山东沂南金矿床成矿流体特征及地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沂南金矿床位于华北板块东南缘沂沭断裂带西侧的鲁西地区,管辖相距6km的铜井和金场两矿区,是一个典型的夕卡岩型矿床。
     矿床产于燕山期中酸性~酸性杂岩体的接触带及外侧的新元古界—寒武系围岩中,受岩浆岩、构造、地层和围岩蚀变的共同控制。NW与NE、NEE向断裂构造交汇部位控制成矿岩体的就位,控矿和容矿的构造主要为接触带构造、层间破碎带构造及不整合面构造等。矿床分为四个成矿阶段:干夕卡岩阶段、湿夕卡岩-磁铁矿阶段、氧化物-硫化物阶段和碳酸盐阶段。近年来,在矿区深部和外围发现了新的含矿层位和工业矿体,但在流体包裹体方面前人未曾开展过研究,从而制约了对矿床成因和成矿规律的深入认识。
     本文从流体包裹体出发,讨论了沂南矿床的成矿物质来源和成矿机制。各成矿阶段的矽卡岩矿物、石英和方解石中流体包裹体岩相学和显微测温研究结果表明,包裹体主要类型有气液水包裹体、含子矿物多相包裹体、CO2-H2O多相包裹体和晶质熔融包裹体,其中熔体包裹体在石榴石、绿帘石和石英中发育。Ⅰ、Ⅱ成矿阶段的成矿流体具有高温和高盐度的特征,均一温度分别为430~520℃、340~400℃,盐度分别为56.7 wt% NaCl、22.2~53.5 wt% NaCl,代表铁矿化时流体特征;Ⅲ成矿阶段流体具有中低温、盐度范围变化较大的特征,代表了Cu,Au矿化的流体活动情况。均一温度为190℃~250℃,盐度为6.45~53.5 wt% NaCl ;Ⅳ成矿阶段包裹体均一温度100℃~190℃,盐度为2.07~15.76 wt% NaCl。矿床的成矿作用发生在0.6~1.7km的浅成条件下。其中石榴石、绿帘石中的熔融包裹体的出现是岩浆成因夕卡岩的证据。
     根据不同类型包裹体共生组合及流体演化特征,认为流体的不混溶性是导致大量金属沉淀的主要原因。包裹体水的氢氧同位素结果表明,成矿流体主要来自于岩浆热液,晚期不同程度的大气降水混入。
As a typical skarn deposit in the western Shandong Province, the Yinan gold deposit is located on the west side of Yishu fault zone. It includes the Tongjing and Jinchang ore districts which are 6 km away from each other. The deposit is controlled by magma, strata lithology, wall rock alteration and structure. The location of the ore-forming intrusions were controlled by the intersecting places between the NW and NE or the NW and NEE trending fault structures .The ore-controlling and ore-bearing structures mainly include contact zone, interlayer fractured zone and unconformity structure,etc. The metalogenic processes can be devided into the anhydrous skarn stage, the hydrous skarn-magnetite stage, the oxide-sulfide stage and the carbonate stage. In the recent years, new ore layers have been discovered, but the investigations on the fluid inclusions of the deposit which restrict the ore genesis and metallogenic laws is urently needed.
     Based on the fluid inclusion study, this paper made further discussions on the source of ore-forming materials and ore genesis of the deposit. Petrographic observations and temperature results indicate that the main type of fluid inclusions are aqueous inclusions, CO2-H2O inclusions, crystalline melt inclusion and daughter mineral-bearing multiphase in four mineralization stages. Melt inclusions were recognized in garnet, epidote and quartz. In the first and second mineralization stage, the ore-forming fluid is characterized by high temperature and high salinity , homogenization temperature is 430℃~510℃and 330~390℃respectively with salinity 56.7 wt% NaCl and 2.2~53.5 wt% NaCl respectively, indicating the fluid activities during Fe mineralization; In the third mineralization stage, the ore-forming fluid is salinities(6.45~53.5 wt% NaCl ); In the last stage, the homogenization temperature ranged from 130℃to 190℃, with salinity from 2.07 to 15.76 wt% NaCl. The mineralization occurred under the epithermal conditions of 0.6~1.7km.The appearance of the melt inclusions in garnet and epidote is the evidence of magmatic skarn.
     The assemblage of different fluid inclusions and the evolution characteristics of
     fluid inclusion show that fluid immiscibility is the main cause for mineralization. The composition of H and O isotopes shows that the ore-forming fluids were mainly magmatic hydrothermal fluids and were mixed with meteoric water during the later mineralization stage.
引文
Bodnar R J. Fluid inclusion evidence for a magmatic source of metals in porphyry copper deposits, in Thompson, J.F.H, ed, Magmas, fluid and ore deposits: Mineralogical Association of Canada Short Course Series [J]. 1995, 23: 139~152
    Cole D R, Drummond S E. The effect of transport and boiling on Ag/Au ratios in hydrothermal solutions: A preliminary assessment and possible implications for the formation of epithermal precious metal ore deposits [J]. Grochemistry Exploration, 1986, 25: 45~79
    Collins P L F. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of sality [J]. Economic Geology, 1979, 74: 1435~1444
    Davidson.P. Kamenetaky S V. Immiscibility and continuous felsic melt-fluid evolution within the Rio Blanco porphyry system, Chile: evidence from inclusions in magmatic quartz [J]. Economic Geology, 2001, 96: 1921~1929
    Drummond S E, Ohmoto H. Chemical evolution and mineral deposition in boiling hydrothermal systems [J]. Economic Geology, 1985, 80: 124~147
    Einaudi M T, Burt D M. Introduction: Terminology, classification and composition of skarn deposit [J]. Economic Geology, 1982, 77 (4): 745~760
    Einaudi M T, Meinert L D, Newberry R J. Skarn deposits. Econ Geology, 75 th Anniv, 1981: 317~391
    Ettlinger A D, Meinert L D, Ray G E. Gold skarn mineralization and fluid evolution in the Nickel Plate deposit, British Columbria[J]. Economic Geology, 1992, 87 (6): 1541~1565
    Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions [J]. Economic Geology, 1988, 83: 197~202
    Hedenquist J W, Arribas A, Reynolds T J. Evolution of an intrusion centered hydrothermal system: Far Southeast–Lepanto porphyry and epithermal Cu-Au deposit [J]. Economic Geology, 1999, 93: 373~404
    Hemley J J, Cygan G L, Fein J B. Hydrothermal ore-forming processes in the light of studies in rock-buffered system: Iron-copper-zinc-lead sulfides solubility reactions[J]. Economic Geology, 1992, 87: 1~22.
    Johson T W, Meinert L D. Au-Cu-Ag Skarn and replacement mineralization in the Mclaren deposit, Neb World ditsict, Park County, Montana[J]. Economic Geology, 1990, 85 (6): 1252~1259
    Kamenetsky V S, Wolfe R C, Eggins S M,et al. Volatile exsolution at the Dinkidi Cu-Au porphyry deposit, Philippines: A melt inclusion record of the initial ore-forming processes[J]. Geology, 1999, 27: 691~694
    Kravchuk I F. Experimental modeling of ore elements partitioning between phases in fluid-magmatic systems. IXI-AGOD Symposium, Abstracts, 1994, 2: 517~518
    Kwak T A P. Fluid inclusions in skarns (carbonate-replacement deposits)[J]. Journal of Metamorphic Geology, 1986, 4: 363~384
    Meinert L D, Hefton K K, Mayes D, et al. Geology zonation and fluid evolution of the Big Gossan Cu-Ag skarn deposit, Ertsberg district, Jaya [J]. Economic Geology, 1997, 92 (5): 509~534
    Logan M.A.V. Mineralogy and geochemistry of the Gualil′an skarn deposit in the Precordillera of western Argentina[J]. Ore Geology Reviews, 1999, 17: 113~138
    Meinert, L D, Hedenquist J W, Satoh H, et al. Formation of anhydrous versus hydrous skarn in Cu-Au ore deposits by magmatic fluids [J]. Economic Geology, 2003, 98: 147~156
    O'Neil J R, Clayton R N, Mayeda T K.. Oxygen isotope fractionation in divalent metal carbonates [J]. J. Chemical. Physics, 1969, 51(12): 5547~5558
    O'Neil J R, Epstein S. Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide [J]. Science, 1966, 152 (3719): 198~201
    Pan Y M, Dong P. The lower Changjiang (Yangzi ? Yangtze River) metallogenetic belt, east central China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits [J]. Ore Geology Reviews, 1999, 15 (4): 177~242
    Potter R W I, Clynne.M A, Brown.D L. Freezing point depression of aqueous sodium chloride solutions [J]. Economic geology, 1978, 73: 284~285
    Ridley J, Mikuchi E J, Groves D I. Archean load-gold deposits: fluid flow and chemical evolution in vertically extensive hydrothermal system[J]. Ore Geology Reviews, 1996, 10: 279~293
    Rodder E. Fluid inclusion evidence on the genesis of ores in sedimentary and volcanic rocks[M]// Wolf K H. Handbook of Strata-bound and stratiform Ore Deposits: I. Principles and General Studies: Vol. 2, Geochemical Studies. New York: Elsevier, 1976: 67~110
    Rodder. E. Fluid inclusions. In Reviews in Mineralogy, Mineralogical Society of America. 1984, 12: 413~455
    Taylor H P. The application of oxyen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition [J].Economic Geology, 1974, 69 (6): 843~883
    Wilson G C, Rucklidge J C, Kilius L R. Sulfide gold content of Skarn mineralization at Rossland, British Columbria[J]. Economic Geology, 1990, 85 (6): 1252~1259
    Yao Y. Fluid Characteristics of Granitoid-Hosted Gold Deposits in the Birimian Terrane of Ghana: A Fluid Inclusion Microthermometric and Raman Spectroscopic Study[J]. Economic Geology, 2001, 96: 1611~1643
    Zharikov V A. Skarn Types, Formation and Ore Mineralization Condition[M]. Athens: Theophrastus pub, 1991: 455~465
    Zhou Tao-fa, Yuan Feng, Yue Shu-cang,et al. Geochemistry and evolution of ore-forming fluids of the Yueshan Cu–Au skarn and vein-type deposits, Anhui Province, South China [J]. Ore geology reviews, 2005, 31: 279~303
    陈常富,郭志远,胡京宇,等.山东沂南金厂金铜矿床构造、岩浆演化与成矿模式.地质找矿论丛,1995,10(1):9~15
    顾雪祥,董树义,王银宏,等.不整合面控制内生金属成矿的新实例:山东沂南金铜铁矿床[J].现代地质,2008,22(2):151~161
    黄华盛.夕卡岩矿床的研究现状[J].地学前缘,1994,1(3/4):105~111
    黄太岭,高建国.山东省区域地球物理场.山东地质,2002,18(3-4):88~94
    焦鹏,高兴艳,刘章存.金场矿区矽卡岩型含金铜金属矿床成矿规律及深部找矿预测.有色金属(矿山部分),2006,58(4):24~26 科学,1993,18 (6):801~809
    李秉伦,谢奕汉,王兰英.根据矿物中包裹体的研究对玢岩铁矿的新认识[J].矿床地质,1983,(2):25~32
    林新多,许国建.岩浆成因夕卡岩的某些特征及形成机制探讨[J].现代地质,1989,3(3):351~358.
    刘斌,段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345~351
    刘斌.中高盐度NaCl-H_2O溶液包裹体的密度式和等容式及其应用[J].地质论评,2001, 47 (6):617~622
    刘玉强,李洪喜,黄太岭,等.山东省金铁煤矿床成矿系列及成矿预测.北京:地质出版社,2004
    刘玉强.山东省金矿床成矿系列及成矿规律.矿产与地质,2004,18(1):1~7
    卢焕章,李秉伦,沈昆,等.包裹体地球化学.北京:地质出版社,1989:1~242
    卢武长,杨绍全.利用氧键计算兰晶石、十字石等矿物的氧同位素分馏方程[J].矿物岩石,1982(2):106~112
    邱检生,王德滋,任启江.山东沂南金场夕卡岩型金铜矿床地质地球化学特征及矿床成因[J].矿床地质,1996,15(4):330~340
    山东省地质局第八地质队.山东省沂南铜井地区铜、金成矿地质条件及找矿方向. 1981
    沈昆,胡受奚,孙景贵,凌洪飞,赵懿英,孙明志.山东招远大尹格庄金矿成矿流体特征[J].岩石学报,2000,16(4 ):542~550
    沈昆,倪培,林景仟.鲁西南归来庄金矿成矿流体特征和演化[J].地质科学,2001,36(1):1~13
    唐永成,吴言昌,储国正.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社,1998:351~353
    万天丰.山东省构造演化与应力场研究.山东地质,1992,8(2):70~101
    万天丰,郑子恒,郑宽喜,等.铜井、金场矿田成矿规律与成矿预测研究报告. 1992
    吴言昌,常印佛.关于岩浆夕卡岩问题[J].地学前缘,1998,5(4):291~301
    徐贵忠,周瑞,王艺芬,等.胶东和鲁西地区中生代成矿作用重大差异性的内在因素.现代地质,2002,16(1):9~18
    许国建,林新多.安徽长龙山矽卡岩浆型铁矿床成因探讨[J].地球科学—中国地质大学学报,1990,(6):649~656
    曾贻善.热水溶液中化学元素的迁移形式[M].北京:地质出版社,1993:50~90.
    张德会.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,1997,12 (6):546 ~552.
    张国仁,陈建强,顾德林,等.山东沂水沂沭断裂带西部中下寒武统岩石地层及沉积特征.辽宁地质,1996,4:251~262
    张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社,1985
    张叔贞,凌其聪.矽卡岩浆型铜矿床特征—以安徽铜陵东狮子山铜矿床为例[J].地球科学,1993,18 (6):801~809
    张文淮,张志坚,伍刚.成矿流体及成矿机制[J].地学前缘,1996,3(3,4):245~252.
    赵斌,李院生,赵劲松.岩浆成因夕卡岩的包裹体证据[J].地球化学,1995,24(2):198~200
    赵斌.中国主要夕卡岩及夕卡岩型矿床[M].北京:科学出版社,1989:1~342
    赵一鸣.夕卡岩矿床研究的某些重要新进展[J].矿床地质,2002,21(2):113~120
    赵一鸣.中国夕卡岩矿床[M].北京:地质出版社,1989:298~317
    郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000
    郑子恒,罗根全.利用岩体边部构造形态预测矽卡岩型矿床盲小矿体.有色金属(矿山部分),1996,6:26~29
    郑子恒.矽卡岩型小盲矿体的找矿预测——以山东山子涧矿床为例.有色金属矿产与勘查,1992,1(6):380~382
    朱永峰.液态不混溶作用:成矿机制之一—以太行山地区的金矿为例[J].矿物岩石地球化学通报,1999,18(1):206~209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700