自噬性死亡在塞来昔布对SHG-44细胞辐射增敏效应中作用的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察塞来昔布的辐射增敏效应,探讨自噬和自噬性死亡在塞来昔布对脑胶质瘤细胞SHG-44辐射增敏效应中的作用。
     方法:选择脑胶质瘤细胞株SHG-44作为研究对象,以不同浓度塞来昔布(0、30、50、100μM)设立药物组(D组),以不同剂量6MV-X线照射(0、1、2、4、6、8Gy)设立辐射组(R组),两者交互设立联合组(D+R组)。采用四甲基偶氮唑盐(MTT)比色实验检测塞来昔布对SHG-44细胞增殖抑制作用;集落形成法检测塞来昔布对SHG-44辐射增敏作用;流式细胞仪检测细胞周期分布和凋亡;吖啶橙染色、绿色荧光FITC- LC3-Ⅱ抗体和电镜共同检测细胞内自噬体的分布和数量。
     结果:
     1. MTT检测显示:塞来昔布抑制SHG-44细胞增殖,与浓度和时间相关,随药物浓度增加以及作用时间延长细胞活性越低(P<0.05)。克隆形成实验结果和细胞存活曲线相关参数显示:塞来昔布增加SHG-44细胞的辐射敏感性,放射增敏比SERD0=1.20。
     2.流式细胞仪对细胞周期和凋亡的检测显示:塞来昔布30μM诱导肿瘤细胞G2/M期阻滞,并延长辐射8Gy诱导的细胞G2/M期阻滞时间(C、D、R和D+R组的G2/M分别为:9.87±1.34%,20.14±2.52%,29.15±1.99%,34.26±2.20%,P<0.05),而非促进细胞凋亡(R:8.24±0.93%,D+R:9.71±1.24%,P=0.158)。随着辐射剂量增加,G2/M期细胞比例增多(2Gy、6Gy和8Gy G2/M:14.06±1.37%、18.72±3.77%、29.15±1.99%,P<0.05)。
     3.细胞自噬的检测:①细胞自噬形态学的电镜观察发现塞来昔布组、辐射组和联合组的细胞胞浆内可见不同阶段自噬小体,而无明显的核浓缩和核碎片;②细胞吖啶橙染色发现塞来昔布30μM联合辐射8Gy组细胞胞质内染成红色的酸性囊泡结构数量高于对照组、塞来昔布30μM组和辐射8Gy组(6.19±0.56 vs. 1.08±0.21、1.94±0.06、2.71±0.14,P<0.05);③通过FITC -LC3-Ⅱ标记自噬小体特异性膜蛋白在细胞胞质形成绿色小点,联合组阳性细胞比例高于对照组、药物组和辐射组(43.51±3.26% vs. 9.34±1.05%、18.46±2.67 %、24.81±2.04%, P<0.05)。
     4.随着辐射剂量的递增G2/M期细胞比例增多,同时细胞自噬水平也相应增加,统计软件对细胞自噬水平和细胞G2/M期比例行相关性分析,显示二者呈线性相关(相关系数r=0.97,P<0.05)。
     5.随着细胞自噬水平增加,细胞的克隆源性存活呈指数性递减。统计软件分析,显示细胞存活分数与细胞自噬水平成指数性负相关(相关指数R=0.98 P<0.05)。
     结论:
     1.塞来昔布在体外实验中提高脑胶质瘤细胞株SHG-44的辐射敏感性。
     2.塞来昔布增强辐射诱导SHG-44细胞G2/M期阻滞,促进细胞自噬。诱导细胞自噬性死亡,可能是塞来昔布增强脑胶质瘤细胞辐射敏感性机制之一。
     3.细胞自噬和自噬性死亡可能与细胞G2/M期阻滞有关。
Objective: To evaluate Celecoxib’s radiosensitizing effect and to analyze the effect of autophagy and autophagic cell death on Celecoxib radiosensitizing human glioma SHG-44 cell lines.
     Methods: The human glioma cell SHG-44 was managed in vitro. Group of drug (Group D) was divided according to the different concentration of Celecoxib (0μM, 30μM, 50μM and 100μM);and the group irradiation (Group R) divided according to the different dose of 6-MV X-ray(0Gy, 1Gy, 2Gy, 4Gy, 6Gy and 8Gy), the other group was formed by Celecoxib combined with irradiation (Group D+R). MTT assay was performed to determine the effects of Celecoxib on SHG-44 cell growth; Celecoxib’s radiosensitization was measured by clongenic assay; the cell cycle redistribution and apoptosis was analyzed by Flow-cytometric analysis. Meanwhile, acridine orange (AO), FITC-LC3-Ⅱand transmission electron microscope were used to detect autophagy.
     Results:
     1. The outcome of MTT assay suggested that Celecoxib may produce a concentration- dependent and time-dependent inhibition of SHG-44 cell proliferation(P<0.05). Celecoxib showed radiosensitizing effect to a certain extent in SHG-44 cells by colony forming assays, the sensitizating enhancement ratio SERD0=1.20.
     2. Flow-cytometric analysis showed that Celecoxib 30μM induced G2/M arrest and enhanced prolongation of G2/M arrest that induced by irradiation 8Gy, (C,D,R and D+R G2/M: 9.87±1.34%, 20.14±2.52%, 29.15±1.99%, 34.26±2.20%, respectively; P<0.05),however, apoptotic cell death was not apparent (R: 8.2±0.93%, D+R: 9.7±1.24%, P=0.158). Furthermore prolongation of G2/M arrest was demonstrated dose-dependent manner (2, 6 and 8Gy G2/M: 14.06±1.37%, 18.72±3.77%, 29.15±1.99%, respectively; P<0.05).
     3. To investigate autophagy, first we performed TEM, SHG-44 cells treated with irradiation and / or Celecoxib showed prominent formation of autophagic vesicles with lamellar structures or residual digested material, without the nucleus condensation or segmentation. Next, cells incubated by acridine orange (AO) after irradiation 8Gy and/or Celecoxib 30μM, which emitted red fluorescein in acidic vesicular organelles (C, D, R and D+R: 1.08±0.21, 1.94±0.06, 2.71±0.14, 6.19±0.56; P < 0.05), and FITC-MAP1- LC3-Ⅱantibody was used to label LC3-Ⅱ, which was bounded on the membrane of autophagosomes. The level of autophagy of the group combination cells showed more than the R group or the Celecoxib group(C, D, R and D+R: 9.34±1.05%, 18.46±2.67%, 24.81±2.04%, 43.51±3.26%, P<0.05).
     4. As the dose of radiation increased, G2/M phase was prolonged, while the level of autophagy increased in a corresponding. Statistical software for correlation analysis showed that there is a linear correlation between the prolongation of G2/M arrest and the level of cellular autophagy (correlation coefficient r=0.97,P<0.05). 5. As the level of autophagy increased, the clongenic survival decreased exponentially. Statistical analysis showed that there is a negative correlation between the logarithm of cell survival fraction and the level of cellular autophagy (correlation index R=0.98,P<0.05).
     Conclusions:
     1. Celecoxib enhances the radiosensitivity of glioma cells SHG-44 in vitro.
     2. Celecoxib enhances SHG-44 cells G2/M phase arrest by radiation-induced and promoted cell autophagy. To induce autophagic cell death may be one of the mechanisms of Celecoxib radiosensiting glioma cells SHG-44.
     3. Induction of autophagy and autophagic cell death may be in association with the cells G2/M phase arrest.
引文
[1] Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev, 2007, 21(21):2683-2710.
    [2] Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 2005, 352(10):987-996.
    [3] Ito H, Daido S, Kanzawa T, et al. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol, 2005, 26(5):1401-1410.
    [4] Yao KC, Komata T, Kondo Y, et al. Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. Journal of Neurosurgery, 2003, 98(2):378-384.
    [5] Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell, 2002, 1(1):11-21.
    [6] Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1):27-42.
    [7] Moretti L, Yang ES, Kim KW, et al. Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy. Drug Resist Updat, 2007, 10(4-5):135-143.
    [8] Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004, 23(16):2891-2906.
    [9] Hockel S, Schlenger K, Vaupel P, et al. Association between host tissue vascularity and the prognostically relevant tumor vascularity in human cervical cancer. Int J Oncol, 2001, 19(4):827-832.
    [10] Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer, 2005, 5(9):726-734.
    [11] Bursch W, Hochegger K, Torok L, et al. Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci, 2000, 113 ( Pt 7)1189-1198.
    [12] Kanzawa T, Germano IM, Komata T, et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ, 2004, 11(4):448-457.
    [13] Daido S, Yamamoto A, Fujiwara K, et al. Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by inducing autophagy. Cancer Res, 2005, 65(10):4368-4375.
    [14] Thorburn A. Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis, 2008, 13(1):1-9.
    [15] Fujiwara K, Iwado E, Mills GB, et al. Akt inhibitor shows anticancer and radiosensitizing effects in malignant glioma cells by inducing autophagy. Int J Oncol, 2007, 31(4):753-760.
    [16] Benzina S, Altmeyer A, Malek F, et al. High-LET radiation combined with oxaliplatin induce autophagy in U-87 glioblastoma cells. Cancer Letters, 2008, 264(1):63-70.
    [17] Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 1999, 18(55):7908-7916.
    [18] Kang KB, Zhu C, Yong SK, et al. Enhanced sensitivity of celecoxib in human glioblastoma cells: Induction of DNA damage leading to p53-dependent G1 cell cycle arrest and autophagy. Mol Cancer, 2009, 866.
    [19] Kang KB, Wang TT, Woon CT, et al. Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: inhibition of tumor angiogenesis with extensive tumor necrosis. Int J Radiat Oncol Biol Phys, 2007, 67(3):888-896.
    [20]孙志强,刘芬菊,等.环氧化酶抑制剂Celecoxib增强脑胶质瘤SHG44细胞辐射敏感性的体外实验研究.辐射研究与辐射工艺学报, 2008, 26(1):52-55.
    [21] Mizushima N. Methods for monitoring autophagy. International Journal of Biochemistry & CellBiology, 2004, 36(12):2491-2502.
    [22] Traganos F, Darzynkiewicz Z. Lysosomal proton pump activity: supravital cell staining with acridine orange differentiates leukocyte subpopulations. Methods Cell Biol, 1994, 41185-194.
    [23] Daido S, Kanzawa T, Yamamoto A, et al. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Research, 2004, 64(12):4286-4293.
    [24] Paglin S, Hollister T, Delohery T, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Research, 2001, 61(2):439-444.
    [25] Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000, 19(21):5720-5728.
    [26] Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci, 2001, 114(Pt 20):3619-3629.
    [27] Tanida I, Ueno T, Kominami E. LC3 and Autophagy. Methods Mol Biol, 2008, 44577-88.
    [28]黄强,杜之威,主编.脑肿瘤分子外科学.第一版,北京:中国科技出版社, 1998, 243-256.
    [29] Bian X, Shi J, Xin R. Effects of nordihydroguaiaretic acid on the growth and differentiation of SHG-44 glioma cell line. Zhonghua Bing Li Xue Za Zhi, 1997, 26(5):285-288.
    [30] Bian X, Chen Z, Guo D, et al. Expression of angiogenic factors and cell cycle regulation factors in human glioblastoma cell line SHG-44. Zhonghua Bing Li Xue Za Zhi, 1999, 28(3):178-181.
    [31] Lefranc F, Facchini V, Kiss R, et al. Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist, 2007, 12(12):1395-1403.
    [32]徐晓婷,周菊英,俞志英,等. COX-2表达对脑胶质瘤的放射敏感性和周期的影响.中国癌症杂志, 2007, 17(11):838-842.
    [33] Joki T, Heese O, Nikas DC, et al. Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res, 2000, 60(17):4926-4931.
    [34] Shono T, Tofilon PJ, Bruner JM, et al. Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res, 2001, 61(11):4375-4381.
    [35]周乐源,周菊英,徐晓婷,等.人脑胶质瘤细胞SHG-44照射后COX-2表达与放射敏感性的关系.肿瘤, 2007, 27(10):780-782.
    [36] Giglio P, Levin V. Cyclooxygenase-2 inhibitors in glioma therapy. Am J Ther, 2004, 11(2):141-143.
    [37] Harris RE. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology, 2009, 17(2):55-67.
    [38] Liu B, Shi ZL, Feng J, et al. Celecoxib, a cyclooxygenase-2 inhibitor, induces apoptosis in human osteosarcoma cell line MG-63 via down-regulation of PI3K/Akt. Cell Biol Int, 2008, 32(5):494-501.
    [39] Shaik MS, Chatterjee A, Jackson T, et al. Enhancement of antitumor activity of docetaxel by celecoxib in lung tumors. Int J Cancer, 2006, 118(2):396-404.
    [40] Dittmann KH, Mayer C, Ohneseit PA, et al. Celecoxib induced tumor cell radiosensitization by inhibiting radiation induced nuclear EGFR transport and DNA-repair: a COX-2 independent mechanism. Int J Radiat Oncol Biol Phys, 2008, 70(1):203-212.
    [41] Liao Z, Komaki R, Milas L, et al. A phase I clinical trial of thoracic radiotherapy and concurrent celecoxib for patients with unfavorable performance status inoperable/unresectable non-small cell lung cancer. Clin Cancer Res, 2005, 11(9):3342-3348.
    [42] Dawson SJ, Michael M, Biagi J, et al. A phase I/II trial of celecoxib with chemotherapy and radiotherapy in the treatment of patients with locally advanced oesophageal cancer. Invest NewDrugs, 2007, 25(2):123-129.
    [43] Mutter R, Lu B, Carbone DP, et al. A phase II study of celecoxib in combination with paclitaxel, carboplatin, and radiotherapy for patients with inoperable stage IIIA/B non-small cell lung cancer. Clin Cancer Res, 2009, 15(6):2158-2165.
    [44] Ganswindt U, Budach W, Jendrossek V, et al. Combination of celecoxib with percutaneous radiotherapy in patients with localised prostate cancer—a phase I study. Radiat Oncol, 2006, 19.
    [45] New P. Cyclooxygenase in the treatment of glioma: its complex role in signal transduction. Cancer Control, 2004, 11(3):152-164.
    [46] Takeuchi H, Kondo Y, Fujiwara K, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Research, 2005, 65(8):3336-3346.
    [47] Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science, 2000, 290(5497):1717-1721.
    [48] Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol, 2004, 36(12):2445-2462.
    [49] Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science, 2004, 306(5698):990-995.
    [50] Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol, 2007, 9(10):1102-1109.
    [51] Blommaart EF, Luiken JJ, Blommaart PJ, et al. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem, 1995, 270(5):2320-2326.
    [52] Meijer AJ, Codogno P. Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med, 2006, 27(5-6):411-425.
    [53] Pattingre S, Levine B. Bcl-2 inhibition of autophagy: A new route to cancer? Cancer Research, 2006, 66(6):2885-2888.
    [54] Tachibana K, Kitanaka C. Autophagy and autophagic cell death. Tanpakushitsu Kakusan Koso, 2006, 51(10 Suppl):1519-1524.
    [55] Lefranc F, Kiss R, Lefranc F, et al. Autophagy, the Trojan horse to combat glioblastomas. Neurosurgical Focus, 2006, 20(4):E7.
    [56] Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer, 2005, 5(9):726-734.
    [57] Okada H, Mak TW. Pathways of apoptotic and non-apoptotic death in tumour cells. Nature Reviews Cancer, 2004, 4(8):592-603.
    [58] Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 2005, 120(2):237-248.
    [59]叶青,郑民华.自噬调控机制及与肿瘤关系研究进展.现代肿瘤医学, 2008, 16(7):1227-1230.
    [60] Chen JC, Chen Y, Su YH, et al. Celecoxib increased expression of 14-3-3sigma and induced apoptosis of glioma cells. Anticancer Res, 2007, 27(4B):2547-2554.
    [61] Grosch S, Tegeder I, Niederberger E, et al. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J, 2001, 15(14):2742-2744.
    [62] Rothschild B. Review: celecoxib increases risk for cardiovascular events; risks are greatest with higher doses. ACP J Club, 2008, 149(3):15.
    [63] Andri L, Falagiani P. Safety of celecoxib in patients with cutaneous reactions due to ASA-NSAIDs intolerance. Allergol Immunopathol (Madr), 2007, 35(4):126-129.
    [64] Gao M, Yeh PY, Lu YS, et al. OSU-03012, a novel celecoxib derivative, induces reactive oxygen species-related autophagy in hepatocellular carcinoma. Cancer Res, 2008, 68(22):9348-9357.
    [65] Fujiwara K, Iwado E, Mills GB, et al. Akt inhibitor shows anticancer and radiosensitizing effects in malignant glioma cells by inducing autophagy. Int J Oncol, 2007, 31(4):753-760.
    [66] Narayanan BA, Condon MS, Bosland MC, et al. Suppression of N-methyl-N-nitrosourea/testosterone-induced rat prostate cancer growth by celecoxib: effects on cyclooxygenase-2, cell cycle regulation, and apoptosis mechanism(s). Clin Cancer Res, 2003, 9(9):3503-3513.
    [67] Kardosh A, Blumenthal M, Wang WJ, et al. Differential effects of selective COX-2 inhibitors on cell cycle regulation and proliferation of glioblastoma cell lines. Cancer Biol Ther, 2004, 3(1):55-62.
    [68] Dvory-Sobol H, Cohen-Noyman E, Kazanov D, et al. Celecoxib leads to G2/M arrest by induction of p21 and down-regulation of cyclin B1 expression in a p53-independent manner. Eur J Cancer, 2006, 42(3):422-426.
    [69] Dulic V, Stein GH, Far DF, et al. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol Cell Biol, 1998, 18(1):546-557.
    [70] Nigg EA. Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol, 2001, 2(1):21-32.
    [71] Jun HJ, Kim YM, Park SY, et al. Modulation of ionizing radiation-induced G2 arrest by cyclooxygenase-2 and its inhibitor celecoxib. Int J Radiat Oncol Biol Phys, 2009, 75(1):225-234.
    [72] Shin YK, Park JS, Kim HS, et al. Radiosensitivity enhancement by celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, via COX-2-dependent cell cycle regulation on human cancer cells expressing differential COX-2 levels. Cancer Res, 2005, 65(20):9501-9509.
    [73] Kuipers GK, Slotman BJ, Wedekind LE, et al. Radiosensitization of human glioma cells by cyclooxygenase-2 (COX-2) inhibition: independent on COX-2 expression and dependent on the COX-2 inhibitor and sequence of administration. Int J Radiat Biol, 2007, 83(10):677-685.
    [74]韩中博,张鹏,付强,等.肿瘤细胞自噬的诱导及其细胞周期分析.癌症, 2006, 25(9)1063-1106.
    [75] Aoki H, Takada Y, Kondo S, et al. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol, 2007, 72(1):29-39.
    [76] Kuo PL, Hsu YL, Cho CY. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther, 2006, 5(12):3209-3221.
    [77] Kanzawa T, Bedwell J, Kondo Y, et al. Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. J Neurosurg, 2003, 99(6):1047-1052.
    [78] Lambert LA, Qiao N, Hunt KK, et al. Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res, 2008, 68(19):7966-7974.
    [1] Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science, 2004, 306(5698):990-995.
    [2] Meijer AJ, Codogno P. Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med, 2006, 27(5-6):411-425.
    [3] Tachibana K, Kitanaka C. Autophagy and autophagic cell death. Tanpakushitsu Kakusan Koso, 2006, 51(10 Suppl):1519-1524.
    [4] Moretti L, Yang ES, Kim KW, et al. Autophagy signaling in cancer and its potential as novel target to improve anticancer therapy. Drug Resist Updat, 2007, 10(4-5):135-143.
    [5] Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 2004, 23(16):2891-2906.
    [6] Hockel S, Schlenger K, Vaupel P, et al. Association between host tissue vascularity and the prognostically relevant tumor vascularity in human cervical cancer. Int J Oncol, 2001, 19(4):827-832.
    [7]叶青,郑民华.自噬调控机制及与肿瘤关系研究进展.现代肿瘤医学, 2008, 16(7):1227-1230.
    [8] Longo L, Platini F, Scardino A, et al. Autophagy inhibition enhances anthocyanin-induced apoptosis in hepatocellular carcinoma. Mol Cancer Ther, 2008, 7(8):2476-2485.
    [9] Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer, 2005, 5(9):726-734.
    [10] Cao C, Subhawong T, Albert JM, et al. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res, 2006, 66(20):10040-10047.
    [11] Demasters G, Di X, Newsham I, et al. Potentiation of radiation sensitivity in breast tumor cells by the vitamin D3 analogue, EB 1089, through promotion of autophagy and interference with proliferative recovery. Mol Cancer Ther, 2006, 5(11):2786-2797.
    [12] Peng PL, Kuo WH, Tseng HC, et al. Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: the contribution of autophagic cell death. International Journal of Radiation Oncology, Biology, Physics, 2008, 70(2):529-542.
    [13] Fujiwara K, Iwado E, Mills GB, et al. Akt inhibitor shows anticancer and radiosensitizing effects in malignant glioma cells by inducing autophagy. Int J Oncol, 2007, 31(4):753-760.
    [14] Ito H, Daido S, Kanzawa T, et al. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. International Journal of Oncology, 2005, 26(5):1401-1410.
    [15] Lefranc F, Facchini V, Kiss R, et al. Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist, 2007, 12(12):1395-1403.
    [16] Daido S, Yamamoto A, Fujiwara K, et al. Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by inducing autophagy. Cancer Res, 2005, 65(10):4368-4375.
    [17] Persson HL, Kurz T, Eaton JW, et al. Radiation-induced cell death: importance of lysosomal destabilization. Biochemical Journal, 2005, 389(Pt 3):877-884.
    [18] Hetz C. Apoptosis, necrosis and autophagy: from mechanisms to biomedical applications. Curr Mol Med, 2008, 8(2):76-77.
    [19] Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol, 2004, 16(6):663-669.
    [20] Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science, 2004, 304(5676):1500-1502.
    [21] Kim KW, Mutter RW, Cao C, et al. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem, 2006, 281(48):36883-36890.
    [22]韩中博,张鹏,付强,等.肿瘤细胞自噬的诱导及其细胞周期分析.癌症, 2006, 25(9)1063-1106
    [23] Steel GG. The utility of cell kinetic data in the design of therapeutic schedules. Int J Radiat Oncol Biol Phys, 1979, 5(1):145-146.
    [24] Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nature Reviews Cancer, 2008, 8(7):545-554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700