某运动型多功能车车内轰鸣噪声分析与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车车内噪声是评价汽车乘坐舒适性和产品质量的重要方面,研究车内噪声的分析和控制方法具有重要意义。本论文综述了国内外汽车公司及相关研究机构对车内噪声识别与控制技术的研究情况。阐述了车内噪声特别是轰鸣噪声的一般特性、主要来源及传递路径。详细描述了车内噪声的主客观评价参数与评价方法,介绍了目前常用的车内噪声测试分析及控制方法。结合江铃汽车某运动型多功能车的车内轰鸣噪声控制问题,详细说明了问题的来源,对轰鸣噪声的传递路径进行试验识别,确认了传动系统扭振问题及后桥模态对车内轰鸣噪声影响。通过采用可调动力吸能器(TMD)方法控制车内轰鸣噪声。试验表明TMD方案可使该车车内轰鸣噪声得到明显的改善,整车在加速及对应转速匀速行驶时噪声舒适性得到显著提升。本论文建立的噪声识别和控制方法对自主品牌新车型的开发中车内噪声控制有较好的借鉴和参考意义。
As consumer’s vehicle comfort requirements increase, the auto manufacturers are increasingly urgent to improve the NVH quality. Vehicle interior sound quality is a very important factor desided vehicle’s performance. Car passenger booming noise is universal issue at present. Vehicle boom noise has great impact on human ear comfort. This study to acceleration boom noise developed of a JMC developed SUV. The boom noise is divided into structures and airborne. This paper study the transfer path of this boom including the inherent characteristics of the main systems,identify the root cause of boom, and then take corresponding optimization methord. This paper focus a structural boom noise, The result of this paper show important engineering value for further NVH attribut development of the physical prototype vehicle and its optimization.
     This paper study on Jiangling Motor SUV, Study the identification and control method for two different frequencie boom r. Through large number diagnostic tests work, expecially booming noise transfer path in-depth research. Based on theoretical deduction and experimental verification method, find thetuned mass damper and torsional damper design methods and engineering methods. The interior boom noise get greatly reduced and achieve the original set targets and also reach cunsumer acceptable level. In this paper pay attention to characteristics of the car boom noise test identification, roaring noise control methods. And also perform a more in-depth research on the understanding the relationship of powertrain, rear axle mode between boom . Provide a reference for domestic automobile manufacturers to solve similar problems . This article contend as follows:
     First, the interior noise subjective and objective assessment and analysis methord. In the identification process. We organized subjective assessment driving according to Ford standard .Using LMS Test.lab data acquisition and analysis system, identify the speed up process noise is around 1450 and 1750 rpm. And apply order analysis find the 2nd order accounts for the main contribution, find the problem frequency cfrequencies are around 47Hz and 58Hz . At the same time perform roof and the rear axle vibration test and found that vibration in good agreement with boom features, then check the boom noise is structureborne. This makes it easier to find the noise sourch and transfer path.
     Second, analysis the elastic element on the active side and the passive side of the vibration data in detail, by comparing the vibration amplitude and found that the passive side vibration amplification at some frequency.
     Third, test the BIW modal and body cavity modal, found the cab shows modal in 46Hz composed 55.5Hz . the body has complex modal alignment and partial mode at these frequecies. And find the poor modal separation may lead to serious interior boom noise.
     Fourth, expatiate the sources of engine torsional vibration, based on the torsional vibration test methods and principles, using a non-contact torsional vibration test systems, to finish torsional vibration test. The detail test location include clutch disc input and output side, shaft end (front end of rear axle). Test results show that the clutch disc and drive shaft rear end show torsional vibration peak between 1650-1850RPM, peak frequency is about 58Hz, Prove the frequecy is caused by driveline vibration, and this is useful to tell where to install the torsional damper.
     Fifth, expatiate operation shape deformation (ODS) test techniques in details, and apply the LMS software to carry out bridge, body, powertrain chassis system ODS test, test results show that these tested system has clear peak vibration around 1450 rpm and 1800 rpm peak frequency match well with the boom noise frequency. Carry out ODS test just for the rear axle, we get the rear axle modal shape at 1450 and 1750. the ODS animation modes provide a basis for later tuned mass damper installed. Based on the above study, conducted on a separate rear axle modal test analysis showed that 46.1 and 56.75 Hz has the modal frequency, thus obtained the booming noies’s two possible sources and paths.
     Based on the above studies, establish tuned mass damper and study its principle of mathematical model. Summarize general design steps of tuned mass damper. Detailed discuss several key impact factor of tuned mass dampers, then trial out of the two types tuned mass dampers, that is vertical tuned mass damper and torsional vibration damper (TVD) They are used to solve frequency of 47Hz and 58Hz.Through the actual test,this is successful solution of the interior noise around 1450 and 1750 rpm.and this is what the study need to get.
     The previous shows that the TMD and the TVD manual parts show good performance to solve the boom noise. Study the engineering method of these two parts. The influence factor including location, rubber materials, fixed bolts and other factors.At the same time, discussof the TMD frequency control method during production, these can be used as wide range of guidance for other auto company.
引文
[1] Klaus Genuit. The Sound Quality of Vehicle Interior Noise: a Challenge for the NVH-engineers [J]. Int. J. Vehicle Noise and Vibration.2004, 1:158-168.
    [2] A. Afaneh, M.K. Abdelhamid, M.S. Qatu. Engineering Challenges with Vehicle Noise and Vibration in Product Development, Proceedings of 2007 Noise and Vibration Conference, Peasant Run, IL, May 2007[C]. SAE 2007-01-2434.
    [3]洪宗辉,潘仲麟.环境噪声控制工程[M].北京:高等教育出版社,2002.
    [4]冉振亚,田龙,倪霖,杨超,曹文明.绿色汽车的开发前景[J].重庆大学学报,2002:25(7):15-17
    [5]马大猷.现代声学理论基础[M].北京:科学出版社,2004.
    [6] Genuit, K. A special calibratable Artificial-Head-Measurement-System for subjective and objective classification of noise, INTER-NOISE, Cambridge, July 21-23, 1986[C].
    [7]万鹏程.客车结构动态性能及客车内结构辐射声场CAE[D].合肥:合肥工业大学,2006.
    [8] Chen,L.H, Schweikert,D.G. Sound radiation from an arbitrary body[J]. The Journal of the Acoustical Society of America, 1963, 35(10):1626-1632.
    [9] Copley,L.G. Integral equation method for radiation from vibrating bodies[J]. The Journal of the Acoustical Society of America, 1967, 41(4A):807-816
    [10] Schenck H A. Improved integral formulation for a acoustic radiation problems[J]. The Journal of the Acoustical Society of America, 1968, 44(1):41-58
    [11] Burton,A.J, Miller,G.F. The application of integral equation methods to the numerical solutions of some exterior boundary value problems[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1971, 323(1553): 201-210.
    [12]朱才朝,秦大同,李润方.车身结构振动与车内噪声声场耦合分析与控制[J].机械工程学报,2002,38(8):54-58
    [13]张立军,靳小雄,周宏,余卓平,夏小岩.轿车车内噪声源识别的道路试验方法[J].汽车工程,2002,24(4):297-301.
    [14]刘涛,顾彦.统计能量分析在汽车车内噪声分析中的应用[J].噪声与振动控制,2006,(2):67-69
    [15]俞明,柳文斌.轿车车内振动噪声源的识别[J].机床与液压,2003,(5):117-120.
    [16] Thomas Wellmann,Kiran Govindswamy, Eugen Braun and Klaus. Aspects of driveline integration for optimized vehicle NVH characteristics[J]. Noise and Vibration Conference and Exhibition, SAE 2007-01-2246.
    [17] Nicolas Merlette,Jean-Luc Wojtowicki. FEA design of a vibration barrier to reduce structure borne noise[J]. Noise and Vibration Conference and Exhibition, SAE 2007-01-2164.
    [18] Francis Poradek , Mohan D. Rao , Jongmin Kang, Beomseok Jeon, Hojun Lee. Application of signature analysis and operating deflection shapes to identify interior noise sources in an excavator[J]. Noise and Vibration Conference and Exhibition, SAE 2007-01-2427.
    [19]刘东明,项党,罗清,邓金鑫.传递路径分析技术在车内噪声与振动研究与分析中的应用[J].噪声与振动控制,2007,(4):73-75.
    [20]陈林彬.降低车内噪声的新技术[J].上海汽车,2006,(11):37-38.
    [21]王彦平,郑慕桥,杨景义.用动力吸振器降低车辆内部的振动噪声[J].北京理工大学学报[J].1995,15(3):278-281
    [22]李传兵,李克强,富丽娟.基于结构与声场耦合模态分析的车内噪声控制方法[J].中国机械工程,2002,13(10):833-834
    [23]徐云峰,靳小雄.车内噪声主动控制技术的研究.噪声与振动控制[J],2002,(1):36-38.
    [24]常振臣,王登峰,郑联珠,刘学广.车内噪声主动控制系统设计与试验研究[J].公路交通科技,2003,20(6):150-153.
    [25]韩善林,朱灵,林忠钦.主动噪声控制技术及其在车内噪声控制中的应用[J].机械, 2004,31(6):55-58.
    [26]张建南,王登峰.车内噪声主动控制的Elman神经网络方法[J].河北工业科技,2002,19(6):12-16.
    [27]常振臣,王登峰,周淑辉,郭骁.车内噪声控制技术研究现状与展望[J].吉林大学学报(工学版),2002,32(4):86-90.
    [28]刘禹,喻凡,柳江.车辆乘坐室声固耦合模态分析[J].噪声与振动控制,2005,(5):38-67.
    [30]钱人一.汽车发动机噪声控制[M].上海:同济大学出版社,1997.
    [31]徐兀编译.汽车振动和噪声控制[M].北京:人民交通出版社,1987.
    [32]汪念平.汽车声品质的客观评价方法及其在汽车车门关闭声中的应用[D].合肥:合肥工业大学,2007.
    [33]赵静,周弦,梁映珍.轿车乘坐室轰鸣声的分析与控制研究[J].汽车技术,2009,(10):17-18.
    [34]钟秤平.某SRV车内声品质主观评价与分析研究[D].合肥:合肥工业大学,2007
    [35] Blauert, Jens. Sound-quality Evaluation- a Multi-layered problem[J]. Acta Acustica(Stuttgart), 1997,83( 5):747-753.
    [36] Mushtaq Hussain, Josef G?lles , Arno Ronacher , Herbert Schiffb?nker .Statistical evaluation of an annoyance index for engine noise recordings[J]. Noise & Vibration Conference & Exposition, SAE 911080.
    [37] N.Otto,G.Wakefield.A subjective evaluation and analysis of automotive starter sounds[J]. Noise Control Engineering Journal,1993, 94(3):377-382.
    [38]于学华,张家栋.汽车车内噪声产生机理及控制技术[J].噪声与振动控制,2008,28(5):122-125.
    [39]赵春,周登峰.汽车车内主要噪声源控制方法[J].噪声振动与控制,2007,27(4): 69-70
    [40]赵海波,项昌乐,刘辉.车辆动力传动系统扭转振动研究的理论与方法[J].新工艺技术,2007,(4):37-40.
    [41]李伟.汽车传动系用双质量飞轮的设计方法与扭振隔振特性研究[D].吉林:吉林大学,2009.
    [42]庞剑,何华.汽车噪声与振动[M].北京理工大学出版社, 2006年.
    [43]佘琪,周鋐.运用传递路径分析对车内噪声贡献量的研究[C]. 2009,LMS中国用户大会论文集.
    [44]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [45] LMS INTERNATIONAL.The LMS theory and background book, Leuven, Belgium, www.lmsintl.com, 2000.
    [46]何煦.某型轿车传动系统扭转振动的研究[D].上海:上海交通大学,2008.
    [47] Wen-Bin Shangguan,Xiao-Yong Pan.Multi-Mode and Rubber-Damped torsional vibration absorbers for engine crankshaft systems[J]. International Journal of Vehicle Design,2008,47(1-4):176-188.
    [48] Hu Jianjun, Qin Datong, Zhao Yusheng , Liu Yonggang.Study on natural torsional vibration characteristics of dual mass Flywheel -Radial spring type torsional vibration damper[J]. Noise andVibration Conference and Exhibition, SAE 2009-01-2062.
    [49]邬惠乐.CA-10型汽车动力系统的扭转振动[J].吉林工业大学学报,1986(3):8-20.
    [50]何渝生,邓兆祥等.汽车噪声控制[M].机械工业出版社,1995.
    [51]刘岳文.调谐质量阻尼器的减振研究[D].天津:天津大学,2009.
    [52]陈宇东.结构振动分析[M].吉林:吉林大学出版社, 2008:142-144.
    [53]嵇春艳.调谐质量阻尼器对海洋平台的减振效果分析[J].海洋技术,2005,24(2):114-119.
    [54]欧进萍,王永富.设置TMD/TLD控制系统的高层建筑风振分析与设计方法[J].地震工程与工程振动,1994,14(2):61-75.
    [55] Paul H. Wirsching, James T.P. Yao. Safety design concept for seismic structures[J]. Computers & Structures, 1973,3(4):809-826.
    [56]李新平,张俊平,周福霖.装有调谐质量阻尼器的高架桥梁的减震分析[J].世界地震工程,1998,14(2):44-49.
    [57] Pari Tathavadekar, Kuang-Jen Liu, Senthil Rajan,Patrick Johnson .Application of tuned mass damper to address discrete excitation away from primary resonance frequency of a structure[J]. Noise and Vibration Conference and Exhibition, SAE 2009-01-2125.
    [58] Xiaocheng Duan, Xing Huang, Baojun Shen , Xiaoyong Pan .Application of NVH countermeasures for interior booming noise using elastomeric tuned mass damper [J]. Noise and Vibration Conference and Exhibition, SAE 2009-01-2124.
    [59]李春祥,刘艳霞,王肇民.质量阻尼器的发展[J].力学进展,2003,33(2):194-206.
    [60] Allan Aubert , Art Howle. Design issues in the use of elastomeric in automotive tuned mass dampers[J]. Noise and Vibration Conference and Exhibition, SAE 2007-01-2198
    [61]郑国世,方劲松,高峻,周念东,郑忠法.EQB210柴油机曲轴扭振减振器优化设计研究[J].内燃机,2008,(5):146-151.
    [62]龚海军.柴油机扭振分析及减振器匹配研究[D].吉林:吉林大学,2004:42-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700