认知无线电网络中智能感知与功率控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
认知无线电CR(Cognitive Radio)作为一种革命性智能共享技术,可显著提高频谱利用率。认知无线电使用动态频率接入,应具备自动检测无线电频谱空洞功能。建立认知无线电网络CRN(Cognitive radio networks)首要解决的核心问题是如何采用频谱感知技术准确地识别频谱空穴,检测授权用户出现。在认知用户和授权用户工作在相同频段的情况下,认知用户如何采用功率控制技术调整传输功率在保证授权用户服务质量的同时实现动态频谱接入和频谱共享。
     本文主要研究认知无线电网络中的频谱感知技术和功率控制技术,创新点主要体现在认知用户智能感知与传输功率控制技术方面。
     文章首先分析了课题的研究背景与意义,国内外发展现状,简要介绍认知无线电主要关键技术,然后总结分析了现有频谱感知技术。重点讨论一种基于认知无线电技术的802.22无线区域网系统授权用户频带特征感知方案。研究中主要针对DVB-T、AM无线麦克风两类授权用户信号特点进行精细感知,并着重分析了循环周期长度和延时等参数对检测性能的影响。结果表明增加计算自相关函数时的循环周期长度或采样点数,降低延时,都有利于信号检测,从而验证了该算法的优良性。该算法可以改善系统频谱感知性能,更好地保护授权用户,充分挖掘频谱资源。
     其次,在分析认知用户与授权用户共存模型的基础上,提出了基于授权用户功率检测的自适应感知阈值的设定方法和接入控制方案,并针对IEEE802.22无线区域网中的授权用户,分别进行数学分析和实际模型仿真。通过自适应感知阈值调整控制认知用户发射功率,能保持恒定的漏检和虚警概率,获得最佳的频谱感知性能,使认知用户在不对授权用户产生干扰的同时与授权用户最佳共存。
     最后,基于非视距(NLOS)环境下的单次反射统计信道模型,由双基站测得多组经由多个散射体反射的移动台的电波到达角(AOA)和主基站提供的电波到达时间(TOA),提出了一种结合神经网络和加权质心算法来实现授权用户定位的新方法即基于移动终端周围散射体信息利用主次双基站来定位主用户。描述了定位模型和定位算法,结合神经网络对散射信息进行修正估计和定位计算,将授权用户定位结果代入自适应感知阈值算法。该算法能有效地抑制NLOS误差,进一步提高定位精度,便于认知用户更准确地自适应调整感知阈值,降低阈值误差。通过分析比较各种定位算法的定位误差对感知检测性能产生的影响,表明本文的定位算法可以改善检测性能,获得较准确的共存概率。
As a revolutionary smart spectrum sharing technology, cognitive radio (CR) can significantly improve the spectrum utilization, which can be able to seek and use in a dynamic way the frequencies for network access by autonomous detection of vacant bands in radio spectrum. The key problem in cognitive radio network is how to use spectrum sensing technology to find the spectrum hole and identify the license users. And how to achieve the optimum coexistence between SU and PU at the same frequency using transmission powers control (TPC) technology to guarante the PU’s communication required by the quality-of-service (QoS).
     The creative work of this paper is mainly manifested in the improvement of intelligent sensing algorithm and power control method in cognitive radio network.
     In this paper, the subject background and significance of CR is presented. And the development of the status quo at home and aboard is described. The chief introduction on key technology in cognitive radio is made. The conclusions and analysis on current spectrum sensing technology are made. This paper focuses on methods for feature sensing of primary bands in IEEE 802.22 WRAN systems. This method facilitates the detection of signals by increasing the number of cyclic period or the duration of cyclic period used in the calculation of the correlation function as well as reducing the delay. Simulations in fine sensing by characteristic of primary user signal are presented. The algorithm proposed can promote the improvement of the performance of system spectrum sensing and protection of license user as well as make full use of spectrum resource.
     Secondly, a novel setting and access control method of adaptive sensing threshold based on power detection of the primary user (PU), on the basis of the analysis of the coexistence model between PU and SU, is proposed. The mathematical and practical simulations are made, and results analysis of the proposed mechanism in IEEE 802.22WRAN is carried out. The sensing threshold calculated by power detection of PU, not only maintains constant probabilities of missed detection and false alarm, but also obtains the optimum performance of spectrum sensing. The optimal SU’s transmission power, adaptively according to sensing threshold, enables both SU and PU to coexist in the same channel without interfering each other.
     Finally, the multi-group TOA (Time of Arrival) and AOA (Angle of Arrival) provided by two base stations are measured based on the single reflect statistics channel model under NLOS environment. The paper initials new sensing method using scatter information around mobile user to locate the primary user. A new algorithm combined neural networks with the weighted centroid algorithm to achieve primary user’s location is proposed. The system location model and the algorithmic principle of location are described. The location results of primary user are applied into adaptive sensing algorithm and analysis of the impact on detection performance towards location error in the proposed mechanism. The algorithm proposed can restrain NLOS error effectively and further improve localization accuracy. In order to adaptively adjust sensing threshold for cognitive radio and lower threshold error, the analysis and comparison of various kinds of localization algorithm error affect sensing detection performance. The result shows the current localization algorithm improves detection performance and obtains more exact probability of spectrum coexistence.
引文
[1] J.Mitola, Maguire G, Jr.“Cognitive radio: Making software radios more personal [J]”.IEEE Personal Communications Magazine, 1999, 6(4).pp:13-18.
    [2] Federal Communication Commission (FCC), Notice of Proposed Rule Making[S], ET Docket no.04-113, May 25,2004.www.ieee802.org/22/online document: PAR.
    [3]谢显中,《感知无线电技术及其应用》,电子工业出版社,2008.
    [4] Brodersen R W, Wolisz A, Cabric D, et al.“Covus: a cognitive radio approach for usage of virtual unlicensed spectrum [J]”. Berkeley Wireless Research Center White Paper, 2004.
    [5] N K Hoven,“On the feasibility of cognitive radio [M]”.University of California, Berkely, spring 2005.pp:50-65.
    [6] F Akyildiz,W.–Y.Lee,MC Vuran,S.Mohanty,“Next generation/dynamic Spectrum access/cognitive radio wireless networks: a survey [J]”.Computer Networks, Volume 50, Issue 13, 15 September 2006.pp:125-132.
    [7] T.Weiss, F.Jondral.“Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency [J]”. IEEE Commun.Mag, March 2004.vol.42, pp: 8-14.
    [8]周侨,《认知无线电网络中的动态信道分配技术研究》,浙江大学硕士论文,2008.
    [9] J.Mitola,“Cognitive radio: An integrated agent architecture for software defined radio [D]”.Doctor of Technology, Royal Inst.Technol, Stockholm, Sweden, 2000.
    [10] Beibei Wang, Zhu Ji, K.J.RayLiu.“Primary-Prioritized Markov Approach for Dynamic Spectrum Access [J]”. IEEE DySPAN 2007.
    [11] Subramanian.S.N, Tho Le-Ngoc.“Traffic Modeling in a Multimedia Environment [J]”. IEEE CCECE 1995.
    [12] H. Heffes, D. M. Lucantoni.“A Markov Modulated Characterization of Packetized Voice and Data Traffic and Related Statistical Multiplexer Performance [J]”. IEEE J. Select. Areas Commun, 1986.vol.SAC-4, no. 6.pp:856-868.
    [13] Hang Su, Xi Zhang.“Design and Analysis of a Multi-Channel Cognitive MAC Protocol for Dynamic Access Spectrum Networks [J]”. Military Communications Conference, 2008. MILCOM 2008. IEEE.
    [14]陈维克,李文锋,首桁,袁兵,基于RSSI的无线传感器网络加权质心定位算法[J],武汉理工大学学报,2006年4月,30(2).
    [15] Haykin S.“Cognitive Radio: Brain-Empowered Wireless Communications [J]”. IEEE Journal on Selected Areas in Communications, 2005, 23 (2).pp:201-220.
    [16] D.Willkomm, J.Gross, A.Wolisz.“Reliable Link Maintenance in Cognitive Radio Systems [J]”. IEEE DySPAN, Baltimore, USA, November 2005. pp: 371-378.
    [17] D.Grandblaise, C.Kloeck, K.Moessner, et al.“Techno-economic of collaborative based secondary spectrum usage-E2R research project outcomes overview [J]”. DySPAN 2005, Nov.2005. pp: 318-327.
    [18] Akyildiz I F, Altunbasak Y, Fekri Yetal,“AdaptNet:An adaptive protocol suite for the Next Generation Wireless Internet [J]”.IEEE Communications Magazine, 2004, Volume42, Issue 3.pp:128-136.
    [19] Cordeiro C, Challapali K, Birru D, et al.“IEEE802.22: the first worldwide wireless standard based on cognitive radios [J]”. IEEE DySPAN 2005.
    [20]莫文承,《认知无线电的频谱分配算法研究》,西安电子科技大学硕士论文,2007.
    [21] Ian F.Akyildiz, Won-Yeol Lee, Mehmet C.Vuran, and Shantidev Mohanty, et al.“Next Generation / Dynamic Spectrum Access/ Cognitive Radio Wireless Networks: A Survey. Computer Networks [J]”. 2006, 50.pp:2138-2139.
    [22] Cheng shilun and Yang zhen.“Energy-Effient Power Control Game for Cognitive Radio Systems[C]”.Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing 2007.SNPD 2007.Eiqhth ACIS International Conference on Volume 1, 2007. pp: 526-530.
    [23]周贤伟,王建萍,王春江,《认知无线电》,国防工业出版社,2008.
    [24] D.Cabric, S.M.Mishra, D.Willkomm et.al.“A cognitive radio approach for usage of Virtual unlicensed spectrum[C]”.14 th IST Mobile and Wireless Communications.
    [25] Hong-Sam T. Le and Qilian Liang.“An efficient Power Control Scheme for Cognitive Radios[C]”.Wireless Communication and Networking Conference, 2007.WCNC 2007.IEEE 11-15 March 2007.pp:2559-2563.
    [26] Amir Ghasemi, Elvino S.Sousa.“Spectrum Sensing in Cognitive Radio Networks: The Cooperation-Processing tradeoff[C]”.Wireless Communications and Mobile Computing, 2007, 7.pp:1053-1054.
    [27] CabrieD, MishraSM,Brodersen RW,“Implementation issues in spectrum sensing for Cognitive radios”. 38th Asilomar Conferenee on Signals Systems and Computer 2004,2004.pp: 772-776.
    [28] Minghao Yu, Lianfen Huang, Huihuang Chen.“Multi-Channel MAC Protocol for Cognitive Wireless Mesh Network [J]”. IEEE IWASID 2008.
    [29] Ganesanq, LiYG.“Coperative spectrum sensing in cognitive radio networks [J]”. IEEE DySPAN2005,2005.pp: 137-143.
    [30] J.Mitola,“Cognitive radio for flexible mobile multimedia communications [J]”. Mobile Networks and Applications, 2001, 6(5).pp:435-441.
    [31]郭瑜,《基于认知无线电的频谱感知技术研究》,硕士学位论文,重庆大学,2008.
    [32] Aszetly D.“On antenna arrays in mobile communication system: Fast fading and GSM base station receive: algorithms [Ph.D. dissertation]”.Royal Institute Technology, Sweden, Mar, 1996.
    [33]周小飞,张宏纲,《认知无线电原理及应用》,北京邮电大学出版社,2007.pp: 115-120.
    [34] FCC.“Spectrum Policy task force report[R]”.ET Doeket No.02-155,Nov02,2002.
    [35]马菊红,《认知无限电系统中频谱检测技术研究》,硕士学位论文,苏州大学,2009.
    [36]陈吉,《基于谱相关的调制方式识别的研究》,硕士学位论文,北京交通大学,2007.
    [37] Mohamed Ghozzi, Mischa Dohler, Francois Marx, Jacques Polycot.“Cognitive Radio: Methods for the Detection of Free Bands [J]”.C.R.Physique, 2006, 7.pp:794-804.
    [38] Guillermo Acosta, Dr. Mary Ann Ingram.“OFDM Simulation Using Matlab[R]”. Smart Antenna Research Laboratory, 2008.pp: 40-45.
    [39] K. Hamdi, W. Zhang, and K. B. Letaief,“Power Control in Cognitive Radio Systems Based on Spectrum Sensing Side Information[J]”. IEEE International Conference on Communications, June 2007.pp: 5161-5165.
    [40]彭启航,《认知无限电中频谱感知技术研究》,硕士学位论文,电子科技大学,2006.
    [41] Sahai,N.Hoven,R.Tandra.“Some fundamental limits on cognitive radio[C]”.Allerton Conference on communication control and computing,Sep29-Octl,2004,Montieello,IL, USA,2004.
    [42] Ning Han, SungHwan Shon, Jae Hak Chung, Jae Moung Kim.“Spectral CorrelationBased Signal Detection Method for Spectrum Sensing in IEEE 802.22 WRAN Systems [J]”. 2006.
    [43] Zhao J,ZhengH,Yang GH.“Distributed coordination in dynamic spectrum allocation Networks[J]”.Inproe.IEEE DySPAN 2005,2005. pp: 259-268.
    [44] Wang Xia, Zhu Qi.“Power Control for Cognitive Radio Based on Game Theory [C]”. Wireless Communications, Networking and Mobile Computing, 2007.International Conference on 21-25 Sept.2007.pp:1256-1259.
    [45] FCC, Faciliating Opportunities for Flexible,“Efficient and Reliable Spectrum Use Employing Cognitive Radio Technologies [J]”, ET Docket No, 03-322, 2003.
    [46] Hyun-Ho Choi, Kyughun Jang and Yoochae Cheong.“Adaptive Sensing Threshold Control Based on Transmission Power in Cognitive Radio Systems (Invited Paper)”.2008 IEEE Xplore, Oct, 2008.
    [47]毛永毅,李明,张宝军,基于RBF神经网络的AOA定位算法[J] ,计算机应用,2008年1月, 28(1), pp:1-6.
    [48]毛永毅,李明,张宝军,一种NLOS环境下的TDOA/AOA定位算法[J],电子与信息学报,2009年1月,31(1), pp: 31-40.
    [49]段凯宇,张力军,一种改进的NLOS环境下的TDOA/AOA混合定位算法[J],电子与信息学报, 2006, 28 (2).
    [50]韩力群编著,《人工神经网络教程》,北京邮电大学出版社,2006年12月.
    [51]毛永毅,李明,张宝军,基于改进RBF神经网络的TDOA/AOA定位算法[J],微电子与计算机,2009年7月,26(7),pp:183-186.
    [52]周开利,康耀红,《神经网络模型及其MATLAB仿真程序设计》,清华大学出版社,2005年7月.
    [53]葛哲学,孙志强,《神经网络理论与MATLAB R2007实现》,电子工业出版社,2007年9月.
    [54]段凯宇,张力军,一种改进的无线定位算法[J],信号处理,2006, 22 (4).
    [55]安徇,蒋挺,周正,一种用于无线传感器网络的质心定位算法[J],计算机工程与应用,2007,43(20).
    [56]邓平,刘林,范平志,一种基于TDOA重构的蜂窝网定位服务NLOS误差消除方法[J],电波科学学报,2003,18(3). pp: 311-316.
    [57]毛永毅,李明,张宝军,基于RBF神经网络的TDOA/AOA定位算法[J],计算机工程,2008年2月,34(3). pp: 1-6.
    [58]黄际彦,万群,杨万麟,基于散射体信息的双基站定位[J],电子与信息学报,2007年3月,29(3). pp: 671-673.
    [59]董长虹,《Matlab神经网络与应用》,国防工业出版社,2005年1月.
    [60] Klukas R, Fattouche M.“Line of sight angle arrival estimation in the outdoor multi-path environment [J]”. IEEE Trans on VT, 1998, 147(1).pp:342-351.
    [61] Greenstein L J, et al.“A New Path-gain Delay Spread Propagation Model for Digital Cellular Channel [J]”. IEEE Trans on VT, 1997, 46(2). pp: 477-485.
    [62] Zhao Qing, Tong Lang, Swami A, et al.“Decentralized Cognitive MAC for Opportunistic Spectrum Access in Ad Hoc Networks: A POMDP Framework[J]”. IEEE Journal on Selected Areas in Communications, 2007, 25 (3).pp: 589-600.
    [63] Zhongren Cao, Ufuk Tureli, Yu-DongYao, et al.“Frequency Synchronization for Generalized OFDMA Uplink [J]”. IEEE Communications Society Globecom 2004, pp: 1071-1075.
    [64] Hitoshi ISHIDA, Eisuke KUDOH, Fumiyuki ADACHI.“Channel Allocation for a 2-Hop OFDMA Virtual Cellular Network [J]”. Proceedings of APCC 2008.
    [65]李雯雯,《认知无线电场景中OFDMA同步问题研究》,西安电子科技大学硕士论文,2008.
    [66] Joseph Wynn Mwangoka, Khaled Ben Letaief, Zhigang Cao.“Robust End-to-End QoS Maintenancein Non-Contiguous OFDM Based Cognitive Radios [J]”. IEEE ICC 2008.
    [67] Qicai Shi, Taubenheim D, Kyperountas S, et al.“Link Maintenance Protocol for Cognitive Radio System with OFDM PHY [J]”. IEEE DySPAN 2007.
    [68] Anggraeni PN, Mahmood N H, Berthod J, et al.“Dynamic Channel Selection for Cognitive Radios with Heterogeneous Primary Bands[J]”. Wireless Personal Communications, 2008, 45.pp: 369-384.
    [69] Subramani S, Armour S, Kaleshi D, et al.“Spectrum Scanning and Reserve Channel Methods for Link Maintenance in Cognitive Radio Systems [J]”. IEEE VETECS 2008.
    [70] Dan Xu, Jung E, XinLiu.“Optimal Bandwidth Selection in Multi-Channel Cognitive Radio Networks: How Much is Too Much? [J]”. IEEE DYSPAN 2008.
    [71] Alexander M, Wyglinski.“Effects of Bit Allocation on Non-contiguous Multicarrier based Cognitive Radio Transceivers [J]”. IEEE VTCF 2006.
    [72] MAO Yong-yi, LI Ming-yuan, ZHANG Bao-jun.“AOA Location Algorithm Based on RBF Neural Network [J]”.Computer Application, Jan.2008, 28(1). pp: 1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700