异步轧制AZ31镁合金板材的微观组织和力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用厚度为3mm的商用热挤压AZ31镁合金板坯在上辊直径为:135mm、下辊直径为:120mm的异径两辊轧机上进行轧制,研究了不同轧制工艺、热处理工艺及其对板材组织和性能的影响,探讨了板材的断裂行为。
     实验结果表明:
     (1)在本实验条件下:异速比1.125,轧制温度300℃,AZ31镁合金板材单道次大变形异步轧制存在一个临界压下率εC,当压下率≤εC时,板材的组织和力学性能随变形量的增加而改善;当压下率>εC时,板材的组织和力学性能将从所达到的最佳状态下降。
     (2)道次压下率为38.1%的单道次和两道次大变形异步轧制工艺所得板材均具有细小的等轴再结晶组织,其晶粒尺寸分别从原始的13.6μm减小到2.8μm和1.0μm,板材的抗拉强度从275MPa分别增加到328MPa和350MPa,伸长率从22.2%分别增加到26.5%和30.8%,板材内部织构均得到了一定程度的软化;轧制后板材在经过300℃×30min退火后,组织均匀化程度显著提高,晶粒尺寸略有增大,分别为3.3μm和2.1μm,抗拉强度分别下降了3.96%和4.0%,伸长率分别提高了24.5%和21.1%。
     (3)异步轧制后热轧态AZ31镁合金板材的组织和性能在随后的加热过程中的变化与退火工艺具有密切的关系。在200℃退火时,随保温时间的延长,板材的组织和力学性能均未发生太大的变化;在300℃退火30min,板材组织发生了再结晶过程,获得均匀细小的等轴晶,当保温时间增加到60min时,存在部分再结晶晶粒长大;在350℃退火30min和60min,均在完成再结晶的同时晶粒长大;在300℃和350℃不同保温时间退火后,板材的抗拉强度和伸长率均发生了显著变化;在300℃×30min退火后,压下率为38.1%的单道次异步轧制AZ31镁合金板材的综合性能较好,室温抗拉强度为315MPa,伸长率为33.0%;
     (4)压下率为38.1%和44.5%的AZ31镁合金板材经不同的退火处理后,二者的平均晶粒尺寸、显微硬度、抗拉强度和伸长率变化规律相似;所不同的是,与压下率为38.1%的异步轧制板材相比,压下率为44.5%的在350℃退火60min时,存在晶粒异常长大现象;
     (5)通过SEM分析得到:经两道次异步轧制后,AZ31镁合金板材的断裂单元明显减小,韧性断裂特征越来越显著。
The commercial hot-extruded AZ31 plates measuring 3mm in thickness were used in the study. The DSR process was performed on a mill of different upper and lower roller diameters, which was 135mm and 120mm, respectively. Different DSR processes, heat treatment processes and their influences on the microstructure and properties of AZ31 magnesium alloy sheets were investigated in this paper. Fracture behavior of sheets was also involved.
     The results showed that:
     (1) Under the experimental conditions, a critical deformationεC existed in one-pass large deformation DSR with the rolling speed ratio of 1.125 and temperature of 300℃. Microstructure and properties of sheets improved with increasing deformation and declined from the reached best condition when the deformation was≤εC and>εC respectively.
     (2) Both of the one-pass and two-pass large deformation DSR processes with pass reduction of 38.1% gained fine equiaxed recrystallized grains. The grain sizes were refined from 13.6μm to 2.8μm and 1.0μm respectively, tensile strength increased from 275MPa to 328MPa and 350MPa respectively, elongation increased from 22.2% to 26.5% and 30.8% respectively, and textures of both were softened to some extent. After annealing at 300℃for 30min, the grains of the two DSR sheets were significantly homogenized. Grain sizes were 3.3μm and 2.1μm respectively, tensile strength decreasing rates were 3.96% and 4.0% respectively, and elongation increasing rates were 24.5% and 21.1% respectively. So it was possible to enhance ductility significantly while keeping the strength slightly reduced by differential speed rolling with subsequent annealing treatment.
     (3) Microstructure and properties of hot-rolled AZ31 magnesium alloy sheets had a close relationship with the annealing temperature and holding time. The results indicated that microstructure and properties were not undergone any significant changes when annealing at 200℃with increasing the holding time, because of the only occurance of static recovery in these annealing processes.30 minutes of annealing at 300℃were enough to fully recrystallize the microstructure and gain fine and homogeneous equiaxed grains. Part recrystallized grains grew up when the holding time increased to 60min at 300℃. Grains grew up after full recrystallization when annealing at 350℃for 30min and 60min.Significant changes had occurred in tensile strength and elongation when annealing at 300℃and 350℃with different holding time. An optimized mechanical property with tensile strength of 315MPa and elongation of 33.0% was achieved in sheets of 38.1% deformation after annealing at 300℃for 30 min.
     (4) The variation of average grain size, microhardness, tensile strength and elongation of AZ31 Mg alloy sheets with deformation of 38.1% and 44.5% was similar under different annealing process. When annealing at 350℃for 60min, there was somewhat different. A small number of abnormal grains occurred in sheets of deformation of 44.5% leading to the significant reduction in properties under this annealing process, while there were all normal grains in sheets of deformation of 38.1% under the same annealing process.
     (5) The SEM analysis showed that after the two-pass DSR process, fracture units reduced visiblely and the ductile rupture feature becomed more and more significant.
引文
[1]H. K. Lin, J. C. Huang, T. G. Langdon. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP[J]. Mater Sci Eng A. 2005 (402) 250-257
    [2]Nicole Stanford, Matthew R, Barnett. Fine grained AZ31 produced by conventional thermo-mechanical processing [J]. Journal of Alloys and Compounds.466 (2008) 182-188
    [3]M. Eddahbi, J. A. del Valle, M. T. Perez-Prado, Q. A. Ruano. Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling [J].Mater Sci Eng A.410-411 (2005) 308-311
    [4]M. T. Perez-Prado, J. A. del Valle, Q. A. Ruano. Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding [J]. Scripta Materialia.51 (2004) 1093-1097
    [5]Q. Yang, A. K. Ghosh. Production of ultrafme-grain microstructure in Mg alloy by alternate biaxial reverse corrugation[J]. Acta Materialia.54 (2006) 5147-5158
    [6]C. I. Chang, X. H. Du, J. C Huang. Producing nanograined microstructure in Mg-Al-Zn alloy by two-step friction stir processing[J]. Scripta Materialia.59 (2008) 356-359
    [7]C. I. Chang, X. H. Du, J. C Huang. Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing[J]. Scripta Materialia.57 (2007) 209-212
    [8]Hiroyuki Watanabe, Toshiji Mukai, Koichi Ishikawa. Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy[J]. Journal of Materials Processing Technology.182 (2007) 644-647
    [9]Y. H. Ji, J. J. Park, W. J. Kim. Finite element analysis of severe deformation in Mg-3Al-1Zn sheets through differential-speed rolling with a high speed ratio [J]. Mater Sci Eng A.454-455 (2007) 570-574
    [10]Su C W, Chua B W, Lu L, et al. Properties of severe plastically deformed Mg alloys [J]. Mater Sci Eng A.402 (2005) 165
    [11]靳丽.等通道角挤压变形镁合金微观组织与力学性能研究.上海交通大学博士学位论文,2006:122~123
    [12]H.K. Kim, W.J. Kim, Microstructure Instability and Strength of and AZ31 Mg Alloy after Severe Plastic Deformation [J]. Materials Science and Engineering.385 (2004) 308
    [13]Fsuji N, et al. Microstructural change of ultrafine-grained aluminum during high-speed plastic deformation [J]. Mater Sci Eng A.350 (2003) 108
    [14]张兵,袁守谦,张西锋等.累积复合轧制对镁合金组织和力学性能的影响[J].中国有色金属学报,2008,18(9):1607-1612
    [15]M. C. Chen, H. C. Hsieh, Weite Wu. The evolution of microstructures and mechanical properties during accumulative roll bonding of Al/Mg composite [J]. Journal of Alloys and Compounds.416 (2006) 169-172
    [16]Ghosh AK, Huang W. In:Mishra RS, Semiatin SL, Suryanrayana C, Thadhani NN, Lowe TC, editors. Ultrafine grained materials. Warrendale (PA):TMS; 2000. p.173
    [17]A. H. Feng, Z. Y. Ma. Enhanced mechanical properties of Mg-Al-Zn cast alloy via friction stir processing [J]. Scripta Mater.56 (2007) 397
    [18]Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi. MWCNTs/AZ31 surface composites fabricated by friction stir processing [J]. Mater. Sci. Eng A.419 (2006) 344
    [19]Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi. Nanocrystallized magnesium alloy-uniform dispersion of C6o molecules [J]. Scripta Mater.55 (2006) 1067
    [20]C.J. Lee, J.C. Huang, P.J. Hsieh. Mg based nano-composites fabricated by friction stir processing [J]. Scripta Mater.54 (2006) 1415
    [21]W.J. Kim, J.B. Lee, W.Y. Kim, H.T. Jeong, H.G. Jeong. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling [J]. Scripta Mater.56 (2007) 309
    [22]张文玉,刘先兰,陈振华.异步轧制AZ31镁合金板材的组织和晶粒取向[J].机械工程材料,2007,31(12):19-23
    [23]Valiev R Z, Islamgalie R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog Mater Sci.45 (2000) 103
    [24]郭强,严红革,陈振华等.多向锻造工艺对AZ80镁合金显微组织和力学性能的影响[J].金属学报,2006,42(7):739-744
    [25]Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J].Acta Mater.49 (2001) 1199
    [26]Ion S E, Humphreys F J, White S H. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium [J]. Acta Materialia.30 (1982) 1909
    [27]Cheng Yongqil[程永奇),Chen Zhenhuai(陈振华),Xia Weijun(夏伟军)et al. Materials Review(材料导报)[J],2006,20(7):245
    [28]Cheng Yongqi, Chen Zhenhua, Xia Weijun. Materials Characterization,2007,58:617
    [29]YASUMASA Chino, JAE2SEOL Lee, KENSUKE Sassa, et al. Press formability of a rolled AZ31 Mg alloy sheet with controlled texture [J]. Materials Letters.60 (2006) 173- 176
    [30]张青来,卢晨,朱燕萍等.轧制方式对AZ31镁合金薄板组织和性能的影响[J].中国有色金属学报,2004,14(3):391-397
    [31]H. WATANABE, T. MUKAI, K. ISHIKAWA. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties[J]. Journal of Materials Science.39 (2004) 1477-1480
    [32]Xinsheng Huang, Kazutaka Suzuki, Akira Watazu, et al. Effects of thickness reduction per pass on microstructure and texture of Mg-3Al-1Zn alloy sheet processed by differential speed rolling [J]. Scripta Materialia,2009
    [33]Xinsheng Huang, Kazutaka Suzuki, Akira Watazu, et al. Improvement of formability of Mg-Al-Zn alloy sheet at low temperatures using differential speed rolling [J]. Journal of Alloys and Compounds.470 (2009) 263-268
    [34]Xinsheng Huang, Kazutaka Suzuki, Akira Watazu, et al. Mechanical properties of Mg-Al-Zn alloy with a tilted basal texture obtained by differential speed rolling [J]. Materials Science and Engineering A.488 (2008) 214-220
    [35]Xinsheng Huang, Kazutaka Suzuki, Akira Watazu, et al. Microstructural and textural evolution of AZ31 magnesium alloy during differential speed rolling [J]. Journal of Alloys and Compounds,2009
    [36]Xinsheng Huang, Kazutaka Suzuki, Akira Watazu, et al. Microstructure and texture of Mg-Al-Zn alloy processed by differential speed rolling [J]. Journal of Alloys and Compounds.457 (2008) 408-412
    [37]王丽娜,杨平,夏伟军等.特殊成形工艺下AZ31镁合金的织构及变形机制[J].金属学报,2009,45(1):58-62
    [38]Lee S H, Lee D N. Analysis of deformation textures of asymmetrically rolled steel sheets [J]. International Journal of Mechanical Sciences.43 (2001) 1997-2015
    [39]刘先兰,张文玉,刘楚明等.异步轧制AZ31镁合金板材组织[J].中南大学学报(自然科学版),2008,39(6):1244-1250
    [40]张文玉,刘先兰,陈振华.异步轧制AZ31镁合金板材室温冲压性能研究[J].塑性工程学报,2007,14(4):6-10
    [41]李尧.异步轧制对3004铝合金变形织构及制耳率的影响[J].中国有色金属学报,1997,7(2):113-117
    [42]汪凌云,范永革,黄光杰等.AZ31B镁合金板材的织构[J].材料研究学报,2004,18(5):466-470
    [43]K. Iwanaga, H. Tashiro, H. Okamoto, K. Shimizu. Improvement of formability from room temperature to warm temperature in AZ31 magnesium alloy [J]. J. Mater. Process. Technol.155-156(2004) 1313-1316
    [44]傅定发,许芳艳,夏伟军,等.退火工艺对轧制AZ31镁合金组织和性能的影响[J].湘潭大学自然科学学报,2005,27(4):57-61
    [45]Manuel Marya, Louis G, Hector, et al. Microstructural effects of AZ31 magnesium alloy on its tensile deformation and failure behaviors [J]. Material Science and Engineering A. 418(2006)341-356
    [46]程永奇,陈振华,夏伟军.退火处理对等径角轧制AZ31镁合金板材组织和性能的影响[J].材料热处理学报,2007,28(5):90-95
    [47]J. A. del Valle, M. T. Perez-Prado, O. A. Ruano. In:Texture evolution during Large-strain hot rolling of Mg AZ61 alloy [J]. Materials Science and Engineering A.335 (2003) 68-78
    [48]M. T. Perez-Prado, J. A. del Valle, J. M. Contreras, O. A. Ruano. In:Microstructural evolution during large strain hot rolling of AM60 Mg alloy [J]. Scripta Materialia.50 (2004) 661-665
    [49]Tien-Chan Chang, Jian-Yi Wang, Chia-Ming O, Shyong Lee. In:Grain refining of magnesium alloy AZ31 by rolling [J]. Journal of Materials Processing Technology.140 (2003) 588-591
    [50]Galiyev A, Kaibyshev R, Gottstein G Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta Materialia.49 (2001) 1199
    [51]Barnett M R. Recrystallization during and following hot working of magnesium alloy AZ31 [J]. Materials Science Forum.419-422 (2003) 503
    [52]崔忠圻.金属学与热处理.北京,机械工业出版社,1989
    [53]李超.金属学原理.哈尔滨,哈尔滨工业大学出版社,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700