相变型保温墙体材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变材料是指随温度变化而改变形态并能提供潜热的物质。具有储能密度大、储能能力大、温度恒定、过程易控制、可以多次重复使用等优点,成为最具世纪发展潜力、目前应用最多和最重要的材料,也成为国内外能源利用和材料科学方面研究的热点。将相变材料掺入传统保温隔热材料中制备新型高效节能建筑墙体材料,具有相当的研究价值,同时还会产生显著的经济效益和环境效益。本文以多孔基质和有机复合相变材料采用物理吸附法制备相变保温墙体材料,并针对其在建筑结构中的应用进行研究。
     论文对相变材料进行了分类,分析其各自的物理、化学和热性能。从与建筑材料的相容性,经济性等方面进行综合考虑,优选出适用于建筑节能的单一相变材料。由于单一相变材料存在其固有的缺陷,通过将相变储能材料复配来获得适用于建筑节能的复合相变材料。理论计算和试验测试结果表明:癸酸-月桂酸二元复合相变体系具有良好的热物性,当癸酸摩尔浓度为40~51%时,癸酸-月桂酸体系的相变温度为25~30℃,相变潜热为121~127J/g;三元烷烃类复合相变体系的相变温度可以满足人体舒适程度的要求,相变潜热可达150~180J/g。
     选取多种多孔无机材料为基体与复合相变材料通过物理吸附法制备定型相变材料,根据相变材料在基体中的容留量和吸附后的形态,确定最佳的定形化工艺;并对定型相变材料进行热物性、渗漏程度、耐久性和相容性等进行了研究,结果表明:以癸酸-月桂酸为PCM的定型相变材料的相变温度可维持在25~30℃之间,相变潜热可达到100~110J/g;复合相变材料大量分布于微孔材料中,具有较好的稳定性和相容性;掺入表面活性剂能提升其储能密度;通过环氧树脂和苯丙乳液进行封装,可大幅度的提高定型相变材料的耐久性;以三元烷烃类为PCM的定型相变材料的相变温度可保持在30℃以内,相变潜热达到110J/g以上。
     研究中,最终选取膨胀珍珠岩和再生聚苯颗粒为多孔介质、癸酸-月桂酸为相变材料组成的定型相变材料制备相变型保温砂浆墙板,并进行基本性能测试,同时与直接浸渍制得的相变型石膏板进行保温性能测试。试验结果表明:相变型保温墙材的耐久性和稳定性均较好,具有一定的应用价值,含相变储能材料的墙板相对于普通墙板具有更加优越的调温、节能效果。本文最后还对复合相变保温墙体材料节能功效进行了分析与评价,为实现我国的高舒适、低能耗住宅提供了相关参考。
Phase change materials (PCMs) are the energy storage materials that have considerably higher thermal energy storage densities, and are able to absorb or release large quantities of energy at a constant temperature by undergoing a change of phase, which have been the most potential and wide applied materials and the focus of research on energy saving and material scientific. A novel and efficient energy-saving building insulation materials are prepared by incorporating PCMs into traditional insulation materials, which generate significant research value, as well as notable economical and environmental benefits. In this paper, phase-change thermal insulating materials were prepared by adding shape-stabilized PCMs, which were fabricated by porous materials absorbing organic PCMs physically, and the application of this novel insulating material in building structures was also evaluated.
     PCMs in this paper were classified according different requirements; the physical, chemical and thermal properties of various PCMs were presented. From the compatibility of PCMs with construction materials and economic consideration, single phase change materials were optimized for building energy-efficient. To overcome the defaults of single PCMs, composite PCMs were prepared and selected for building energy-saving. Decanoic acid-lauric acid(DA-LA) dual compound phase change material is fabricated based on Schroder formula in the laboratory. When the mol concentration of decanoic acid is 40-51%, the phase change temperature of DA-LA is 25-30℃and the phase change latent heat of DA-LA is 121-127J/g.
     Various porous materials were selected to prepare shape-stabilized PCMs by physical absorbing melted composite PCMs. According absorption of PCM and morphology of shape-stabilized PCMs, optimum preparation technology- a water bath temperature of 50℃, duration of 1h under atmospheric pressure- is determined. Through thermal-physical properties, leakage degree, durability and compatibility of shape-stabilized PCMs, it turns out that phase change temperature of shape-stabilized PCMs with DA-LA was 25-30℃, and phase change latent heat was 100-110J/g; composite PCMs were largely distributed in porous materials, were compatible with porous materials, and were considerably stable; thermal energy storage density was enhanced by surfactant; durability of shape-stabilized PCMs was improved considerably by encapsulation with epoxy resin and styrene-acrylic emulsion; phase change temperature of paraffin ternary compound PCMs was less than 30℃, phase change latent heat was more than 110J/g.
     A novel insulating mortar with PCMs was prepared with shape-stabilized PCMs based on expanded perlites, regenesis EPS granules and DA-LA. Compared to EPS insulating board with PCMs and gypsum wallboard with PCMs by immersion directly, durability and stability of the novel insulating mortar were better, showing certain application prospects. In addition, research results of insulation cabinet with PCMs demonstrated that PCMs were considerably beneficial to adjust temperature and save energy. Finally, energy-saving efficacy of insulation material with PCMs was also analyzed and evaluated, which provided important reference for achieving a high comfort, low energy consumption.
引文
[1]王永川,陈光明,张海峰等.相变储能材料及其实际应用[J].热力发电, 2004, 11:10~l3.
    [2]谭羽非.新型相变蓄能墙体的应用探讨[J].新型建筑材料, 2003, 2:3-5.
    [3]中华人民共和国建设部.关于发展节能省地型住宅和公共建筑的指导意见[J].建设科技, 2005, 12.
    [4]薛志峰.超低能耗建筑技术及应用[M].中国建筑工业出版社, 2005.
    [5]李峥嵘.蓄能结构传热过程的分析[J].同济大学学报, 2001, 29(3):338-341.
    [6]邓钫印编.建筑材料实用手册[M].北京:中国建筑工业出版社, 2007.
    [7]贺磊.浅谈当前建筑外墙保温技术存在的弊端[J].新疆有色金属:2007, 29(4):68-70.
    [8]李峥嵘.蓄能结构传热过程的分析[J].同济大学学报, 2001, 29(3):338-341.
    [9]林坤平.相变蓄能建筑构件应用原理和效果研究[D]:[博士学位论文].北京:清华大学, 2006, 4.
    [10]闫全英,王威.相变墙体中的定形相变材料的实验研究[J].节能技术, 2004, 24(6):3-4.
    [11]冯国会,高甫生等.相变墙房间热性能研究现状及发展趋势[J].节能, 2005. 276(7):7-1.
    [12]王馨,张寅平,肖伟等.相变蓄能建筑围护结构热性能研究进展[J].科学通报, 2008(24).
    [13]秦鹏华,杨睿,张寅平等.定形相变材料的热性能[J].清华大学学报(自然科学版)2003, 43(6):833-835.
    [14]林坤平,张寅平,江亿.夏季"空调"型相变墙热设计方法[J].太阳能学报. 2003, 24(2):145-151.
    [15]林坤平,张寅平,江亿.我国不同气候地区夏季相变墙房间热性能模拟和评价[J].太阳能学报. 2003, 24(1):46-72.
    [16] Kunping Lin, Yinping Zhang etc. Modeling and simulation of under-door electric heating system with shape-stabilized PCM plates. Building and Environment, 2004, 39:1427-1434.
    [17] Kunping Lin, Yinping Zhang etc. Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy and Buildings, 2005, 37:215-220.
    [18]冯国会,高甫生等.复合相变储能墙体热特性实验及参数辨识方法[J].沈阳建筑大学学报. 2004, 20, (3):207-210.
    [19]冯国会,曹广宇,等.夏季昼夜温差较大地区相变墙蓄冷可行性分析[J].沈阳建筑大学学报. 2005, 21, (4):350-353.
    [20]吕石磊,冯国会,付英会.相变墙房间的蓄换热性能实测分析[J].建筑科学(增刊)2004, 20, (8):58-61.
    [21]张东,周剑敏,吴科如等.相变储能混凝土制备方法及其储能行为研究[J].建筑材料学报, 2003, 6, (4):374-380
    [22]周剑敏,张东,吴科如.相变储能复合材料实验研究与分析[J].节能技术, 2003, 21, (6):5-7.
    [23]马芳梅. PCM储能建筑材料的实验研究[J].华中理工大学学报, 1996. 11:92-95.
    [24]马芳梅,金六一.储能建材性质的改善及相变温度的优化[J].华中理工大学学报. 1997, 25, (3):82-85.
    [25]李玉蓉,夏定国,叫庆影等.石蜡类复合定形相变材料的制备研究[J].化工技术与开发, 2007(8):4-7.
    [26]胡小芳,曾文雄,胡大为.树脂基稻草吸附石蜡储能单元相变储能材料[J].合成材料老化与应用, 2007, 36(2):6-8.
    [27]肖敏,龚克成.良导热、形状保持相变蓄热材料的制备及性能[J].太阳能学报, 2001, 22(4):427-430.
    [28]丁建红,张寅平,王馨等.掺杂对定形相变材料导热系数的影响[J].太阳能学报, 2005, 26(6):853-85.
    [29]田胜力,张东,肖德炎.硬脂酸丁酯/多孔石墨定形相变材料的实验研究[J].节能, 2005(11):5-7.
    [30]闫全英,王威.相变墙体中的定形相变材料的实验研究[J].化学建材, 2005, 21(4):3-4.
    [31]叶宏,何汉峰,葛新石等.利用焓法和有效热熔法对定形相变材料熔解过程分析的比较研究[J].太阳能学报, 2004, 25(4):488-491.
    [32]张东,周剑敏,吴科如等.颗粒型相变储能复合材料[J].复合材料学报, 2004, 21(5):103-109.
    [33]尚燕,张雄.储能新技术—相变储能.上海建材, 2004, 6.
    [34] Py X, Olives, Mauran S. Paraffin / porous-graphite-matrix composite as a high and constant power thermal storage material. International Journal of Heat and Mass Transfer. 2001, 44(14):2727-2737.
    [35] Ahmet S. Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage:preparation and thermal properties. Energy Conversion and Management, 2004, 45(13):2033-2042.
    [36] Stovall TK, Arimilli RV. Transient thermal analysis of a three fast-changing latent heat storage configuration for a space-based power system. In:Proceedings of the 23th Inter Society Energy Conversion engineering conference, Denver. Colorado. 1988, 171-177.
    [37] Hawes D W, Feldman D. Absorption of phase change materials in concrete[J] . Solar Energy Materials and Solar Cells, 1992, 27(2):91-101.
    [38] Shapiro M, Feldman D, Hawes D, Banu D. PCM thermal storage in wallboard.In:Proceedings of the 12th passive solar conference, Portland, 1987:48-58.
    [39] Neeper D. A. Solar buildings research:what are the best directions? Passive Solar Journal, 1986, 3:213–224.
    [40] Neeper D. A. Potential benefits of distributed PCM thermal storage. American Solar Energy Society, 1989, 7:283-288.
    [41] Neeper D. A. Thermal dynamics of wallboard with latent heat storage. Solar Energy, 2000, 68:393-403.
    [42] Stovall TK, Tomlinson JJ. What are the potential benefits of including latent heat storage in common wall board. Trans ASME, 1995, 117:318-325.
    [43] Peippo K, Kauranen P, Lund PD. A multi-component PCM wall optimized for passive solar heating. Energy Build, 1991, 17:259–270.
    [44] Rudd A F. Phase Change Material Wall for Distributed Thermal Storage in Buildings. In:ASHRAE Transactions, 1993, 99(2):339-344.
    [45]付英会,冯国会,吕石磊等. HVAC领域相变贮能研究的现状与进展[J].节能, 2004(4):6-8.
    [46] Stetiu C, Feustel HE. Phase change wallboard as an alternative to compressor cooling in Californian residence. In:Proceedings of 96 ACEE summer study for energy efficient building, California, USA, 1996.
    [47] Athienitis AK, Liu C, Hawes D, Banu D, Feldman D. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build Environment 1997, 32:405-410.
    [48] Kalousck M, Hirs J. Simulation of the summer indoor thermal comfort by using wallboard with phase change material. Eurosun, Bologna, 2002.
    [49] Min xiao, Bo Feng, Kecheng Gong. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy conversion and management. 2002, 43(1):103-108.
    [50] Junji Onishi, Haruo soeda, Minoru Mizuno. Numerical study on a low energy architecture based upon distributed heat storage system. Renewable Energy, 2001, 22(1-3):61-66.
    [51] T. Kuroki etc. Application of phase change material to passive cooling of apartment house. IEA, ECES IA Annex 17, Tokyo, Japan.
    [52] U. Stritih, P. Novak. Thermal storage of solar energy in the wall for building ventilation. IEA, ECES IA Annex 17, advanced thermal energy storage techniques:1-10.
    [53] Amar M, Khudhair, Mohammed M. Farid. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. EnergyConversion and Management, 2004, 45(2):263-275.
    [54]董黎明,王岐东,刘俊女.相变储能建筑材料的实验研究[J]. 2006, (3):10-12.
    [55]韩晋民.建筑应用相变储能材料[J].建筑科技, 2004, 20.
    [56] Xavier Py, Pegis Olives, Sylvain Mauran. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material[J]. Heat and Mass transfer, 2001, 44(14):2727-2737.
    [57]林怡辉等.硬脂酸-二氧化硅相变材料的制备[J].广州化工, 2002. Vol. 30(No. 1).
    [58] Hawlader MNA, Uddin MS. Microencapsulated PCM themal-energy storage systerm [J]. Applied Energy. 2003, 74:195-202.
    [59] Tomlinson, Heberle. Dynamics of energy storage in phase change drywall systems, International Journal of Energy Research[J] 29(1990)335-343.
    [60] Rudd A F. Phase change material wall for distributed thermal storage in buildings [C]. ASHRAE Transactions , 1993 , 99 (2):339-344.
    [61] Carl Vener. Phase Change Thermal Energy Storage:[PHD. Thesis].
    [62]宋德萱.节能建筑设计与技术[M].上海:同济大学出版社. 2003.
    [63]崔海亭,杨锋.储热技术及其应用[M].北京:化学工业出版社. 2004.
    [64] Belen Zalba, Jose M Marin. Review on thermal energy storage with Phase change materials, heat transfer analysis and applications[J]. Applied thermal Engoneering, 2003, 23:251-283
    [65]王信刚,马保国.相变储能建筑材料的研究进展[J].节能, 2005, (12):10-12.
    [66]方春香.中低温定形相变储能材料的研究[J].北京工业大学工学硕士学位论文, 2006.
    [67]李志广,黄红军等.相变储能材料十六醇-癸酸二元体系相变温度的测定[J].军械工程学院学报.第17卷第6期;2005.12.
    [68]孙建忠,吴子钊.建材用相变工质材料渗出程度评价方法的研究[J].新型建筑材料, 2004:43~45.
    [69]闫全英,王威,低温相变石蜡储热性能的实验研究[J].太阳能学报, Vol. 27, No. 8.
    [70]邹复炳.石蜡类相变材料传热性能研究[D].硕士学位论文.上海海事大学, 2006.
    [71] Atul Sharma, S. D. Sharma, D. Buddhi. Accelerated Thermal Cycle Test of Acetamide, Stearic Acid and Paraffin Wax for Solar Thermal Latent Heat Storage Applications. Energy Conversion and Managenment. 2002, 43(14):1923~1930.
    [72] Sari A. Thermal Reliability Test of Some Fatty Acids as PCMs Used for Solar Thermal Latent Heat Storage Applications Energy[J]. Conversion and Management. 2003, 44(14):2277-2287.
    [73]张寅平,胡汉平,孔样冬等.相变贮能一理论和应用[M].合肥:中国科学技术大学出版社, 1996. 11:345.
    [74]冒东奎.含相变材料的储能复合材料[J].新能源, 1997. 19 (11):7一10
    [75]王岐东,张学义,康惠宝.复合相变储能材料的选择[J].北京轻工业学报, 1997, 15(11):61一65
    [76]马芳梅.相变物质储能建筑材料性质研究的进展.新型建筑材料, 1997 , 8 :4042
    [77]郝新民.十水硫酸钠相变潜热在太阳能储热技术中的应用[J].新能源, 1989, 12(2):1314.
    [78]胡建民.太阳能储存进展[J].新能源, 1995, 17 (6).
    [79] Telkes M. Thermal storage in salt-hydrates. Solar Materials, Academic Press, 1980:377404
    [80] Biswas D R. Thermal energy storage using sodium sulfate deca -hydrate and water. Solar Energy, 1977, 19(1):99100
    [81] Marks S. An investigation of the thermal energy storage capacity of Glaubers' salt with respect tothermal cycling. Solar Energy, 1980, 25:255258
    [82]王永川,陈光明等.相变储能材料及其实际应用[J].热力发电, 2004, 11:10-13.
    [83]吉冈甲子狼,获野一善.物理化学计算[M].河南科学技术出版社, 1981.
    [84]张奕,张小松.月桂酸-癸酸二元体系的固-液相平衡特性[J].新型建筑材料, 2005:605~608.
    [85]周亚栋.无机材料物理化学[M].武汉:武汉工业大学出版社, 2002:17-20.
    [86]张寅平,苏跃红,葛新石. (准)二元共晶系融点和熔解热的预测[J].中国科学技术大学学报, 1994, 25(4).
    [87] He Bo, Mari Gustafsson E, Fredrik Setterwall. Tetradecane and hexadecane binary mixtures as phase change materials(PCMS)for cool storage in district cooling systems [J]. Energy, 2004, 24:1015-1028.
    [88]艾明星,相变贮能材料的研究[D].河北工业大学硕士学位论文, 2003.
    [89]张洪济.相变热传导[M].重庆:重庆大学出版社, 1991.
    [90]方春香.中低温定形相变储能材料的研究[D].北京工业大学硕士学位论文. 2006,
    [91]马保国,王信刚,张志峰等.相变蓄能围护结构材料的研究现状与进展[J].建筑节能, 2005(9):35-40.
    [92]杨勇康,张雄.相变材料应用于外墙表面隔热的研究[J].新型建筑材料, 2007(9):37-40.
    [93]魏润柏,徐文华.热环境[M].上海:同济大学出版社, 1994.
    [94] Darkwa K, O'Callaghan P W. Simulation of phase change dry-walls in a passive solar building. Applied Thermal Engineering, 2006, 26(8-9):853-858.
    [95] P . Kauranen等著,刘景兰译.一种熔化温度可调的有机相变材料贮热系统[M].新能源, 1992, 15(4):24-28.
    [96]郭茶秀,魏新利.热能存储技术与应用[M].北京:化学工业出版社, 2005:42-43.
    [97]钟志鹏.结合夜间通风的相变墙房间热性能研究[D]:[学位论文].北京:清华大学, 2001.
    [98] Zhang M, Medina M A, Jennifer B K. Development of a thermally enhanced frame wall with phase change materials for on-peak air conditioning demand reduction and energy savings in residential buildings. International Journal Energy Research, 2005, 29:795-809.
    [99]郝先成,马保国,李廷芥等.建筑围护结构中相变材料的功效分析[J].节能技术2007, 25(2):137-140.
    [100]陈庆,曾军堂,杨欣宇.相变材料在建筑节能领域的应用研究[J].新材料产业, 2008, (11):54-58.
    [101] Udagawa M, Maki N, Roh H, etal. Study on the heat storage type of air conditioning system using floor slab thermal mass for office building[A]. In: Ochifuji K, Nagano K, eds. Proceedings of the 7th International Conference on Thermal Energy Storage[C]. Amsterdam: Elsevier Science Publisher, 1997, 175-180.
    [102] Ryu Y. A study on environmental characteristics of t he air2conditioning system wit h floor thermal storage[A]. In:OchifujiK, Nagano K, eds. Proceedings of the 7th International Conference on Thermal Energy Storage[C]. Amsterdam:Elsevier Science Publisher, 1997. 361-366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700