古银杏和古槐衰弱特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古树生长年代久远,出现了不同程度的衰老症状。随着古树的衰老,其养分、水分、矿质营养元素、激素和酶系统等都有显著变化。
     本实验从古树生理生化特征及叶绿体结构与功能等方面比较了古树和幼树的差别,并选择和确定了可作为古树衰老标记的生理指标。
     ①通过显微观察银杏和国槐的叶绿体超微结构,发现古银杏叶片的叶绿体呈梭形,随树龄增长,叶绿体排列有相对疏松的趋势,叶绿体数目相对减少;国槐叶绿体呈椭球形,贴壁排列,百年国槐较对照国槐叶片细胞排列疏松。
     ②通过超微结构观察,随季节变化,银杏叶绿体中淀粉粒的数量及体积均呈上升趋势,树龄越大,上升程度越大;国槐叶绿体中淀粉粒数量及体积也有同样趋势。在同一生长时间,古树叶绿体内淀粉粒的数量及体积均比对照明显增加,增加程度与树龄成正比,古树的叶绿体基粒片层数量与清晰度呈下降趋势,树龄越大叶绿体基粒片层数量越稀疏且片层模糊。
     ③古树叶绿素含量测定结果显示,不同树龄的树木叶绿素含量均在8月达到当年生长季节的最高值,当年5月和10月叶绿素含量较低;而对照树相同月叶绿素含量均比古树高。
     ④通过叶绿素荧光测定对古、幼树的光合特性进行研究。荧光动力学参数揭示出古树的光合速率较低,树龄越大,光合速率越低;在最适条件下经过暗适应后的Fv/Fm值揭示出古银杏、古国槐明显受到胁迫,受抑制程度与树龄成正比;qP值揭示出古树的光合活性较对照低,光合活性大小与树龄成反比,树龄越大光合活性越小;qN值揭示出古银杏更适于接受强光照射。
     ⑤通过太赫兹(THz)时域图,发现THz透过率与树龄成反比,水分蒸发量也与树龄成反比,树龄越大银杏叶片水分的蒸发速率越低。
     ⑥应用气-质联用仪测定了不同树龄的银杏和国槐的脱落酸和生长素含量,结果显示,脱落酸的含量与树龄成正相关,树龄越大脱落酸含量越高。同一株树,脱落酸的含量与生长季节成正相关;在同一生长月份,生长素的含量与树龄成反比关系,树龄越大生长素含量越低。
     ⑦基于以上生理方面特性表征古树与幼树的差异,推测在分子基因水平上可能会有差异,因此通过选取与光合作用相关的rbcL基因,进行序列对比,发现不同年龄的的基因碱基突变位点差异性较明显,说明rbcL基因序列可作为银杏衰老的特性表征之一。可能是由于国槐古幼树树龄差距小,国槐rbcL基因序列的差异性较小,国槐古幼树在分子水平上差异不明显。
Old tree is became aging gradually with the passage of time.As old trees aging, nutrition,water,hormone and enzyme show obvious changes.
     Physiological structure,biochemical index and molecular marker were compared between young trees and old trees in this experiment,in order to select indicator to characterized aging.
     ①Leaf ultrastructure of Ginkgo biloba and Sophora japonica were observed through light microscopy,the results showed that cells of Ginkgo biloba leaf were regular shape,shape of chloroplast was spindle,the arrangement of leaf cells became loose and the quantity of chloroplast decreased with the passage of time.Cells of Sophorajaponica leaf were ellipse,shape of chloroplast was ellipse,the arrangement of centennial Sophora japonica leaf cells were more loose than contrast.
     ②Leaves of Ginkgo biloba and Sophora japonica were collected in different seasons to observe through electron microscopy.The results showed that quantity and volume of starch of old Ginkgo biloba and Sophora japonica increased with time, compared control.The change of quantity and definition of chloroplast of old and control trees showed declined trend.The quantity and volume of starch of old trees were more than contrast and proportional to the age in the same time.
     ③The change of chlorophyll content of old and contrast trees were determined, the results showed that the chlorophyll content of old and contrast trees reached the highest point in May,the chlorophyll content of contrast was more than old tree in every month.
     ④The photosynthetic activity of old and young trees were studied,through determined chlorophyll fluorescence.Fluorescence kinetic parameters showed that photosynthetic rate was higher than old trees,the value of Fv/Fm showed that photosynthetic rate of old trees decreased,degree was proportional to the age,the value of qP showed that photosynthetic activity of old trees was lower than contrsat, degree was inversely proportional to the age,the value of qN showed that old Ginkgo biloba were more adaptive to intense light.
     ⑤Transmittance of THz and Moisture evaporation was inversely proportional to the age,through THz-TDS.
     ⑥ABA and IAA were determined through Gas - MS.The results showed that the content of ABA was proportional to the age in same month,the content of ABA of the same tree was proportional to the time,the content of IAA was inversely proportional to the age in same month.
     ⑦rbcL gene was choose to be sequences alignment.The results showed that the difference of bases mutant between different trees were obvious,because this,the rbcL gene could be a marker to characterize Ginkgo biloba aging.The difference of bases mutant between old and young Sophora japonica were less evident,partly because the age distance between old and young was small.
引文
[1]苏金乐,吴成才,夏宗应.古银杏的现状与保护对策[J].林业科技,1999,9.
    [2]薛秋华等.古槐树的保护与复壮研究[J].园艺园林科学,2006,22(2):262-266.
    [3]傅雨露.浅论古树、名木及其保护[J].安徽农业,2004(6):43.
    [4]严崇惠.古树名木衰败原因和复壮技术探讨[J].福建林业科技,2006,33(1):213-215.
    [5]杨扬,孙航.高山和极地植物功能生态学研究进展[J].云南植物研究,2006,28(1):43-53.
    [6]郑波,陈之欢,黄凯等.古松柏叶肉细胞超微结构的研究[J].北京农学院学报,2006,21(3):39-41
    [7]赵旺兔等.榉树叶片解剖构造和叶肉细胞超微结构的观察[J].植物资源与环境学报,2003,12(2):52-57
    [8]Alexandra Vlckova,et al.Protective cytokinin action switches to damaging during senescence of detached wheat leaves in continuous light[J].Physiologia Plantarum,2006,126:257-267
    [9]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展[J].西北植物学报,2006,26(10):2186-2196.
    [10]Huang You-zong,Zhang Guo-ping.Application of measuring chlorophyll fluorescence in identification of salinity tolerance in Triticeae crop s[J].Triticeae Crop s,2004,24(3):114 - 116.
    [11]Xu Cheng-xiang,Liu You-liang.Silicon absorption,trasportation and accumulation in plants[J].Acta Bot.Boreal-Occident.Sin,2006,26(5):1071 - 1078.
    [12]李友军.熊瑛,陈明灿,吕强,骆炳.不同品质类型小麦叶绿素荧光特性及其籽粒产量和淀粉积累的关系[J].麦类作物学报,2005,25(6):82-86.
    [13]赵世杰,许长城.孟庆伟.田间小麦叶片光合作用的光抑制[J].西北植物学报.1998,18(4):521-526.
    [14]Laible,Zipfel,Owens.Excited state dynamics in chlorophyll-basedantennae:The role of transfer equilibrium[J].Biophysical Journal,1994,66:844-860.
    [15]郭延平.张良诚,沈允钢.低温胁迫对温州蜜柑光合作用的影响[J].园艺学报,1998.25(2):111-116.
    [16]张永强,毛学森.孙宏勇.干旱胁迫对冬小麦叶绿素荧光的影响[J].中国生态农业学 报,2002,10(4):13-15.
    [17]杨晓青,张岁岐,梁宗锁.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J].西北植物学报,2004,24(5):812-816.
    [18]MICKAN SAMUEL P,Zhang X-C.T-RAY SENSING AND IMAGING[J].Internal Journal of High Speed Electronics and Systems,2003,13(2):601-676.
    []9]刘盛纲.太赫兹科学技术的新发展[J].中国基础科学2006,1.
    [20]张兴宁,陈稷,周泽魁.太赫兹时域光谱技术[J].激光与光电子学进展,2005,42(7).
    [21]赵国忠.太赫兹光谱和成象应用及展望[J].现代科学仪器,2006,(2):36-40.
    [22]JEONG Y U,CHA H J,PARK S H et al.THz imaging by a wide-band compact FEL [A].Proceedings of the 2004 FEL Conference[C].Trieste:Comita to Conferenze Elettra,2004.667-670.
    [23]赵春江,康书江,王纪华等.植物内源激素对小麦叶片衰老的调控机理研究[J].华北农学报,2000,15(2):53-60.
    [24]Me collum J P.Vegetative and reproductive responses associated with fruit development in cucumber[J].Mem Cornelia gric.Ex pl S ta,1934,163:3
    [25]Murneek A E.Growth regulators during fertilization and post fertilization period[J].Palest.J1 Bot.Hortic Sci,1951,8:8
    [26]Leopold A C,Niedergang - Kamien E,Janick J.Experimental modification of plant senescence[J].Plant Physiol,1961,36:389
    [27]奎宏,华锡奇.童晓青.雷竹开花期内源激素、氨基酸和营养成分含量的变化[J].林业科学,2005,1(2):169-171.
    [28]徐德嘉.古树体内活性氧防御酶系统酶活性的初步研究[J].苏州城建环保学院学报,1995.(2):49-54.
    [29]Ding J,Shen ZD.Cytokinins in root exudates ofcotton plants[J].Acta Phytophysiol Sin,1985,11(3):249 -259.
    [30]Nooden L D,Letham D S.Cytokinin metabolism and signalling inthe soybean plant[J].Austra Plant Physiol,1993,20:639-653.
    [31]Soejima H,Sugiyama T,Ishihara K.Changes in the chlorophyll contents of leaves and in leaves of cytokinins in root exudates during ripening of rice cultivars:ipponbare and Akenohoshi[J].Plant Cell Physiol,1995,36(6):1105 - 1114.
    [32]Shen B,Wang X..Studies on physiological activi2ties of root system of two inter2subspecific hybrid rices[J].Chinese JRice Sci,2002,16(2):153-157.
    [33]丁彦芬等.古银杏复壮技术的研究[J].江苏林业科技2000,27(33):43、53、63.
    [34]朱中华,段留生.冯雪梅等.内源激素对小麦叶片衰老调控的系统分析[J].作物学报.1998,24(2):176-181.
    [35]周相娟,姜微波.胡小松等.赤霉素和乙烯对香菜叶片衰老的影响[J].北方园艺,2003(3):54-56.
    [36]董志强.舒文华.翟学军等.棉株不同器官中几种内源激素的变化及相关关系[J].核农学报,2005,19(1):62-67.
    [37]汤日圣,梅传生,陈以峰等.4PU-30对水稻叶片衰老与内源激素的调控[J].植物生理学报.1997,23(2):169-174.
    [38]Marschner H.Mineral nutrition of higher plant[M].London:Academic Press,1986,:673-676
    [39]Chin ST - Y,L Beevers1Changes in endogenors growth regulaters in nasturtium leaves during senescencel[J].Nature1970,92:178-188
    [40]张峰.用于植物分子系统学研究的基因片段[J].山东科学,2004,17(1):55-58.
    [41]燕安,朱登云.叶绿体基因组在系统发育学及基因工程领域的应用[J].细胞生物学杂志,2004.26(2):153-156.
    [42]李健仔,李思光,罗玉萍.万路.叶绿体DNA分析技术及其在植物系统学研究中的应用[J].江西科学.2002,20(3):183-189.
    [43]汪小全,洪德元.植物分子系统学近五年的研究进展概况[J].植物分类学报,1997,35(5):46-52.
    [44]SugiuraM..The chlorop last genome[J].PlantMolec Biol,1992,19:149-168.
    [45]石开明,彭昌操,彭振坤,罗正荣.DNA序列在植物系统进化研究中的应用[J].湖北民族学院学报.2002.20(4):5-9.
    [46]崔杰,杨谦,徐德昌.甜菜叶绿体rbcL基因的克隆与序列分析[J].作物杂志,2005,5:11-13.
    [47]黄瑶,马诚.葡萄叶绿体rbcL基因的结构分析[J].植物学报(英文版),1994,36(6):444-451.
    [48]Smith J F,KressW J,Zimmer E A..Phylogenetic analysis of the zingiberales based on rbcL sequences[J].Ann M is souri B ot Gard,1993,80:620-630.
    [49]王艇,苏应娟,朱建明.黄角苔叶绿体rbcL基因编码区的序列分析[J].中山大学学报,1999,138(1):70-73.
    [50]王艇,朱建明,苏应娟.部分苔藓植物rbcL基因PCR-RFLP分析[J].西北植物学报,2000,20(6):968-973.
    [51]王彦涵,张寿州,高建平,李晓波,陈道峰.从叶绿体DNArbcL序列分析探讨五味子科的系统发育[J].复旦学报,2003,42(4):550-554.
    [52]石福臣,陆兆华,李立芹.中国东北落叶松属植物rbcL基因的序列分析及系统演化[J].植物研究.2001,3:11-6.
    [53]印莉萍,刘祥林.分子细胞生物学实验技术[M].1999.
    [54]陈昆松,李方,徐昌杰,张上隆,傅承新.改良CTAB法用于多年生植物组织基因组DNA的大量提取[J].遗传,2004,26(4):529-531.
    [55]欧立军,黄光文,王京京,陈良碧.水稻叶绿体DNA提取和纯化方法优化[J].湖南师范大学自然科学学报,2006,29(1):92-94.
    [56]马国英等.不同小麦种叶片光合特性及叶绿体超微结构的比较[J].植物生理学通讯1991,27(4):255-259.
    [57]龙瑞麟.小麦珠心细胞衰退过程的超微结构研究[J].植物学报,1985,27(1):345-353.
    [58]Kut(?)k J,Wilhelmov(?) N,Snopek J.Changes in ultra-structure of Phaseolus vulgaris L.cotyledons associated with their modulated life span[J].Photosynthetica,35:361-367.
    [59]Krause K,Falk J,Humbeck K,Krupinska K.Responses of the transcriptional apparatus of barley chloroplasts to a prolonged dark period and to subsequent reillumination[J].Physiol Plant,104:143-152.
    [60]DHIND SARS,PLUM B-DHIND SAPL,THO RPETA.Leaf senescence:correlated with increared levels of membrane permeability and lipid peroxidation,and decreased levels of superoxide desmutase and catalase[J].Experimental Botany,1981,32:93-101.
    [61]张荣铣.不同染色体组小麦种叶片全展后光合速率及叶绿素含量的变化[J].江苏农业学报1990(6):1.
    [62]张阿宏等.调制叶绿素荧光动力学参数及其计量关系的意义和公理化讨论[J].核农学报2008,22(6):909-912.
    [63]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展[J].西北植物学报,2006,26(10):2186-2196.
    [64]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [65]贺立红等.银杏同一叶片不同部位叶绿素荧光特性的研究[J].北方园艺,2006(6):27-29.
    [66]赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应[J].河南农业大学学报,2000,34(3):248-251.
    [67]胡文海,喻景权,黄黎锋.光强对番茄叶片低温光抑制恢复的影响[J].植物生理学通讯,2002,38(5):447-449.
    [68]胡文海,黄黎锋,肖宜安等.夜间低温对2种光强下榕树叶绿素荧光的影响[J].浙江林学院学报,2005,22(1):20-23.
    [69]李敦海,宋立荣,刘永定.念珠藻葛仙米叶绿素荧光与水分胁迫的关系[J].植物生理学通讯,2000,36(3):502-802.
    [70]梁红,冯颖竹,王英强等.广东银杏资源调查初报[J].农业与技术,2002,6.
    [71]王可玢,许春辉,赵福洪等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影[J].生物生理学报,1997,13(2):273-278.
    [72]石岩,林琪,位东斌.土壤水分胁迫对冬小麦光合及产量的影响[J].华北农学报,1996,11(4):80-83.
    [73]陈贻竹,李晓萍,夏丽等.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].热带亚热带植物学报,1995,3(4):79-86.
    [74]刘家尧,衣艳君,张承德等.活体叶绿素荧光诱导动力学及其在植物抗盐生理研究中的应用[J].曲阜师范大学学报,1997,23(4):80-83.
    [75]卢从明,张其德,匡廷云.水分胁迫对小麦叶绿素a荧光诱导动力学的影响[J].生物物理学报,1993,9(3):453-457.
    [76]谭新星,许大全.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光[J].植物生生理学报,1996,22(1):51-57.
    [77]Krause GH,Weis E.Chlorophyll fluorescence and photosynthesis:the basics[J].Annu Rev Plant Physiol,42:313-349.
    [78]Kitajima M,Butler WL.Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone[J].Biochim Biophys Acta,376:105-115.
    [79]Kar M,Streb P,Hertwig B,Feierabend J.Sensitivity to photodamage increases during senescence in excised leaves[J].J Plant Physiol,141:538-544.
    [80]Humbeck K,Quast S,Krupinska K.Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants[J].Plant Cell Environ,19:337-344.
    [81]Il(?)k P,Nau(?) J,Cik(?)nek D,Novotn'y R.Chlorophyll fluorescence changes at high temperatures induced by linear heating of greening barley leaves[J].Photosynth Res,44:271-275.
    [82]Soejima H,Sugiyama T,Ishihara K.Changes in the chlorophyll contents of leaves and in leaves of cytokinins in root exudates during ripening of rice cultivars:ipponbare and Akenohoshi[J].Plant Cell Physiol,1995,36(6):1105 -1114.
    [83]Shen B,Wang X.Studies on physiological activities of root system of two intersubspecific hybrid rices[J].Chinese JRice Sci,2002,16(2):153-157.
    [84]Congming Lu,et al.Characterization of photosynthetic pigment composition,photosystem Ⅱphotochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field[J].Journal of Experimental Botany,2001,52(362):1805-1810.
    [85]Bano A,Dorffling K,Hahn H.Abscisic acid and cytokinins as possible root-to-shoot signals in xylem sap of rice plants indrying soil.A ust ra[J].Plant Physiology,1993,20:109-115.
    [86]郭维明等.ABA诱导离体红松针叶衰老过程中叶肉细胞超微结构的变化[J].植物研究,1987,7(4):161-173.
    [87]Nooden L D,Letham D S.Cytokinin metabolism and signalling in the soybean plant[J].Austra Plant Physiol,1993,20:639-653.
    [88]Young AJ.The photoprotective role of carotenoids in higher-plants[J].Physiol Plant1991,83:702-708.
    [89]关颖谦等.脱落酸对离体水稻叶片衰老的效应[J].植物生理学报,1981,7(3):255-263.
    [90]Demmig-Adams B.Carotenoids and photoprotection:a role for the xanthophylls zeaxanthin[J].Biochim Biophys Acta,1990,1020:1-24.
    [91]Ding J,Shen ZD.Cytokinins in root exudates ofcotton plants[J].Acta Phytophysiol Sin,1985,11(3):249 -259.
    [92]牛吉山等.小麦及其相关物种rbcL基因序列的比较研究[J].西北植物学报,2004,24(4):596-600.
    [93]NIU J SH(牛吉山),YU L(于 玲),GKCHEN P D(陈佩度),LIU D J(刘大钧).A nalysis of the B lum eria g ram in is- enhanced expression of three wheat genes[J].Plant Physi.M ol.B iol,植物生理与分子生物学学报,2002,28:65-68.
    [94]王艇等.叶绿体rbcL基因序列在植物系统学研究中的应用[J].武汉植物学研究,1999,17(增刊):8-14.
    [95]Yongfeng Guo and Susheng Gan.At NAP,a NAC family transcription factor,has an important role in leaf senescence[J].The Plant Journal,2006,46:601-612.
    [96]Hidema J,Makino A,Kurita Y,Mae T,Ojima K.Changes in the levels of chlorophyll and light-harvesting chlorophyll a/b protein of PSII in rice leaves aged under different irradiances from full expansion through senescence[J].Plant Cell Physiol,33:1209-1214.
    [97]Shinozaki K,Sugiura M.The nucleo tide sequence of the tobacco ch 1o top last gene for the large subunit of ribulose- 1,5-bispho sphate carboxylase/oxygenase[J].Gene,1982,20:91- 102.
    [98]M c Into sh L,Poulsen C,Bogorad L.Ch lo rop last gene sequence for the large subunit of ribulo se bispho sphate carboxylase of maize[J].Natu re,1980,288:556- 560.
    [99]Niyogi K K,Grossman A R,Bjorkman O..Arabidopsis mutants define a central role of the xanthophyll cycle in the regulation of photosynthetic energy conversion[J].Plant Cell,1998,10:11-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700