用户名: 密码: 验证码:
Y_2O_3:Eu~(3+)纳米粉末和透明陶瓷的制备及光谱性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包含四章内容,绪论介绍了论文工作的背景;第2章到第4章报道了Y_2O_3∶Eu~(3+)纳米粉末和透明陶瓷的制备、形貌结构表征及发光性质研究结果.
     绪论首先介绍了近几年重点研究的一些稀土发光材料,然后详细阐述了光致发光的基本原理和三价稀土离子的发光特性,并给出透明陶瓷的相关知识:最后简单讨论了利用溶液燃烧法和均相沉淀法制备纳米粉末的相关内容.
     在第2章中,用燃烧法制备Y_2O_3∶Eu~(3+)纳米粉末,研究了前驱溶液pH值的改变对粉末形貌和发光性质的影响。利用XRD和SEM对粉末的结构形貌进行表征,结果显示随着溶液pH值的增大,晶粒逐渐增大,并且晶粒间的团聚变得更厉害,粉末变得更致密,气孔率降低。TG-DZA曲线显示,在高pH值下燃烧持续时间变长可能是导致粉末团聚更厉害的原因。粉末的发射谱由三价Eu~(3+)离子在立方Y_2O_3中的典型发射峰组成,最强的发射位于612 nm,是由~5D_0-~7F_2电偶极跃迁引起的。发射谱显示,随着pH值的增大,样品的发光逐渐增强。激发谱由基质吸收、电荷迁移带和4f组态内的跃迁三部分组成,随着pH值的增大,基质吸收相对电荷迁移带的激发强度逐渐减弱。样品的荧光寿命测量结果表明,pH值越大,即晶粒越大,荧光寿命越短。
     由于燃烧法制备的粉末中存在不利于透明陶瓷烧结的团聚现象,在本章的第二部分研究了PEG2000分散剂的使用对粉末形貌和光谱性质的影响。少量分散剂的加入,使得粉末的晶粒有些微增大,但是随着用量的继续增加,晶粒逐渐减小。最重要的是,适量(10wt%)分散剂可以使粉末中的团聚体尺寸明显减小。同时,发射光谱表明,在晶粒大小相同甚至更小的情况下,团聚体的减小使样品的发光明显增强。激发谱中出现随着晶粒减小,电荷迁移带红移的现象,这是由于表面态上的Eu-O键变长,共价性减弱的结果。荧光寿命测量的结果显示,晶粒大小相差一倍的粉末几乎具有相同的寿命。
     第3章中采用改善的凝胶燃烧法制备Y_2O_3∶Eu~(3+)粉末,与直接燃烧得到的粉末进行对比,并利用这些粉末采用真空和氮气烧结相结合的方法制备透明陶瓷,观察粉末性质的不同对透明陶瓷微观结构的影响。粉末的XRD分析表明,凝胶过程对晶粒的大小几乎没有影响,与直接燃烧一样,晶粒大小主要由甘氨酸和金属离子的摩尔比决定。但是,SEM和TEM图显示,燃烧前的凝胶过程可以显著地减小团聚体的尺寸。陶瓷的表面形貌图表明,粉末中的团聚体越小,陶瓷的微观结构越均匀,表面越平整。而以直接燃烧制备的样品为前驱粉末烧结的陶瓷不仅表面凹凸不平,而且出现了裂纹和气孔,对陶瓷的透明度产生致命影响。光谱分析显示,陶瓷和粉末的发射谱除强度不同外,谱型完全相同,而两者的激发谱则存在一些差异。
     第4章中采用均相沉淀法制备Y_2O_3∶Eu~(3+)粉末,并将其烧结为透明陶瓷。结构和形貌分析显示,在本论文的实验条件范围内,反应物浓度、水浴温度和煅烧温度对样品形貌和结构的影响很小,得到的粉末都是由小晶粒团聚成的大于100nm的球形颗粒组成。但是,溶液pH值的不同可以显著改变粉末的形貌。调节溶液的pH值为6.5,则制备得到的粉末晶粒不会团聚成大颗粒,分散性较好,由此烧结而成的陶瓷也具有更好的透明度。陶瓷的表面SEM图显示,由于粉末中存在团聚体,烧结得到的陶瓷晶粒大小和形貌很不均匀,而分散性较好的粉末则可以得到微观结构均匀的陶瓷样品。陶瓷和粉末的荧光衰减曲线显示,前者的荧光寿命比后者短的多.
This thesis focuses on the preparation and spectral properties of Y_2O_3:Eu~(3+) nano-powders and ceramics,which is composed of four chapters.In the preface,the background of my work is introduced.In chapter 2 to 4,the synthesis of Y_2O_3:Eu~(3+) nano-powders and ceramics as well as the morphological,structural and spectral properties of the resultant samples are repoted.
     In chapter 1,an introduction of some important rare earth luminescent materials is given at first.Then the basic principals ofphotoluminescence,spectral properties of trivalent rare-earth ions as well as knowledge of transparent ceramics are stated.At last,combustion and homogeneous precipitation methods for synthesis of nano-powders are briefly introduced.
     In chapter 2,Y_2O_3:Eu~(3+) nano-powders were synthesized by combustion method and the influence of pH value on properties of combustion-derived powders was studied.The structure and morphology analyses display that with the increase of pH value,the crystallites become bigger,and the powder becomes more and more compact.TG-DAT curves indicate that longer combustion time is needed under higher pH value,which may account for the severer agglomeration in corresponding powders. The emission spectra of powders contain the typical Eu~(3+) luminescent components in cubic Y_2O_3 with the strongest emission at 612 nm assigned to ~5D_0-~7F_2 forced electric dipole transition.The emission spectra show that with the increase of pH value,the luminescent intensity of Y_2O_3:Eu~(3+) nano-powder is enhanced.The excitation spectra consist of three parts:host absorption,charge transfer band and transition within 4f orbital and the relative intensity of host absorption weakens with the increase of pH value.The decay curves reveal the observed lifetime of Y_2O_3:Eu~(3+) nano-powder shortens with the increase of crystalline size.
     Agglomeration,which is deleterious to the transparency of ceramic,is easily present in the powders prepared by combustion method,so PEG2000 was used as dispersant to improve the dispersivity of the resultant powders.Small amount of dispersant increases the crystalline size slightly,while with the continuous increase of dispersant,the crystallites become smaller and smaller.What is the most important is that appropriate amount of dispersant(10wt%) reduces the size of agglomerate obviously.Emission spectra confirm that the reduction of agglomerate size can enhance the luminescent intensity apparently when the powders possess almost the same crystalline size.In the excitation spectra,red-shift of charge transfer band with the decrease of crystalline size is observed,resulting from the increase of surface area. The decay curves reveal that powders with different crystalline size have almost the same lifetime.
     In chapter 3,Y_2O_3:Eu~(3+)nano-powders were prepared by gel combustion,and the products were compared with those produced by direct combustion.The resultant powders were sintered into transparent ceramics and the influence of properties of powders on microstructures of ceramics was studied.XRD analysis indicates the gel process before combustion has no influence on the crystalline size,which is mainly determined by the molar ratio of glycine to metal ions.However,TEM and SEM images reveal that the gel process can reduce the size of agglomerate significantly. The surface morphologies of ceramics show that smaller agglomerates lead to even surface and homogeneous structure while cracks and pores are present in the ceramics derived from powders prepared by direct combustion.Powders and the corresponding ceramics have just the same emission spectra in terms of peak position.But there are some distinct differences in the excitation spectra.
     In chapter 4,homogeneous precipitation was used to prepare Y_2O_3:Eu~(3+) nano-powders,which were subsequently sintered into ceramics.In the experiment condition range of this thesis,it is found that the concentration of reactant,the water-bath temperature and calcination temperature have no significant influence on the morphologies and structures of the resultant powders,all of which are composed of crystallite-agglomerated spherical particles.Nevertheless,the pH value of solution makes striking difference.When the pH value of solution was adjusted to 6.5,the synthesized powder has good dispersivity and the corresponding ceramic shows better transparency.SEM images of ceramics confirm that agglomeration in powder results in wide crystalline size distribution and heterogeneous morphology while good dispersivity ensures homogeneous microstructure.The decay curves of ceramic and powder reveal that former has much shorter lifetime.
引文
[1]新型功能材料,贡长生,张克立.化学工业出版社,北京,2001
    [2]稀土发光材料,张希艳,卢利平,柏朝晖等.国防工业出版社,北京,2005
    [3]稀土发光材料及其应用,李建宇.化学工业出版社,北京,2003
    [4]R.T.Wegh,H.Donker,A.Meijerink,et al.Physical Review B 56(1997)13841
    [5]R.T.Wegh,H.Donker,K.D.Oskam,et al.Journal of Luminescence 82(1999)93
    [6]R.T.Wegh,H.Donker,K.D.Oskam,et al.Science 283(1999)663
    [7]R.T.Wegh,H.Donker,E.V.D.van Loef,et al.Journal of Luminescence 87-9(2000)1017
    [8]R.T.Wegh,E.V.D.van Loef,A.Meijerink.Journal of Luminescence 90(2000)111
    [9]Y.H.Chen,B.Liu,C.S.Shi,et al.Science In China Series G-Physics Astronomy 46(2003)17
    [10]B.Liu,Y.H.Chen,C.S.Shi,et al.Journal of Luminescence 101(2003)155
    [11]M.Yin,W.P.Zhang,M.Xu,et al.High Energy Physics and Nuclear Physics-Chinese Edition 27(2003)35
    [12]N.Kodama,Y.Watanabe.Applied Physics Letters 84(2004)4141
    [13]H.Kondo,T.Hirai,S.Hashimoto.Journal of Luminescence 108(2004)59
    [14]P.S.Peijzel,W.J.M.Schrama,A.Meijerink.Molecular Physics 102(2004)1285
    [15]F.Auzel.Chemical Reviews 104(2004)139
    [16]M.F.Joubert.Optical Materials 11(1999)181
    [17]R.Scheps.Progress In Quantum Electronics 20(1996)271
    [18]何捍卫,周科朝,熊翔,黄伯云.中国稀土学报21(2003)123
    [19]徐东勇,臧竞存.人工晶体学报30(2001)203
    [20]杨建虎,戴世勋,蒋中宏.物理学进展23(2003)284
    [21]T.Matsuzawa,Y.Aoki,N.Takeuchi,et al.Journal of the Electrochemical Society 143(1996)2076
    [22]H.Yamamoto,T.Matsuzawa.Journal of Luminescence 72-74(1997)287
    [23]W.Y.Jia,H.B.Yuan,L.Z.Lu,et al.Journal of Luminescence 76-77(1998)424
    [24]G.M.Qiu,Y.B.Sun,S.Q.Zhang,et al.Journal of Rare Earth 22(2004)20
    [25]Y.J.Chert,G.M.Qiu,X..J.Geng,et al.Jurnal of Rare Earth 22(2004)34
    [26]X.D.Lu,W.G.Shu.Journal of Rare Earth 22(2004)71
    [27]X.Y.Zhang,J.J.Hu,Q.S.Liu,et al.Journal of Rare Earth 22(2004)216
    [28]李成宇,苏锵,丘建荣.发光学报24(2003)19
    [29]罗昔贤,段锦霞,林广旭,et al.发光学报24(2003)165
    [30]Y.S.Hu,W.D.Zhuang,H.Q.Ye,S.S.Zhang,Y.Fang,X.W.Huang.Journal of Luminescence 111(2005) 139
    [31]Y.Hasegawa,M.Afzaal,P.O'Brien,Y.Wada,S.Yanagida.Chemical Communications (2005)242
    [32]崔元日,潘苏予.灯与照明28(2004)31
    [33]刘行仁,薛胜薜,黄德深,林秀华.光源与照明(2003.9)4
    [34]张巍巍:LnBO_3:Eu与纳米Y_2O_3:Eu的结构与光谱性质,博士论文,中国科学技术大学,合肥,2001
    [35]平板显示技术,应跟裕,胡文波,邱勇.人民邮电出版社,北京,2002
    [36]邓传伟,张密林,董国君,王君.化工新型材料30(2002)15
    [37]S.J.Yeh,M.F.Wu,C.T.Chen,Y.H.Song,Y.Chi,M.H.Ho,S.F.Hsu,C.H.Chen.Advanced Materials 17(2005) 285
    [38]D.Y.Kondakov.Journal Of Applied Physics 97(2005)
    [39]雷钢铁,锻炼,王立铎,邱勇.发光学报25(2004)221
    [40]N.Dong,B.Chen,M.Yin,L.X.Ning,Q.J.Zhang,S.D.Xia.Journal of Rare Earths 22(2004) 31
    [41]S.Tokito,T.Iijima,Y.Suzuri,H.Kita,T.Tsuzuki,F.Sato.Applied Physics Letters 83(2003) 569
    [42]B.W.D'Andrade,J.Brooks,V.Adamovich,M.E.Thompson,S.R.Forrest.Advanced Materials 14(2002) 1032
    [43]L.S.Hung,C.H.Chert.Materials Science & Engineering R-Reports 39(2002) 143
    [44]C.C.Wu,Y.T.Lin,H.H.Chiang,T.Y.Cho,C.W.Chen,K.T.Wong,Y.L.Liao,G.H.Lee,S.M.Peng.Applied Physics Letters 81(2002) 577
    [45]M.J.Weber.Journal of Luminescence 100(2002)35
    [46]V.V.Nagarkar,S.V.Tipnis,S.R.Miller,et al.IEEE Transactions On Nuclear Science 50(2003)297
    [47]刘波,施朝淑.科学通报 47(2001)1
    [48]发光学与发光材料,徐叙瑢,苏勉曾.化学工业出版社,北京,2004
    [49]无机光学透明材料-透明陶瓷,施剑林,冯涛.上海科学普及出版社,上海,2008
    [50]离子中心的发光动力学,黄世华.科学出版社,北京,2002
    [51]Relaxation Phenomena in Rare-Earth Luminescence,L.A.Riseberg,M.J.Weber.in:E.Wolf (Eds.),Progress in Optics ⅪⅤ.Elsevier,Amsterdam,1976
    [52]固体中的光跃迁,方容川.中国科学技术大学出版社,合肥,2003
    [53]固体发光,吉林物理所,中国科学技术大学《固体发光》编写组.1976
    [54]Spectra and energy levels of rare earth ions in crystals,G.H.Dieke.Interscience Publishers,New York,1968
    [55]R.T.Wegh,A.Meijerink,R.J.Lamminmaki,et al.Journal of Luminescence 87-89(2000) 1002
    [56]群论与光谱,夏上达.科学出版社,北京,1994
    [57]W.P.Zhang,P.B.Xie,C.K.Duan,et al.Chemical Physics Letter 292(1998)133
    [58]Lawrence Livemore National Laborary.Science and Technology Review April(2006)
    [59]A.Ikesue,Y.L.Aung.Journal of American Ceramic Society 89(2006)1936
    [60]H.Yagi,T.Yanagitani,T.Numazawa,et al.Ceramics International 33(2007)711
    [61]吉亚明,蒋丹宇,冯涛,施剑林.无机材料学报19(2004)275
    [62]卢斌,赵桂洁.材料导报19(2005)20
    [63]刘军芳,傅正义,张东明,张金咏.陶瓷学报23(2002)246
    [64]纳米陶瓷,高濂,李蔚.化学工业出版社,北京,2002
    [65]A.Ikesue.Optical Materials 19(2002) 183
    [66]郑慕周.中国照明电器9(2003)1
    [67]S.R.Jain.Combustion and Flame,40(1981) 71-76
    [68]燃烧合成,殷声.冶金工业出版社,北京1999
    [69]无机合成与制备化学,徐如人,庞文琴.高等教育出版社,北京,2001
    [1]R.N.Bhargava.J.Lumin.1996 70:85
    [2]R N.Bhargava,D.Gallagher,T.Welker.J.Lumin.1994 61(1):275
    [3]Y.C.Kang,S.B.Park,I.W.Lenggoro,K.Okuyama.J.Mater.Res.1999 14(6):2611
    [4]P.S.Anil Kumar,J..J Shrotri,S.D.Kulkami,C.E.Deshpande,S.K.Date.Mater.Lett.199627(6):293
    [5]R.N.Bhargava,D.Gallagher,X.Hong,A.Nurmikko.Phys.Rev.Lett.1994 72(3):416
    [6]A.Konrad,T.Fries,A.Gahn,E Kummer,U.Herr,R.Tidecks,K.Samwer.J.Appl.Phys.1999 86(6):3129
    [7]Ye Tao,Guiwen Zhao,Weiping Zhang,Shangda xia.Mater.Res.Bull.1997 32(5):501
    [8]T.Igarashi,M.Ihara,T.Kusunoki,K.Ohno,T.Isobe,M.Senna.Appl.Phys.Lett.200076(12):1549
    [9]Zuoling Fu,Shihong Zhou,Tianqi Pan,siyuan Zhang.J.Lumin.2007 124(2):213
    [10]chuan He,Yongfeng Guan,Lianzeng Yao,Weili Cai,Xiaoguang Li,Zhen Yao.Mater.Res.Bull.2003 38(6):973
    [11]谢平波,张慰萍,尹民,陶冶,夏上达,纳米Ln_2O_3:Eu(Ln:Gd,Y)荧光粉的燃烧法合成及其光致发光性质,无机材料学报,1998 13(1):53
    [12]Qiang Li,Lian Gao,Dongsheng Yan.Nanostmct.Mater.1997 8(7):825
    [13]P.K.Sharma,M.H.Jilavi,R.Nass,H.Schmidt.J.Lumin.1999 82(3):187
    [14]Hongwei Song,Jiwei Wang,Baojiu Chen,Hongshang Peng,Shaozhe Lu.Chem.Phys.Lett.2003 376(1-2):1
    [15]Weiwei Zhang,Mei Xu,Weiping Zhang,Min Yin,Zeming Qi,Shangda Xia,Claudine Garapon.Chem.Phys.Lett.2003 376(3-4):318
    [16]D.K.Williams,Huabiao Yuan,B.M.Tissue.J.Lumin.1999 83-84:297.
    [17]E.Zych,M.Karbowiak,K.Domagala,S.Hubert.J.Alloys Comp.2002 341(1-2):381
    [18]纳米材料和纳米结构,张立德,牟季美.科学出版社,北京,2001
    [19]Tianyou Peng,Xun Liu,Ke Dai,Jianglong Xiao,Haibo Song.Mater.Res.Bull.2006 41(9):1638
    [20]C.K.Duan,M.F.Reid.J.Alloys Compd.2006 418(1-2):213
    [21]Xiaoheng Liu,Juan Yang,Ling Wang,Xujie Yang,Lude Lu,Xin Wang.Mater.Sci.Eng.A 2000 289(1-2):241
    [22]Zeming Qi,Miao Liu,Yonghu Chen,Guobin Zhang,Mei Xu,Chaoshu Shi,Weiping Zhang,Min Yin,Yaning Xie.J.Phys.Chem.C 2007 111(5):19
    [1]C.Greskovich,K.N.Woods.J.Am.Ceram.Soc.1973 52(5):473
    [2]R.A.Lefever,J.Matsho.Mater.Res.Bull.1967 4(11):791
    [3]Y.Tsukuda,A.Muta.J.Ceram.Soc.Jpn.1976 84(12):585
    [4]Y.Shi,O.W.Chen,J.L.Shi.Optic.Mater.2009 31(5):729
    [5]E.Zych.J.Phys.:Condens.Matter.2002 14(22):5637
    [6]Jiahua Zhang,Mingli Jia,Shaozhe Lu,Yongshi Luo,Xingguang Ren,Xiaojun Wang.J.Rare Earths 2004 22(1):45
    [7]G.Concas,G Spano,E.Zych,J.Trojan-Piegza.J.Phys.:Condens.Matter.2005 17(17):2597
    [1]胶体科学导论,郑忠.高等教育出版社,北京,1989
    [2]Younan Xia.Yujie Xiong,B.Lim,S.E.Skrabalak.Angew.Chem.Int.Ed.2009 48(1):60
    [3]Nengli Wang,Xiyan.Zhang,Quansheng Liu,Xiaoyun Mi,Xiaochun Wang.Chin.J.Inorg.Chem.2008 24(7):1137
    [4]S.Sohn,Y.Kwon,Y.Kim,D.Kim.Powder Technol.2004 142(2-3):136
    [5]J.Subrt,V.Stengl,S.Bakardjieva,L.Szatmary.Powder Technol.2006 169(1):33
    [6]E.Zych,D.Hreniak,W.Strek.J.Phys.Chem.B 2002 106(15):3805
    [7]Luminescent Materials,G.Blasse,B.C.G.Grabmaier.Springer Verlag,Berlin,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700