海平面变化对东中国海潮波影响的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变暖,海平面上升是近几十年来全球变化的重要特征之一,日趋成为世界各国关注的焦点。此外海平面还存在着显著的季节变化。海平面的长期变化和季节变化都将对潮波系统产生影响。本文对海平面长期变化和季节变化对潮波系统的影响进行了系统讨论,主要开展了下面一些工作:利用1992年7月至2007年9月AVISO高度计资料融合数据,分析东中国海海平面变化特征;采用ECOMSED模型模拟东中国海潮波;假定未来海平面的变化趋势与计算出的近16年海平面变化趋势一致,线性外推50年后和100年后的东中国海海平面,模拟分析海平面长期演变对东中国海潮波趋势变化的影响;模拟不同季节东中国海潮波,分析海平面季节变化对潮波的影响。
     研究表明东中国海海平面在10月份相对最高,4月份相对最低,海平面线性变化速率具有明显的空间分布。东中国海海平面总体是上升的,只在浙闽沿岸、台湾海峡厦门、宫古群岛、冲绳岛下降。海平面上升速率在3~5mm/a之间,沿岸某些海域上升速率较大,高达9mm/a,例如渤海湾顶。
     在海平面长期趋势变化过程中,各分潮振幅和迟角在深水大洋区基本保持不变,在浅水区变化幅度较大。半日分潮受海平面长期变化影响较全日分潮大。半日分潮振幅在大部分海域呈增大趋势,只在小部分海域呈减小趋势,如长江口、钱塘江口,振幅增幅较大的海域依次为;苏北辐射沙区、江津湾、海州湾、西朝鲜湾和辽东湾;迟角在渤海、黄海、东海的浅水区基本呈减小趋势,只在无潮点附近呈现增大趋势。全日分潮振幅在整个渤海、南黄海、北黄海东北部、浙江南部至福建沿岸呈增大趋势,其余海域呈减小趋势;迟角在渤海海峡无潮点东侧海域,南黄海、东海的东部海域呈现增大趋势,其余海域呈减小趋势。全日分潮无潮点都有向东南方向偏移的趋势;半日分潮无潮点没有类似移动规律,但都有不同程度的偏移。
     海平面的季节变化使潮波系统表现出一定的变化规律,主要包括振幅和迟角两方面。相较于年均海平面下的潮波,各分潮振幅、迟角在冬春季与夏秋季基本呈反相变化。半日分潮振幅变化幅度明显大于全日分潮,M2分潮振幅年较差达5cm,S2分潮年较差达2cm,全日分潮振幅变化基本不超过lmm,年较差小于2mm。各分潮迟角在无潮点附近变化较大,在远离无潮点的近岸区域,半日分潮迟角变化的最大值在2。左右,全日分潮迟角变化的最大值在10左右。
With global warming, sea level rise is one of the typical characters of global change in recent dacades, and has become the focus of world attention. In addition, Sea level variation has the significant seasonal period. The sea level variation of both the long term and seasonal scale affects the tidal wave system. Such effect will be discussed in detail in this paper in the follwing aspect:the AVISO altimeter merged data from Oct.1992 to Nov.2007,is used to analyze the sea level variations of the East China Sea; ECOMSED model is used to simulate the tidal wave of the East China Sea; assuming the sea level change trend in future is the same as the calculated trend of the past 15 years,the tidal wave of 50 and 100 years in future is simulated,to analyze the effect of the sea level long term variation; the tidal wave in different seasons is also simnulated to annlyze the effect of the sea level seasonal variation.
     The analysis shows that the sea level in the East China Sea is relatively the highest in October and lowest in April, and the sea level change rate has obvious spatial distribution. The sea level of the East China Sea is totally ascending, only in the coastal regions of Zhejiang, Fujian, Xiamen, Taiwan Strait, Miyako Islands,Okinawa Island and the Japanese Sea is descending. The basic ascending rate is about 3~5mm/a, but in some coastal areas,up to 9mm/a, for example on the top of Bohai Bay.
     In the process of the sea-level long term variation, the tidal amplitude and the phase lag matains basically unchanged in the deep ocean, but change significantly in the shallow water. Semidiurnal tidal constituents vary more than that of diurnal tidal constituents.The amplitude of semidiurnal tidal constituents tends to increase in most regions while decrease in some region, for example,the mouth of Yangtze River, the areas where the amplitude increased lager in turn are Radiated Sandbank of the northern region of Jiangsu, Jiangjin Bay, Haizhou Bay, West Korea Bay and Liaodong Bay. The phase lag of semidiurnal tidal constituents tends to increase in the Bohai Sea, Yellow Sea, shallow waters of East China Sea, and derease only in the areas near the amphidromic points.The amplitude of diurnal tidal constituens tends to increase in the Bohai Sea, South Yellow Sea, northeast of the North Yellow Sea, coastal areas from the Southern part of Zhejiang to Fujian, while decrease in the other areas.The phase lag of diurnal tidal constituens tends to increase in the east area of the Bohai Strait and the eastern part of the South Yellow Sea and East China Sea. The amphidromic points of diurnal tidal constituens all tend to migrate to the southeast, and those of diurnal tidal constituens have no similar routine,but migrated more or less.
     Sea level variation of the seasonal scale makes tide wave system to behave some variation rule, including the amplitude and the phase lag. Compared to the annual tidal waves, the variety of the amplitude and phase lags in Winter and Spring is basically converse to that in Summer and Autumn. The amplitude of semidiurnal tidal constituents changes much higher than that of diurnal tidal constituents.The amplitude's annual range of M2 tial constituent is up to 5cm, and that of S2 tial constituent is up to 2cm.The amplitude of the diurnal constituents basically changes within lmm, and the annual range is less than 2mm.The phase lags changes a lot in the vicinity of the amphidromic points. While in the coastal region away from the amphidromic points, the amplitude's maximum change of semidiurnal tidal constituents is about 20,and that of diurnal tidal constituents is about 10.
引文
[1]Tetsuo Yanagi,Tatsuya Akaki.Sea level variation in the Eastern Asia.Journal of Oceanography,1994, 50:643-651
    [2]B.C.Douglas. Global sea level change:Determination and interpretation. Reciews of Geophysics,1995 ,33:1425-1432
    [3]Peltier W.R..Global sea level rise and glalcial isostatic adjustment.Global and planetary change,1999, 20:93-123
    [4]A.Cazenave,K.Dominh,M.C.Gennero and B.Ferret.Global mean sea level changes observed by Topex-poseidon and ERS-1.Physics and Chemistry of The Earth.1998,23(9-10):1069-1075
    [5]D.P.Chambers,J.L.Chen,R.S.Nerem and C.D.Tapley.Interannual sea level change and the Earth's water mass budget.Geophys.Res.Lett.,2000,27:3073-3076
    [6]Carl Wunsch,Rui M.Ponte and Patrick Heimbach.Decadal Trends in Sea Level Patterns:1993-2004.Journal of Climate,2007,20:5889-5991
    [7]Fu Lee-Lueng,Richard D.and Smith.Global ocean circulation from satellite altimetery and high-resolution computer simulation.Bulletion of the American Meteorological Society,1996,77(11):2625-2636
    [8]T Ngo-Duc,K Laval,J Polcher,A Lombard and A. Cazenave.Effects of land Water storage on global mean sea level over the past half century.Geophys.Res.Lett,2005,32:L09704
    [9]Barnett T P.The estimation of global sea level change:A problem of Uniqueness. J.Geophas Res,1984,89:7980-7988
    [10]Barrnett T P. Recent changes in sea-level:A summara sea-level change.Washington D.C:National Academa Press,1900,37-51
    [11]Leuliette,Nerem R S,Mitchum G T. Calibration of the Topex/Poseidon and Jason altimeter data to construct a continuous record of sea level. MarGeod,2004,27:79-94
    [12]尤芳湖,宋政修.我国沿岸平均海平面的变动问题[J].海洋湖沼通讯,1979,2:18-21
    [13]于道永.近二十年来中国海平面变化趋势初步分析[J].中国海平面变化.北京:海洋出版社,1985,226-236
    [14]左军成,于宜法,陈宗镛.中国沿岸海平面变化原因的探讨.地球科学进展,1994,9(5):48-53
    [15]王卫强,陈宗镛,左军成.经验模态法在中国沿岸海平面变化中的应用研究.海洋学报,1999,21(6):102-109
    [16]左军成,陈宗镛,周天华.中国沿岸相对海面变化的本征分析和预测.海洋与湖沼,1995,26(3):331-337
    [17]陈宗镛,周天华,于宜法,田晖.中国沿岸平均海平面变化.海平面上升对中国三角洲海域的影响及对策.科学出版社:中国科学院学部,1994.40-41
    [18]黄立人.海平面变化趋势的动态预测.海洋通报,1991,10(1):1-6
    [19]张锦文.中国沿海海平面的上升预测模型.海洋通报.1997,16(4):1-9
    [20]郑文振,陈宗镛.结合全球气温上升预测值的21世纪长期海平面预测方法.海洋通报,1998,17(4):1-8
    [21]胡建国,李建成,董晓军,马季瑞.利用卫星测高技术监测海平面变化.测绘学报,2001,30(4):316-320
    [22]詹金刚,王勇,柳林涛.中国建海海平面季节尺度变化的时频分析.地球物理学报,2003,46(1):36-41
    [23]杨建,沙文钰,卢军治,陈希.中国建海海平面高度异常特征的初步分析.海洋预 报,2004,21(2):29-36
    [24]程芦颖,许厚泽.中国近海海平面变化区域相关分析.海洋测绘,2004,24(6):1-4
    [25]乔新,陈戈.基于11年高度计数据的中国海海平面变化初步研究.海洋科学,2008,32(1):60-64
    [26]詹金刚,王勇,许厚泽,郝晓光,柳林涛.我国近海1992-2006年海平面变化的小波分析.测绘学报,2008,37(4):438-443
    [27]Guoqi Han,Weigen Huang.Pacific decadal oscillation and sea level variability in the Bohai,Yellow,and East China Seas.Joumal of Physical Oceanography,2008,38:2772-2783
    [28]张锦文,王喜亭,王惠.未来中国沿岸海平面上升趋势估计.测绘通报,2001,4:4-5
    [29]Ogura S.The tides in the seas adjacent to Japan. The Bulletin of the Hydrographic Department,1933, 7:1-189
    [30]孙文心,陈宗镛,冯士律.一中三维空间非线性的数值模拟(1)—一渤海M4和MS4分潮波的试算.山东海洋学院学报,1981,11(1):23-31
    [3]]刘爱菊,尹逊福,卢铭.黄海潮汐特征[Ⅰ].黄渤海海洋,1984,1(2):1-7
    [32]刘爱菊,尹逊福,卢铭.黄海潮汐特征[Ⅱ].黄渤海海洋,1984,2(2):24-27
    [33]夏综万,王锤裙.黄海M2分潮的数值模拟.黄渤海海洋,1984,2(1):1-7
    [34]丁文兰.渤海和黄海潮汐潮流分布的基本特征.海洋科学季刊,1985,25:27-40
    [35]丁文兰.东海潮汐和潮流特征的研究.海洋科学集刊,1984,21:135-148
    [36]Tetsuo Yanagi,Akihiko Morimoto and Kaoru Ichikawa.Co-tidal and Co-range Charts for the East China Sea and the Yellow Sea Derived from Satellite Altimeter Data.Journal of Oceanography,1997,53: 303-309
    [37]A.Morimoto, T.Yanage and A.Kaneko.Tidal Correction of Aitimeteric Data in the Japan Sea. Journal of Oceanography,2000,56:31-41
    [38]Guohong Fang,Yonggang Wang,Zexun Wei,Byung Ho Choi,Xinyi Wang and Ji Wang.Empirical cotidal charts of the Bohai,Yellow,and East China Seas from 10 years of TOPEX/Poseidon altimetry.Journal of Geophysical Research,2004,109:C11006
    [39]Yijun He,Xianqing Lu,Zhongfeng Qiu,Jinpin Zhao.Shallow water tidal constituents in the Bohai Sea and the Yellow Sea from a numerical adjoint model with TOPEX/POSEIDON altimeter data.Continental Shelf Research,2004,24:1521-1529
    [40]W.J.Teague,P.Pistek,G.A.Jacobs and H.T.Perkins.Evaluation of Tides from TOPEX/Poseidon in the Bohai and Yellow Seas.Journal of Atmospheric and Oceanic Techmology,2000,17:679-687
    [41]Ding W. A study on the characteristics of the tide and tidal current in the Eats China Sea.Studia Marinea Sinica,1984,21:135-148
    [42]An H S.A numerical experiment of the M2 tide in the Yellow Sea.J. Ocenogr. Soc. Japan,1977,33:103-110
    [43]沈育疆.东中国海潮汐数值计算.山东海洋学院学报,1980,10(3):26-35
    [44]Fang G.Tide and tidal current charts for the marginal seas adjacent to china.Chinese Journal of Oceanologa and Limnologa,1986,17(6):468-480
    [45]叶安乐,梅明丽.渤、黄、东海潮波数值模拟.海洋与湖沼,1995,26(1):63-70
    [46]于宜法,郭明克,刘兰.海平面上升导致渤、黄、东海潮波变化的数值研究Ⅰ——现有的渤、黄、东海潮波的数值模拟.中国海洋大学学报,2006,36(6):859-867
    [47]赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的模拟.海洋学报,1994,16(5):1-10
    [48]章卫胜.中国近海潮波运动数值模拟.[河海大学硕士学位论文].南京:河海大学,2005
    [49]王凯,方国洪,冯士律.渤海、黄海、东海M2潮汐潮流的三维数值模拟.海洋学报,1999,21(4):1-13
    [50]周旭波,孙文心.东中国海潮波自适应数值模型及其数值模拟.青岛海洋大学学报,2001,31(6):815-820
    [51]李磊,杜凌,左军成,李培良.渤、黄、东海M2和K1分潮潮流场的有限元模拟.中国海洋大学学报,2006,36(6):851-858
    [52]万振文,乔方利,袁业立.渤、黄、东海三维潮波运动数值模拟.海洋与湖沼,1998,29(6):611-616
    [53]Xinyu Guo,Tetsuo Yanagi.Three-dimensional structure of tideal current in the East China Sea and the Yellow Sea.Journal of Oceanography,1998,54:651-668
    [54]张衡,朱建容,吴辉.东海、黄海、渤海8个主要分潮的数值模拟.华东师范大学学报,2005,3:71-77
    [55]C. Le Provost, F. Lyard, J.M. Molines,M.L.Genco,and F.Rabilloud. A hydrodynamic ocean tide model improved by assimilating a satellide altimeter-derived data set.Journal of Geophysical Research.1998,103:5513-5529
    [56]Lakshmi H.Kantha.Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides 1.Model description and results.Journal of Geophysical Research,1995,100:25283-25308
    [57]Igor Shulman,James K. Lewis,Alan F.Blumberg and B.Nicholas Kim.Optimized Boundary Conditions and Assimilation with Application to the M2 Tide in the Yellow Sea.Journal of Atmospheric and Oceanic Technology,1998,15:1066-1071
    [58]王永刚,方国洪,曹德明,魏泽勋,乔方利.渤黄东海潮汐的一种验潮站资料同化数值模式.海洋科学进展,2004,22(3):253-274
    [59]朱学明.中国近海潮汐潮流的数值模拟与研究.[中国海洋大学硕士学位论文].青岛:中国海洋大学,2009
    [60]张继才,吕咸青.渤黄东海二维潮汐模式底摩擦系数的反演研究.计算力学学报,2007,24(4):430-435
    [61]吕成青,吴自库,殷忠斌,田纪伟.渤黄东海潮汐开边界的1种反演方法.青岛海洋大学学报,2003,33(2):165-172
    [62]ZHANG Ji-cai,ZHU Jian-guo,LU Xian-qing.Numeirical studa on the bottom friction coefficient of the Bohai,Aellow and East China Seas.计算物理,2006,23(6):731-737
    [63]陈宗镛.长方形浅水海湾的一种潮波模式.海洋与湖沼,1965,7(2):85-93
    [64]叶安乐,陈宗镛.半封闭矩形海域中海底地形对旋转潮波系统的影响.山东海洋学院学报,1987,17(2):1-7
    [65]沈育疆,黄岱岩,钱成春,试释黄海半日潮波系统形成极值.海洋学报,1993,15(6):16-24
    [66]闾国年,林珲,宋志尧,贾建军.末次冰期最盛时期以来中国东部边缘海潮波系统演变过程的模拟研究,2000,20(4):1-7
    [67]贾建军,闾国年,宋志尧,林珲,钱亚东,陈钟明.中国东部边缘海潮波系统形成机制的模拟研究.海洋与湖沼,2000,31(2):159-167
    [68]An Hui Soo.A Numerical Experiment of the M2 Tide in the Aellow Sea.Journal of the Oceanographical Societa of Japan,1977,Vol.33,No2
    [69]张锦文,杜碧兰.中国黄海沿岸潮差的显著增大趋势.海洋通报,2000,19(1):1-9
    [70]Yu Yi-Fa, Y. Yu-Xiu.,Zuo Jun-cheng. etc..Effect of sea level variation on tidal characteristic values for the East China Sea. China Ocean Engineering,2003,17(3):369-382
    [71]于宜法,郭明克,刘兰.海平面上升导致渤、黄、东海潮波变化的数值研究Ⅱ——海平面上升后渤、黄、东海潮波的数值模拟.中国海洋大学学报,2007,37(1):7-14
    [72]于宜法,郭明克,刘兰,颜梅.海平面上升导致潮波系统变化的机理(Ⅰ)——基于理论模型的研究.中国海洋大学学报,2008,38(4):517-526
    [73]于宜法,郭明克,刘兰,颜梅.海平面上升导致潮波系统变化的机理(Ⅱ)——基于理论模型的研究.中国海洋大学学报,2008,38(6):875-882
    [74]杜凌.中国典型海域潮波研究与全球海平面变化规律研究.[中国海洋大学研究生学位论文].青岛:中国海洋大学,2005
    [75]王伟,宋志尧,陆卫国,胡明.海平面上升对海岸潮差响应的理论解析.海洋工程,2008,26(3):94-97
    [76]高志刚.平均海平面上升对东中国海潮汐、风暴潮影响的数值模拟研究.[中国海洋大学研究生学位论文].青岛:中国海洋大学,2008
    [77]杨卫钦等.时间序列分析与动态数据建模.北京:北京理工大学出版社,1986,43-67,99-105
    [78]缪锦海.最大熵谱的优良特性和预报误差过滤系数阶数的确定.气象学报,1979,37:1-8
    [79]K. Matsumoto,T. Takanezawa, M. Ooe,Ocean tide Models developed ba assimilating Topex/Poseidon Altimeter data into Hadronamical Model:A Global model and a regional model around Japan. Journal of Oceanographa,2000,56:567-581
    [80]Sea Jan. Ren-Chieh Lien. Chi-Hua Ting, Numerical studa of Baroclinic Tides in Luzon Strait. Journal of Oceanographa,2008,64:789-802

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700