善。
Jatropha curcas (L.) is a newly energy plant and perennial shrub, belonging to the Euphorbiaceae family. This species is native of Central and South America but widely distributed in the tropics and subtropical area in the world. J. curcas can grow well under xerothermic climatic and sterile soil conditions by the form of wild or semi-cultivated type. The kernel contain high percentage of oleic and linoleic acid, and these unsaturated fatty acid has a semi-drying property, closing to petrochemical diesel fuel property, it may be developed as biodiesel. In recent years, the economic importance of J. curcas has been increasingly recognized as the potential use for biodiesel.
     But our understanding on this crop remains very limited as germplasm collection and basal research work are very limited. The present study aimed to identify a set of SSR markers transferability available from Manihot esculenta (cassava), a species in the same Eurphorbiacae family as Jatropha.241 SSR markers are transferred successfully,56 of which are used to study genetic diversity among 45 Jatropha accessions from collections in our germplasm bank and construct a primary molecule marker genetic linkage map of J. curcas. The results are addressed in this paper:
     1. A total of 302 EST-SSR and SSR markers were found to be amplifiable in J. curcas. Of them,241 SSR markers were polymorphic in five tested lines. In these polymorphic markers, including 187 EST-SSR markers and 54 SSR markers, their primer sequences and parameters of amplification are logged in the Genebank Database. Analysis of the nucleotide sequences of the polymorphic EST-SSRs and SSRs showed that, in J. curcas, the EST-SSRs corresponded to 57.75% trinucleotide repeats,26.20% dinucleotide repeats,8.56% pentanucleotide repeats, and 7.49% tetranucleotide repeats. In contrast, the SSRs were composed mainly of dinucleotide repeats (62.96%).
     2. Thirty-six EST-SSRs and twenty SSRs were chosen for detection of genetic diversity in 45 Jatropha accessions, and a total of 183 polymorphic loci have been revealed in the population. Based on the data of polymorphic loci, these germplasm were grouped into 6 clusters (including clusterⅠ, clusterⅡ, clusterⅢ, clusterⅣ, clusterⅤand clusterⅥ), which generally reflect their differences by the geographic origin. The intergroup genetic diversity index ranged from 0.4099 to 0.5022, and an estimated average of genetic diversity index (Ⅰ) reached to 0.5572 suggested a considerable high genetic diversity in the Jatropha germplasm collection.
     3. A SSR linkage map is constructed using two high genetic diversity clones cross Yunnan clone YN049 and Hainan clone H001-31-1. The F1 segregating popultion is composed of 240 seedlings. Initially,31 EST-SSR primers were seclected to detect genetic polymorphism in the popultion. There are 45 loci accord to 1:1 or 3:1 segregation ratio among 83 polymorphic loci. The map is consist of 21 markers and be divided to 3 linkage groups by JoinMap3.0 software. The total distance of the map is 158.67cM. The average interval is 7.56cM. The genetic linkage map must be further completed in the future.
引文
1.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社,2000
    2.林娟,周选围,唐克轩,等.麻疯树植物资源研究概况.热带亚热带植物学报,2004,12:285-290
    3.李维明,Worl A J.用籼/粳交重组自交系群体构建的分子遗传图谱及其与籼/粳交群体的分子图谱的比较.中国水稻科学,2000,14:71-78
    4.欧文军,王文泉,李开绵.120份小桐子种质的分子遗传多样性分析.热带作物学报,2009,30:284-292
    5.丘华兴.中国植物志(第四十四卷,第二分册).北京:科学出版社,1996,148
    6.吴国江,刘杰,娄治平,等.能源植物的研究现状及发展建议.中国科学院院刊,2006,21:53-57
    7.吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数.福建农业大学学报,1997,26:129-132
    8.谢无畏,林凡荣,徐莺等.麻疯树育种指标的研究.安徽农业大学学报,2009,36:387-392
    9.向振勇,宋松泉,王桂娟,陈茂盛,杨成源,龙春林,云南植物研究,2007,29:619-624
    10. Adolf W, Opferkuch H J, Hecker E. Irritant phorbol derivatives from four Jatropha species. Phytochemistry,1984,23:129-132
    11. Akintayo ET. Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes. Bioresour. Technol,2004,92:307-310
    12. Akkaya MS, Bhagwat AA, Cregan PB. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics,1992,132:1131-1139
    13. Aregheore EM, Makkar HPS, Becker K. Lectin activity in toxic and non-toxic varieties of J. curcas using a latex agglutination test. In:Gubitz GM, Mittelbach M, Trabi M (Eds.), Biofuels and Industrial Products from Jatropha curcas.DBV Graz,1997, pp.65-69
    14. Areshehenkova T, Ganal MW. Comparative analysis of polymorphism and Chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet,2002,104:229-235
    15. Augustus GDPS, Jayabalan M, Seiler GJ. Evaluation and bioinduction of energy components of Jatropha curcas. Biomass Bioenergy,2002,23:161-164
    16. Basha SD, George F, Makkar HPS, Becker K, Sujatha M. A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries, Plant Science,2009,176 812-823
    17. Basha SD, Sujatha M:Inter and intra-population variability of Jatropha curcas(L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica,2007,156:375-386
    18. Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol,2008,99:1716-1721
    19. Bory S, Silva DD, Risterucci AM, et al. Development of microsatellite markers in cultivated vanilla:Polymorphism and transferability to other vanilla species. Scientia Horticulturae,2008,115:420-425
    20. Bradshaw HD, Stettler RE Molecular genetics of growth and development in Populus. II. Segregation distortion due to genetics load. Theoretical and Applied Genetics,1994,89: 551-558
    21. Brown GR, Kadel EE, Bassoni DL, Kiehne KL, Temesgen B, Vanbuijtenen JP, Sewell MM, Marshall KA, Neale DB. Anehored reference loci in loblolly pine (pinus taeda L.) for integrating pine genomics. Genetics,2001,159:799-809
    22. Carlos RC, Wellington RC, Milene MP, Fernanda SA, Nicolas C. Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant, Plant Science,2008,174:613-617
    23. Chen CX, Zhou P, Choi YA, Huang S, Gmitter FG:Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet,2006,112:1248-1257
    24. Chen HM, Li LZ, Wei XY, et al. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull,2005,50:2328-2336
    25. Chen X, Salamini F, Gebhardt C. A potato molecular function map for carbohydrate metabolism and transport. Theor AppI Genet,2001,102:284-295
    26. Cordeiro GM, Casu R, Mclntyre CL. Manners JM, Henry RJ. Microsatellite Markers from sugarcane (Saecharumspp.) ESTs cross transferable to helianthus and sorghum. Plant Science,2001,160:1115-1123
    27. Dalziel JM. The Useful Plants of West-Tropical Africa. Crown Agents for Oversea Governments and Administration, London,1955, pp.147
    28. Dehgan B, Webster GL. Morphology and Intrageneric Relationships of the Genus Jatropha (Euphorbiaceae).University of California Publications in Botany,1979,74
    29. Delgado Montoya JL, Parado Tejeda E. Potential multipurpose agroforestry crops identified for the Mexican Tropics. In:Wickens GE, Haq N, Day P (Eds.), New Crops for Food and Industry. Chapman and Hall, London,1989, pp.166-173
    30. Divakara BN et al..Biology and genetic improvement of Jatropha curcas L.:A review. Applied Energy,2010,87:732-742
    31. Duke JA. CRC Handbook of Medicinal Herbs. CRC Press, Inc., Boca Raton, FL,1985a
    32. Duke JA. CRC Handbook of Medicinal Herbs. CRC Press, Boca Raton, FL,1988, pp. 253-254
    33. Duke JA. Medicinal plants. Science,1985b,229:1036
    34. Dwimahyani I, Ishak. Induced mutation on jatropha (Jatropha curcas L.) for improvement ofagronomic characters variability.2004
    35. Echt CS, Nelson CD. Linkage mapping and genome length in eastern white pine (Pinus strobes L.). Theoretical and Applied Genetics,1997,94:1031-1037
    36. Eisa MN. Production of ethyl esters as diesel fuel substitutes in the developing countries. In:Gubitz GM, Mittelbach M, Trabi M. (Eds.), Biofuels and Industrial Products from Jatropha curcas. DBV Graz,1997, pp.110-112
    37. Eujayl I, Sorrells ME, Baum M, Wolters P. Isolation of EST derived microsatellite Markers for genotyping the A and B genomes of wheat. Theor Appl Genet,2002,104: 399-407
    38. Eujayl I, Sorrells M, Baum M, Wolters P, Powell W. Assessment of genotypic Variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica,2001, 119:29-34
    39. Fairless D. Biofuel:The little shrub that could maybe. Nature,2007,449(7163):652-655
    40. Foidl N, Eder P. Agro-industrial exploitation of J. curcas. In:Gubitz GM, Mittelbach M, Trabi M. (Eds.), Biofuels and Industrial Products from Jatropha curcas. DBV Graz,1997, pp.88-91
    41. Gandhi VM, Cherian KM, Mulky MJ. Toxicological studies on ratanjyot oil. Food Chem. Toxicol,1995,33:39-42
    42. Ganesh RS, Parthiban KT, Senthil Kumar R, Thiruvengadam V, Paramathma M. Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol, 2008,55:803-809
    43. Gao L, Tang J, Li H, Jia J. Analysis of microsatellites in major crops assessed by Computational and experimental approaches. Molecular Breeding,2003,12:245-261
    44. Gao LF, Tang JF, Li HW, et al. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed,2003,12:245-261
    45. Gubitz GM, Mittelbech M, Trabi M. Exploitation of tropical oil seed plant Jatropha curcas L. Bioresour. Technol,1999,67:73-82
    46. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Gen. Genomics,2003,270:315-323
    47. Hartmann HT, Kester DE. Plant Propagation. Principles and Practices, fourthed. Prentice-Hall, Inc., Englewood Cliffs,1983
    48. Heller, J. Physic Nut. Jatropha curcas L. Promoting the Conservation and use of Underutilized and Neglected Crops. International Plant Genetic Resources Institute, Rome,1996
    49. Hemalatha A, Radhakrishnaiah M. Chemosystematics of Jatropha. J. Econ. Taxonom. Bot, 1993,17:75-77
    50. HONG Yan-bin, LIANG Xuan-qiang, CHEN Xiao-ping, LIU Hai-yan, ZHOU Gui-yuan, LI Shao-xiong and WEN Shi-jie. Construction of Genetic Linkage Map Based on SSR Markers in Peanut(Arachis hypogaea L.), Agricultural Sciences in China,2008,7: 915-921
    51. Hua-Yu Zhu, Tian-Zhen Zhang, Lu-Ming Yang, Wang-Zhen Guo. EST-SSR sequences revealed the relationship of D-genome in diploid and tetraploid Species in Gossypium. Plant Science,2009,176:397-405
    52. Hufford CD, Oguntimein BO. Non-polar constituents of Jatropha curcas. Lloydia,1987, 41:161-165
    53. Jiang D, Zhong GY, Hong QB. Analysis of microsatellites in citrus unigenes. Acta Genetica Sinica,2006,33:345-53
    54. Jongschaap REE, Corre WJ, Bindraban PS, Brandenburg WA. Claims and facts on Jatropha curcas L. Wageningen, The Netherlands:Plant Research International,2007
    55. Kantety RV, Rota ML, Matthews DE, Sorrells ME. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol,2002,48:501-510
    56. Kasha KJ, Kao KN. High frequency haploid production in barley (Hordeum vulgare L.). Nature,1970,225:874-876
    57. Katwal RPS, Soni PL. Biofuels:an opportunity for socioeconomic development and cleaner environment. Indian Forester,2003,129:939-949
    58. Kaushik N, Kumar S. Jatropha curcas L. Silviculture and Uses. Agrobios (India), Jodhpur, 2004
    59. Khafagy SM, Mohamed YA, Abdel NA, Mahmoud ZF. Phytochemical study of Jatropha curcas. Plant. Med,1977,31:274-277
    60. Kobilke H. Untersuchungen zur Bestandesbegr undung von Purgiernuβ (Jatropha curcas L.). Diploma thesis. University Hohenheim, Stuttgart,1989
    61.Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A. Generation comparison of EST-derived SSRs and SNPs in barley(Hordeum, vulgare L.). Hereditas,2001,135: 145-151
    62. Lan TH, DelMonte TA, Reisehmann KJ, Hyman J, Kowalski SP, MeFerson J, Kresovieh S, Paterson AH. An EST-enriehed comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Research,2000,10:76-788
    63. Leela Tatikonda, Suhas P. Wani, Seetha Kannan, Naresh Beerelli, Thakur K. Sreedevi, David A, Hoisington, Prathibha Devi, Rajeev K Varshney. AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Science,2009,176:505-513
    64. LI Wei, DONG Pan, WEI Yu-ming, CHENG Guo-yue and ZHENG You-liang. Genetic Variation in Triticum turgidum L. ssp. turgidum Landraces from China Assessed by EST-SSR Markers. Agricultural Sciences in China,2008,7:1029-1036
    65. Li LZ, Wang JJ, Guo Y, et al. Development of SSR markers from ESTs of gramineous species and their chromosome location on wheat. Progress in Natural Science,2008,18: 1485-1490
    66. Liberalino AA, Bambirra EA, Moraes-Santos T, Vieira EC. Jatropha curcas L. seeds: chemical analysis and toxicity. Arq. Biol. Technol,1988,31:539-550
    67. Lieth H. Primary productivity of the major vegetation units of the world. In:Lieth H, Whittaker RK, editors. Primary productivity of the biosphere. Berlin:Springer,1975
    68. Linzhi Li, Junjun Wang, Ying Guo, Fangshan Jiang, Yunfeng Xu, Yingying Wang, Haitao Pan, Guanzhu Han, Ruijun Li, Sishen Li. Development of SSR markers from ESTs of gramineous species and their chromosome location on wheat. Progress in Natural Science, 2008,18:1485-1490
    69. Mitra CR, Bhatnagar SC, Sinha MK. Chemical examination of Jatropha curcas. Ind. J. Chem,1970,8:1047
    70. Makkar HPS, Becker K, Sporer F, Wink M. Studies on nutritive potential and toxic constituents of different provenanaces of Jatropha curcas. J Agric. Food Chem,1997,45: 3152-3157
    71. Makkar HPS, Becker K. Potential of J. curcas seed meal as a protein supplement to livestock feed; constraints to its utilization and possible strategies to overcome constraints. In:Giibitz GM, Mittelbach M, Trabi M. (Eds.), Biofuels and Industrial Products from Jatropha curcas. DBV Graz,1997, pp.190-205
    72. Makkar HPS, Becker K, Schmook B. Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Foods Human Nutr,1998,52:31-36
    73. Mba REC, Stephenson P, Edwards K, Melzer S, Nkumbira J, Gullberg U, Apel K, Gale M, Tohme J, Fregene M:Simple sequence repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome:towards an SSR-based molecular genetic map of cassava. Theor Appl Genet,2001,102:21-31
    74. Metzgar D, Bytof J, Wills C:Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res,2000,10:72-80
    75. Moore G, Devos KM, Wang Z and Gale MD. Grasses, line up and form a circle. Curr. Biology,1995,5:737-739
    76. Moretzsohn MC, Leoi L, Proite K, Guimaras PM, Leal-Bertioli SCM, Gimenes M A, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theoretical and Applied Genetics, 2005,111:1060-1071
    77. Morton NE. Sequentia ltests for the deteetion of linkage. Ameriean Journal of Human Genetics,1955,7:277-318
    78. Naengchomnong W, Tarnchompoo B, Thebtaranonth Y Jatropha, marmesin, propacin and jatrophin from the roots of Jatropha curcas (Euphorbiaceae). J. Sci. Soc. Thail,1994,20: 73-83
    79. Nath LK, Dutta SK. Extraction and purification of curcain, a protease from the latex of Jatropha curcas L. J.Pharm. Pharmacol,1991,43:111-114
    80. Nath LK, Dutta SK. Acute toxicity studies and wound healing response of curcain, a proteolytic enzyme extract from the latex of Jatropha curcas L. In:Gubitz, GM, Mittelbach M, Trabi M. (Eds.), Biofuels and Industrial Products from Jatropha curcas. DBV Graz,1997, pp.82-86
    81.Nikaido A, Yoshimaru H, Tsumura Y, Suyama Y, Murai M. Segregation distortion of AFLP markers in Cryptomeria japonica. Genes & Genetic System,1999,74:55-59
    82. Nwosu MO, Okafor JL. Preliminary studies of the antifungal activities of some medicinal plants against basidiobolus and some other pathogenic fungi. Mycoses,1995,38:191-195
    83. Omirshat Tahan, Yupeng Geng, Liyan Zeng, Shanshan Dong, Fei Chen, Jie Chen, Zhiping Song, Yang Zhong. Assessment of genetic diversity and population structure of Chinese wild almond, Amygdalus nana, using EST-and genomic SSRs. Biochemical Systematics and Ecology; 2009,3:1-8
    84. OECD-FAO. Agricultural outlook 2008-2017.2008
    85. Openshaw K. A review of Jatropha curcas:an oil plant of unfulfilled promise. Biomass Bioenergy,2000,19:1-15
    86. Osoniyi O, Onajobi F. Coagulant and anticoagulant activities in Jatropha curcas latex. J. Ethnopharmacol,2003,89:101-105
    87. Ouwens DK, Francis G, Franken YJ, Rijssenbeek W, Riedacker A, Foidl N, Jongschaap R, Bindraban P. Position paper on Jatropha curcas. State of the art, small and large scale project development. Fact Foundation, URL:http://www. fact-fuels.org/en/FACT Knowledge Centre/FACT Publications,2007
    88. Pandey RK, Datta SK. Gamma ray induced cotyledonary variabilities in Jatropha curcas L. J Nucl Agric Biol,1995,24:62-66
    89. Parikh J. Growing our own oils. Biofuels India,2005,3:7
    90. Patil V, Singh K. Oil gloom to oil boom-Jatropha curcas a promising agro-forestry crop. Shree Offset Press, Nashik,1991
    91. Rao GR, Korwar GR, Shanker AK, Ramakrishna YS. Genetic associations,variability and diversity in seed characters, growth, reproductive phenology and yield in Jatropha curcas (L.) accessions.Trees,2008,22:697-709
    92. Reddy BVS, Ramesh S, Ashok kumar A, Wani SP, Ortiz R, Ceballos H, et al. Bio-fuel crops research for energy security and rural development in developing countries. Bioenergy Res,2008,1:248-58
    93. Rivera-Lorca JA, Ku-Vera JC. Chemical composition of three different varieties of J. curcas from Mexico. In:Gubitz GM, Mittelbach M Trabi M. (Eds.), Biofuels and Industrial Products from Jatropha curcas. DBV Graz,1997, pp.47-52
    94. Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW. A microsatellite map of wheat. Genetics,1998,149:2007-2023
    95. Rohlf FJ, NTSYS-pc:numerical taxonomy system ver.2.1. Exeter Publishing Ltd., Setauket, New York,2002
    96. Sakaguchi S, Somabhi M. Exploitation of Promising Crops of Northeast Thailand Siriphan Offset. Thailand:Khon Kaen,1987
    97. Scott KD, Eggler P, Seaton G et al. Analysis of SSRs derived from grapes EST. Theor AppI Genet,2000,100:723-726
    98. Sharma GD, Gupta SN, Khabiruddin M. Cultivation of Jatropha curcas as a future source of hydrocarbon and other industrial products. In:Gubitz GM, Mittelbach M, Trabi M. (Eds.), Biofuels and Industrial Products from Jatropha curcas. DBV Graz,1997, pp.19-21
    99. Shirish A. Ranade, Anuj P. Srivastava, Tikam S. Rana, Jyoti Srivastava, Rakesh Tuli, Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. BIOMASS AND BIOENERGY,2008,32:533-540
    100. Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P and Vosman B, Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet, 1997,97:264-272
    101. Solsoloy AD, Solsoloy TS. Pesticidal efficacy of formulated J. curcas oil on pests of selected field crops. In:Gubitz GM, Mittelbach M, Trabi M. (Eds.), Biofuels and Industrial Products from Jatropha curcas. DBV Graz,1997, pp.216-226
    102. Sourdille P, Tavaud M, Charmet G, Bernard M. Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet,2001, 103:346-352
    103. Staubmann R, Ncube I, Gubitz GM, Steiner W, Read JS. Esterase and lipase activity in Jatropha curcas L. seeds. J. Biotechnol,1999,75:117-126
    104. Staubmann R, Foidl G, Foidl N, Gubitz GM, Lafferty RM, Arbizu VM, Steiner W. Biogas production from Jatropha Curcas press cake. Appl. Biochem. Biotech,1997,63: 457-467
    105. Stirpe F, Pession, Brizzi A, Lorenzoni E, Strochi P, Montanaro L, Sperti S. Studies on the proteins from the seeds of Croton tigilium and Jatropha curcas. Biochem. J,1976,156: 1-6
    106. Sudheer Pamidimarri DVN, Balaji Chattopadhyay, Muppala P. Reddy, Genetic divergence and phylogenetic analysis of genus Jatropha based on nuclear ribosomal DNA ITS sequence. Mol Biol Rep,2009,36:1929-1935
    107. Sudheer Pamidimarri DVN, Sweta S, Shaik GM, Jalpa P, Muppala PR:Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Molecular Biology Reports,2008,36: 1357-1364
    108. Sujatha M, Prabakaran A J. Characterization and utilization of Indian Jatropha. Indian J Plant Genet Resour,1997,10:123-128
    109. Tahan O, Geng YP, Zeng LY, et al.:Assessment of genetic diversity and population structure of Chinese wild almond, Amygdalus nana, using EST-and genomic SSRs. Biochemical Systematics and Ecology,2009,37:146-153
    110. Takeda Y. Development Study on Jatropha curcas (Sabu Dum) Oil as a Substitute for Diesel Engine Oil in Thailand.Interim Report of the Ministry of Agriculture, Thailand, 1982
    111. Tautz D, Trick M and Dover GA. Cryptic simplicity in DNA is a major source of genetic variation. Nature,1986,322:652-656
    112. Tewari JP, Shukla IK. Inhibition of infectivity of two strains of watermelon mosaic virus by latex of some angiosperms. GEOBIOS,1982,9:124-126
    113. Thiel T, Michalek W, Varshney R K, Graner A. Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (Hordeum vulgare L.). Theor. Appl. Genet,2003,106:411-422
    114. Tiwari KA, Kumar A, Raheman H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids:an optimized process. Biomass Bioenergy,2007,31: 569-575
    115. Van den Berg AJ, Horsten SF, Kettenes van den Bosch JJ, Kroes BH, Beukelman CJ, Loeflang BR, Labadie RP. Curcacycline A:a novel cyclic octapeptide isolated from the latex of Jatropha curcas Linn. FEBS Lett,1995,358:215-218
    116. Vander Linden CG, Wouters DC, Mihalka V, Kochieva EZ, Smulders MJM and Vosman B. Efficient targeting of plant disease resistance loci using NBS profiling. Theor. Appl. Genet,2004,109:384-393.
    117. Varshney RK, Kumar A, Balyan HS, Roy JK, Prasad M, Gupta PK. Characterization of microsatellites and development of chromosome specific STMS markers in bread wheat. Plant Mol. Biol. Rep,2000,18:1-12
    118. Varshney RK, Sigmund R, Bomer A, Korzun V, Stein N, Sorrells ME, Lngridge P, Gran A. Interspecific transferability and comparative mapping of barley EST-SSR Markers in wheat,rye and rice. Plant Science,2005,168:195-202
    119. Varshney RK, Grosse I, Hahnel U, Siefken R, Prasad M, Stein N, Langridge P, Altsehmied L, Graner A. Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor AppI Genet,2006,113:239-250
    120. Villegas LF, Fernandez ID, Maldonado H, Torres R, Zavaleta A, Vaisberg AJ, Hammond GB. Evaluation of the wound-healing activity of selected traditional medicinal plants from Peru. J. Ethnopharmacol,1997,55:193-200
    121. Wageningen. JoinMap 3.0 software for the calculation of genetic linkage maps. USA, 2001
    122. Wang YH, Xue YB and Li JY:Towards molecular breeding and improvement of rice in China. TRENDS in Plant Science,2005,10:610-614
    123. Wang D, Liao XL, Cheng L, et al. Development of novel EST-SSR markers in common carp by data mining from public EST sequences. Aquaculture,2007,271:558-574
    124. Wani SP, Sreedevi TK, Reddy BVS. Biofuels:status, issues and approaches for harnessing the potential. Hyderabad, India.2006
    125. Western DJ, Ssemakula J, Kuchar P, Mwendwa H, Nganga SN, Amyunzu CL. A survey of natural wood supplies in Kenya and an assessment of the ecological impact of its usage. Nairobi, Kenya:Kenya,1981
    126. Wink M, Koschmieder C, Sauerwein M, Sporer F. Phorbol esters of J. curcas-biological activities and potential applications. In:Gubitz GM, Mittelbach M, Trabi M. (Eds.), Biofuels and Industrial Products from Jatropha curcas. DBV Graz,1997, pp.160-166
    127. Wunsch A:Cross-transferable polymorphic SSR loci in Prunus species. Scientia Horticulturae 2009,120:348-352
    128. Xu YB, Susan RM, Zhang Q. How can we use genomics to improve cereals with rice as a reference genome. Plant Molecular Biology,2005,59:7-26.
    129. Yeh FC, Yang R, Boyle TJ, Ye Z, Xiyan JM, PopGene32, Microsoft Windows-based Freeware for Population Genetic Analysis, Version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Alberta, Canada,2000
    130. Yu XG, Bush AL and Wise RP. Comparative mapping of homoeologous group 1 regions and genes for resistance to obligate biotrophs in Avena, Hordeum, and Zea mays. Genome, 1996,39:155-164
    131. Zamir D, Tadmor Y. Unequal segregation of nuclear genes in plants. Botanical Gazette, 1986,147:355-358
    132. ZHUANG Li-Fang, SONG Li-Xiao, FENG Yi-Gao, QIAN Bao-Li, XU Hai-Bin, PEI Zi-You,and QI Zeng-Jun. Development and Chromosome Mapping of New Wheat EST-SSR Markers and Application for Characterizing Rye Chromosomes Added in Wheat. ACTAAGRONOMICA SINICA,2008,6:926-933
    133. Zou ML, Ling P, Zhang Y, Wei ZS, Xia ZQ, Wang WQ, Mining EST derived SSR markers and use for genetic diversity evaluation in cassava(Manihot esculenta Crantz). (submit).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700