PTT及PTT-PEG嵌段共聚物的合成和相转变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯二甲酸丙二醇酯(PTT)是一种性能优异的新型聚酯,其特殊的结构和优良的物理化学性能,使之在纺织、工程塑料、薄膜等领域获得广泛应用。由于PTT大分子链上存在的三个亚甲基而导致的区别于PET和PBT的“奇碳效应”,使得PTT聚酯纤维能够同时克服PET的刚性和PBT的柔性,并兼有PET和PA的优点,如优异的回弹性、易加工性、易染色性以及蓬松性等。聚乙二醇(PEG)本身就是一类相变焓较高、热滞后效应低的储能材料,作为组分时常被用来研制新型相变材料。本文通过直接酯化-缩聚反应路线合成了不同分子量的聚对苯二甲酸丙二醇酯(PTT)和聚对苯二甲酸丙二醇酯/聚乙二醇共聚物(PTT-PEG)。
     利用红外光谱法(FTIR),差示扫描量热法(DSC),热失重(TG),核磁共振(1HNMR)等现代化分析技术分析研究了PTT和PTT-PEG的结构特征相变行为、储热性能及热性能的影响因素,分析了此类聚醚酯嵌段共聚物以PEG为软段、PTT为硬段的固-固相变材料的能量贮存和相变机理。
     研究了用直接酯化法合成聚对苯二甲酸丙二醇酯(PTT)的工艺,考察了影响合成工艺的各种因素,采用直接缩聚法,选择PTA/PDO摩尔比为1:1.6;催化剂用量为3.68/万;缩聚反应温度在265℃是非常合适的;通过共聚反应合成了PEG相对分子质量不同和含量不同的PTT-PEG嵌段共聚物,以DSC法表征了共聚物在常温下的相变性能。结果表明:当用于共聚的PEG相对分子质量达到4000以上时,制得的共聚物才具有良好的常温相变性能;且相变焓随PEG含量的升高而升高,但PEG的含量与初始PTA的质量比达到40%后相变焓反而下降。
     用FTIR,1HNMR表征了PTT-PEG共聚物的结构,结果表明其是以PTT硬链段封端的多嵌段共聚物。通过改变加入的PEG相对分子质量和PEG/PTA投料比可控制PET-PEG嵌段共聚物相转变的热性能。PTT-PEG共聚物作为常温相变材料时,PEG的总量与PTA的比控制在40%,其中PEG6000与PEG4000的含量为60%和40%时为最佳。
     结果表明:该PTT-PEG相变材料具有良好的储热性能,相变温度适中,热性能稳定,相变过程中不产生液体,其相变实质是聚醚软段PEG由结晶固态转变为非晶固态的过程。
Poly(trimethylene terephthalate) is a new kind of polyester, which will be widely used in textile、engineering plastics、films etc. for its special structure and outstanding physical and chemical properties. Because of the exist of three phenylenes which lying in macromolecular chain will generate“The Effect of odd carbon”, and lead to different performances from PET and PBT. Thus the PTT fiber can not only have the rigidity of PET and the flexible of PBT synchronously, but also doubles the virtues of PET and PA such as high resilience, easier process and dye etc. Polyethylene glycol(PEG) itself is a kind of phase change material with high enthalpy and low thermal hysteresis. It is often used to synthesis novel phase change materials as working groups. In this paper, poly trimethylene terephthalate(PTT) with various molecular weights,poly trimehtylene terephthalate-poly ethylene glycol(PTT-PEG) block copolymers were prepared by the direct esterification and polycondensation.
     FTIR, DSC, TG, 1HNMR were used to study the structural characteristics,phase-change behavior, heat storage characteristics and phase change mechanism of the novel solid-solid phase change heat storage copolymer which features PEG-based soft segment and PTT-based hard segments.
     The influent factors on synthesis process of PTT were discussed. The optimized process conditions of a direct esterification way were: charge ratio of 1:1.6, catalyst amount: 3.68×10-4mol/mol PTA, polycondensation temperature: 265℃. PTT-PEG block copolymers with varied PEG molecular and different contents were synthesized by copolymerization. The phase-change properties in the normal temperature were scanned by DSC. The result showed that the copolymers have gained increasing phase-change properties after the molecular weight of PEG which was used in the copolymerization exceeded one particular numerical value. The phase-change enthalpy of copolymers had an increasing aftermath with the increasing of PEG contents, but it was proved that the volume heat would decrease when the initial charge ratio of PEG/PTA exceeded 40%.
     By FTIR and 1HNMR, it was proved that the macromolecular chain was polyblock sealed by hard segment. The content of PEG segments depended on the ratio of PEG/PTA which was added to the system from the beginning. We can control the phase-change characteristic of PTT-PEG block copolymers by changing the molecular of PEG and the ratio of PEG/PTA. When its phase-change characteristic is asked to perform under normal temperatures, we can set the charge ratio of PEG/PTA as 40%, including 60%PEG6000 and 40%PEG4000.
     The results showed that the PTT-PEG copolymers have good thermal properties: appropriate transition temperature, good thermal stability, and no liquid leakage in the phase-change process. The heat storage mechanism is indeed the transition process of the soft segment of PEG from crystalline state to amorphous.
引文
[1]戴钧明,黄象安.聚酯新品-PTT[J].化工新型材料,1999,27(1l):23-24.
    [2] Chuah. H. Corterra Poly(trimethylene terephthalate)- New Polymeric Fiber for Carpets[J]. Chemical Fibers International, 1996, 46: 424.
    [3] Hwo. C, Forschner. T, Lowtan. R, Gwyn. J. Plast. Film&Sheeting, 1999, 15, 219.
    [4]徐锡环.PTT纤维发展动向[J].江苏丝绸,2000,6:41.
    [5]沈新元,陈国康,杨庆.新型成纤聚酯的开发[J].合成纤维工业,1996,25(4):30-34.
    [6]韩飞.PTT纤维的制备及应用[J].合成纤维工业,1997,20(5):34-36.
    [7]马雪琳.PTT相对分子质量对结晶性能的影响[J].合成纤维工业,2002,25(4);24-26.
    [8] Ward. I. M, Wilding. M. A, Brody. H. The Mechanical Properties and Structure of Poly(m-methylene terephthalate) Fiber[J]. Journal of Polymer Science, 1976, 14:263-274.
    [9] Chen Guokang, Huang Xianggan, Gu Lixia. Studies on the molecular structure and crystallization kinetics of Polytrimethylene terephthalate. Journal of the Society of Fiber Science and Technology, 2000, 56(8): 396-401.
    [10]沈云,郁从珍.聚对苯二甲酸丙二酯纤维及其开发进展[J].合成技术及应用,1997,12(1):24-28.
    [11]陈克权.PTT纤维的结构与性能[J].合成纤维工业,2001,24(6):37-40.
    [12]吴轶群,吴刚.聚对苯二甲酸丙二酯熔纺纤维的结构与性能[J].合成纤维工业,2001,24(3):19-21.
    [13] HS. Brown, HH. Chuah. Textile filament yarns based on Poly(trimethylene terephthalate)[J]. Chem.Fibers Int, 1997, 47: 72.
    [14] KOSCHINEK G. New developments for the fiber industry[J]. Chemical Fibers International, 2000, 50(4): 354-355.
    [15] Jakeways R, Ward I. M, Wilding M. A, et al. Crystal deformation in aromatic polyesters[J]. Journal of Polymer Science(Polymer Physics Edition), 1975, 13(4): 799-813.
    [16]薛美玲,于永良,盛京.聚对苯二甲酸丙二醇酯(PTT)的研究[J].高分子通报,2003,6:1-7.
    [17]叶胜荣,边界,封麟先.化纤新材料-PTT的合成、性能及应用[J].纺织学报,2000,21(6):375.
    [18]张寅平.相变贮能-理论和应用[M].合肥:中国科技大学出版社,1996,1:84.
    [19]曾翠华,张仁元.无机水合盐相变储热材料的过冷性研究[J].能源研究与信息,2005,21(1):44-49.
    [20] Suat Canbasolgu, Abdulmuttalip Sab inaslan, et al. Enhancement of solar thermal energy storage pennance using sodium thiosulfate pentahydrate of a conventional solar water-heating system[J]. Energy and Buildings, 2005, 37(3): 235-242.
    [21] Atul Sharma, Lee Dong Won, D Buddhi. Numerical heat transfer studies of the fatty acids for different heat exchanger materials Oil the performance of a latent heat storage system[J]. Renewable Energy, 2005, 30(14): 2179-2187.
    [22]何天白,胡汉杰.功能高分子与新枝术[M].化学工业出版社,2001,178-191.
    [23] Wang Xiaowu, Enrong, Lin Wenxian. Micromechenism of heat storage in a binary system of two kinds of poly alcoholisms solid phase change material[J]. Energy Conversion and Management, 2000, 41(2): 135-144.
    [24] Hawl Mer M N A, Uddin M S, Mya Mya Khin.Microencapsulated PCM thermal-energy storage system[J]. Applied Energy, 2003, 74(1-2): 195-202.
    [25] Vigo T L, Bruno J S. Temperature adaptable textile containing durable bound polyethylene glycol. Textile Res J, 1987, 32(7): 427-429.
    [26] Vigo T L, Frost C M. Temperature Adaptable Fibers Containing Substances with Solid-Solid Transitions. Thermochinmica Acta, 1984, 76: 333-343.
    [27] VigoT L. Temperature adaptable glyoxal-modified fibers and method of preparing same. US Patent, 863 274, 1992-08-15.
    [28]姜勇,丁恩勇,黎国康.一种新型的相变储能功能高分子材料[J].高分子材料科学与工程,2001,17(3):173-175.
    [29]吕社辉,郭元强,陈鸣才等.聚乙二醇-纤维素接枝物的合成与表征[J].高分子材料科学与工程,2004,20(4):62-65.
    [30] The University of Dayton. Phase change materials-incorporated through the structure of poly fibers[P]. S 5885475. 1999.
    [31]王艳秋,张恒中,朱秀林.化学法制备PEG/PET固固相转变材料[J].精细石油化工进展,2002,11(3):24-27.
    [32] Xu Xu, Zhang Yinping, Lin Kunping, et a1. Modeling and simulation on the thermal performance of shape—stabilized phase change material floor used in passive solar buildings[J]. Energy and Buildings, 2005, 37(10): 1084-1091.
    [33] Ahmet Sari. Form-stable paraffin/ high density poly ethyrlene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal propeflies[J]. EnergyConversion and Management, 2004, 45(13-14): 2033-2042.
    [34]肖敏,龚克成.良导热形状保持相变蓄热材料的制备及性能[J].太阳能学报,2001, 22(4):427-430.
    [35] Guo Yuanqiang, Liang Xuehai.Phase transition properties of PEG-Cellulose blends and their miscibility in mixed solvent[J]. Journal of Macromolecular Science-Physic, 1999, B38(4): 449-459.
    [36] Mohammed M Farid, Amar M Khudhair, Siddique All K. A review on phase change energy storage: materials and appcatiom[J]. Energy Conversion and Management, 2004, 45(9-10): 1597-1615.
    [37]叶宏,葛新石.一种定形相变材料的结构和理化分析[J].太阳能学报,2000,21(4):417-421.
    [38]李辉,方贵银.具有多孔基体复合相变储能材料研究[J].材料科学与工程学报,2003,21(6):842-844.
    [39]潘祖仁等.高分子化学[M].北京:化学工业出版社,2003.
    [40] Schauhoff S. New developments in the production of poly(trimethylene terephthalate) [J]. Chem fiber int, 1996, 46(4): 263-264.
    [41]冯新德,张鸿志,林其棱.饱和聚酯与缩聚反应[M].北京:科学出版社,1986.
    [42]陈国康等.聚对苯二甲酸丙二醇酯树脂的合成[J].合成纤维工业,1998,21(5).
    [43]柳乐仙,洪成海,崔秀国等.不同分子量聚乙二醇的相变热性质研究[J].长春理工大学学报,2005,28(1):98–99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700