粘土多功能净水剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,水污染对发展中国家来说是一个非常严重的问题。我国政府提出经济可持续发展,污水的处理受到了高度的重视。污水处理研究的重点是寻找储量丰富、廉价、性能优异的水处理剂。
     粘土坡缕石由于储量大、价廉、改性后吸附性能好等优点,引起人们的广泛关注。本文对粘土坡缕石进行改性,并且用于污水的处理。全文共分四章:第一章、污水处理技术的综述
     污水的成分主要包括有机污染物、毒性污染物、放射性污染物和油类污染物。污水可以分为:工业污水、农业污水和城市污水。其中工业污水污染范围广,污染物种类多、浓度大、危害大、防治难。工业污水处理的方法有化学法,物理法,生物法等。坡缕石粘土有特殊的结构和性质,研究用于污水的处理取得了一定的成果。
     第二章、坡缕石粘土的结构和性能研究
     用TG、SEM、TEM、IR、Zeta粒径和电位、氮气吸附和脱附,对坡缕石的结构和性能进行了分析和表征,并且研究了坡缕石对铅离子的吸附能力和吸附行为。坡缕石粘土微孔较多,孔容为0.243 cm3/g,比表面积为143 m2/g, Zeta电位为23mV。通过焙烧和酸化处理,能使坡缕石粘土表面积增大,吸附性增强。焙烧温度选择400℃,酸化浓度选择2mol/L为佳。将坡缕石粘土对铅离子的吸附等温线与Langmuir等温式及Freundlich等温式相比较,吸附更符合Langmuir等温式。酸化坡缕石对铅离子最大吸附量是166.7mg/g。
     第三章、坡缕石粘土表面接枝聚合物吸附剂的制备和性能
     制备了坡缕石粘土表面接枝聚合吸附剂,并且用热重、电镜、元素分析对其进行表征和分析。硅烷偶联剂水解聚合反应速度受反应温度和溶液pH值的影响。制备最佳条件是:温度为80℃,溶液pH值为3。用坡缕石粘土表面接枝聚合吸附剂对工业废水和品红溶液进行处理,结果发现吸附剂脱色、除臭能力较强、对油类也有一定吸附能力。
     第四章、坡缕石粘土、丙烯酸和马来酸酐接枝共聚物吸附剂的制备和性能研究了坡缕石接枝共聚物吸附剂的制备,并用红外、扫描电镜进行分析和表征。研究了吸附剂对苯胺的吸附能力和吸附行为。吸附剂对苯胺具有好的吸附性,吸附行为符合物理吸附,吸附过程符合Freundlich等温式,吸附过程也是二级动力学过程。
     总之,改性坡缕石用于污水的处理时,对重金属、油类、有机物具有较强的吸附能力。改性坡缕石具有环境友好和廉价的优点,在污水处理中具有广泛的用途。
At present, water pollution is a serious problem for many developing countries. Waste water treatment technique is highly valued by Chinese government, which reinforce sustainable economic development policy. The study of wastewater is focus on to find an abundant, cheap and excellent water treatment agent. The palygorskite, has the advantages of abundant reserves, low prices and strong adsorption, attracted extensive attention. So, in this study, the palygorskite was modificated and applied to waste water.
     The thesis consist of four chapters as follows:
     Chapter 1:Reviews of treatment technique for waste water.
     The components of waste water including organic pollutants, toxic pollutants, radioactive contaminants, and oil contaminants. waste water can be divided into three types: industrial waste water, agricultural wastewater and urban wastewater. Among many waste water, the industrial waste water has wide range of pollution and great harm, which is difficult to prevention. the treatment methods of industrial waste water is chemical, physical, biological method, and so on. Palygorskite clay has a special structure, and the study of waste water treatment has made some achievements. Chapter 2: The structure and properties of palygorskite.
     The palygorskite structure and properties were characterized by TG, SEM, TEM, IR, Zeta size and potential, nitrogen adsorption and desorption. And the adsorption of lead ions and adsorption behavior of palygorskite are also studied. Palygorskite has many porous, the pore volume, specific surface area and Zeta potential are 0.243 cm3/g ,143 m2/g and 23 mV, respectively. The calcination and acid treatment can increase the surface area and adsorption of palygorskite. The optimum conditions is calcination temperature selection 400℃and acid concentration 2 mol/L. The adsorption isotherm of Palygorskite on lead ion is in accordance with the Langmuir isotherm and the Freundlich isotherm, but, the Langmuir isotherm is better. The maximum adsorption of lead ions on acidified palygorskite reach to 166.7mg/g. Chapter 3:The preparation and properties of palygorskite adsorbent.
     Palygorskite adsorbent was prepared by surface graft polymerization and characterized by the thermogravimetry, electron microscopy and elemental analysis. Hydrolysis polymerization rate of silane coupling depends on the reaction temperature and pH vaue. The best preparation conditions is: temperature of 80℃, and pH = 3. Palygorskite sorbents, has a strong adsorptive power and deodorizing ability, also has some of oil absorption capacity for industrial waste water and fuchsin solution. Chapter 4: The preparation and properties of palygorskite, acrylic acid and maleic anhydride copolymer adsorbent.
     The palygorskite copolymer adsorbent was prepared and characterized with IR, and SEM. We studied adsorption behavior of our adsorbent on aniline. The results show that our adsorbent has a good adsorption of aniline, consistent with physical adsorption, with Freundlich adsorption isotherm and two dynamic processes.
     In short, the modified palygorskite has a strong adsorption capacity for heavy metals, oils, organic matter when used for waste water. Modified palygorskite has the advantages of environmentally friendly and low-priced, for that reason, it has wide range of uses in waste water treatment.
引文
[1]周本省.工业水处理技术[M].化学工业出版社, 1997.
    [2]钱易.西北地区水资源配置生态环境建设和可持续发展战略研究[M].科学出版社, 2004.
    [3] Saleh. A1-Muzaini. Industrial wastewater management in Kuwait [J]. Desalination, 1998, 115: 57-62.
    [4] Mark Wang. Rural industries and water pollution in China [J]. Ournal of Environmental Management, 2008, 86: 648-659.
    [5] W.Wesley Eckenfelder. Industrial Water Pollution Countrol [M].化学工业出版社, 2007.
    [6] Peijun Li, Xin Wang. Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China [J]. Journal of Hazardous Materials, 2009, 161: 516-521.
    [7]高延耀.水污染控制工程[M].高等教育出版社, 2007.
    [8] S. Singh. Impacts of monosodium glutamate industrial wastewater on plant growth and soil characteristics[J]. Ecological Engineering, 2009, 35: 1559-1563.
    [9]李本高.工业水处理技术[M].中国石化出版社, 2002.
    [10]马荣骏.工业废水的治理[M].中南工业大学出版社, 1991.
    [11]Roberto Zonta. Sediment chemical contamination of a shallow water area close to the industrial zone of Porto Marghera (Venice Lagoon, Italy) [J]. Marine Pollution Bulletin, 2007, 55: 529-542.
    [12]Saleh A1-Muzaini. Industrial wastewater management in Kuwait [J]. Desalination, 1998, 115: 57-62.
    [13] Jinzhu Ma. Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China [J]. Journal of Environmental Management, 2009, 90: 1168-1177.
    [14] Jamil R. Memon, Banana peel. A green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater [J]. Colloids and Surfaces B: Biointerfaces, 2009, 70: 232-237.
    [15]Mansooreh Soleimani, Tahereh Kaghazchi. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones -An agricultural waste [J]. Bioresource Technology, 2008, 99: 5374-5383.
    [16] E. Alvarez-Ayuso. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils [J]. Environmental Pollution, 2003, 125: 337-344.
    [17] T.S. Anirudhan, P.G. Radhakrishnan. Improved performance of a biomaterial- based cation exchanger for the adsorption of uranium (VI) from water and nuclear industry wastewater [J]. Journal of Environmental Radioactivity, 2009, 100: 250-257.
    [18]魏广芝,徐乐昌.低浓度含铀废水的处理技术及其研究进展[J].铀矿冶炼, 2007, 26: 90-96.
    [19]林莹,高柏,李元锋.核工业低浓度含铀废水处理技术进展[J].山东化工, 2009, 38: 35-39.
    [20]曾向东,申开莲.炼油厂恶臭污染调查的原则和方法[J].炼油设计, 1999, 29: 50-52.
    [21]卢琴芳,郭兵兵.固定床活性炭吸附法治理炼厂表曝池恶臭污染的工艺[J].环境工程, 2006, 24: 37-40.
    [22]李培红.工业废水处理与回收利用[M].化学工业出版社, 2001.
    [23] S. Singh. Impacts of monosodium glutamate industrial wastewater on plant growth and soil characteristics[J]. Ecological Engineering, 2009, 35: 1559-1563.
    [24]曾小明,李凌璞.化学法处理高浓度含钒碱性工业废水[J].工业水处理2009, 29: 51-53.
    [25]王路明.氢氧化镁对酸性废水处理的研究[J].盐业与化工, 2008, 37: 21-24.
    [26]许根福.处理高砷浓度工业废水的化学沉淀法[J].湿法冶金, 2008, 28: 12-18.
    [27]刘彦平.钒选矿过程中工业废水处理工艺研究[J].陕西建筑, 2008, 4: 15-16.
    [28]刘宇,王松.利用化学沉淀法降低焦化废水氨氮浓度的预处理工艺研究[J].环境科学与管理, 2008, 33: 90-94.
    [29]卢徐节.复合混凝剂在活性染料废水中应用[J].上海环境科学, 2009, 28: 59-62.
    [30]邵红,王恩德,范文玉,夏心泉.复合絮凝剂XG-1用于工业废水的处理[J].化工环保, 2002, 22: 35-39.
    [31]李冬梅,刘梅英.化学混凝-SBR法处理肉类加工工业废水的研究[J].环境保护科学, 2004, 30: 10-13.
    [32]潘碌亭.天然高分子改性阳离子絮凝剂的合成及对工业废水的处理[J].环境污染与防治, 2002, 24: 159-162.
    [33]郑红艾,张大全,潘理黎.臭氧处理工业废水新进展[J].上海电力学院学报, 2006, 22: 250-255.
    [34]刘亮.高级氧化法处理难降解有机废水的研究进展[J].甘肃科技, 2008, 24: 77-80.
    [35]路希鑫.氧化法处理印染废水的研究进展[J].石油化工应用, 2009, 28: 1-4.
    [36]蔡建国,石洪雁,李爱民.催化氧化法处理工业废水的研究进展[J].江苏环境科技, 2003, 16: 39-43.
    [37]毕鹏禹.电絮凝-O3氧化法处理石化工业污水的研究[J].北京化工大学学报, 2006, 33: 70-74.
    [38]胡长诚.过氧化氢处理工业废水研究进展[J].化学推进剂与高分子材料, 2006, 4: 1-5.
    [39]王煜乾.铁炭还原法预处理难降解有机化工废水[J].应用化工, 2009, 38: 1049-1053.
    [40]崔志刚,李浩,王宗廷.微电解法处理废水研究进展[J].山东化工, 2009, 38: 21-24.
    [41] C. Barrera-Daz. A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater [J]. Radiation Physics and Chemistry , 2003, 67: 657-663.
    [42] V. Mavrov. New hybrid electrocoagulation membrane process for removing selenium from industrial wastewater [J]. Desalination, 2006, 201: 290-296.
    [43]王锋,周恭明.电解催化氧化法中添加剂对难降解工业废水处理效果的影响[J].净水技术, 2005, 24: 24-27.
    [44]朱慧斌.高压脉冲放电等离子体处理工业废水实验研究[J].工业水处理, 2007, 27: 51-54.
    [45]林海波.工业废水电化学处理技术的进展及其发展方向[J].化工进展, 2008, 27: 223-230.
    [46]班福忱,刘炯天.含苯酚废水三维电极-Fenton试剂法的氧化技术[J].沈阳建筑大学学报, 2009, 25: 329-333.
    [47]邹家庆.工业废水处理技术[M].化学工业出版社, 2003.
    [48]王郁.水污染控制工程[M].化学化工出版社, 2007.
    [49]刘精今,李小明.工业废水的直接过滤吸附处理[J].废水处理, 2003, 3: 29-33.
    [50]阮晨,黄庆.活性炭吸附法去除印染工业废水色度的实验与研究[J].四川环境, 2006, 25: 24-30.
    [51]高延耀.水污染控制工程[M].高等教育出版社, 2007.
    [52]吉春红.双膜法深度处理回用有机废水的实验研究[J].工业水处理2009, 8: 38-41.
    [53]刘振龙.工业污水深度处理回用技术研究[J].乙烯工业, 2005, 17: 60-64.
    [54]杨洪波,郭爱.工业污水深度处理实用技术的新进展[J].石油化工环境保护, 2005, 28: 24-38.
    [55]李国一.曝气生物滤池技术在工业废水回用处理中的应用[J].水道港口, 2006, 27: 62-64.
    [56]周爱民.高含油有机化工废水生化处理工艺探析[J].云南化工, 2009, 36: 71-75.
    [57]俞敏,陶佳,王家德.膜生物反应器处理制药工业废水中试研究[J].工业水处理, 2008, 28: 45-48.
    [58] Xiaolei Liu, Nanqi Ren, Yixing Yuan. Performance of a periodic anaerobic baffled reactor fed on chinese traditional medicine industrial wastewater [J]. Bioresource Technology, 2009, 100: 104-110.
    [59] A. Kumar. Treatment of low strength industrial cluster wastewater by anaerobic hybrid reactor[J]. Bioresource Technology , 2008, 99: 3123-3129.
    [60]任朝华,卫志贤,负载型纳米TiO2光催化剂降解工业污水的研究[J].西北轻工业学院学报, 2001, 19: 20-25.
    [61] Sardar Khan. Use of constructed wetland for the removal of heavy metals fromindustrial wastewater [J]. Journal of Environmental Management, 2009, 90: 3451-3457.
    [62] Suthipong Sthiannopkao, Siranee Sreesai. Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater[J]. Journal of Environmental Management, 2009, 90: 3283-3289.
    [63]詹树林,林俊雄,方明晖.硅藻土在工业污水处理中的应用研究进展[J].工业水处理, 2006, 26: 10-14.
    [64] Xiangli Guo, Yadong Yao. Preparation of decolorizing ceramsites for printing and dyeing wastewater with acid and base treated clay [J]. Applied Clay Science, 2008, 40: 20-26.
    [65]尹奋平,何玉凤,王荣民,王云普.粘土矿物在废水处理中的应用[J].水处理技术, 2005, 31: 1-5.
    [66]马国平,何玉凤,杨宝芸,王荣民.高分子填料在生物法处理废水中的应用进展[J].化学通报, 2007, 1: 41-47.
    [67]晏得珍,何玉凤,王艳,王荣民.膨润土的改性及在废水处理中的应用研究进展[J].水处理技术, 2009, 35: 24-31.
    [68] Paula M.L. Castro. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis [J]. Bioresource Technology, 2009, 100: 3205-3213.
    [69] N.I. Galil. Sustainable reclamation and reuse of industrial wastewater including membrane bioreactor technologies: case studies[J]. Desalination, 2007, 202: 411-417.
    [70] E.Alvarez-Ayuso, Removal of cadmium fromaqueous solutions by palygorskite [J]. Journal of Hazardous Materials, 2007, 147: 594-600.
    [71] Hao Chen, Aiqin Wang. Kineticandisothermalstudies of leadionadsorption onto palygorskite clay [J]. Journal of Colloid and Interface Science, 2007, 307: 309- 316.
    [72] J.H. Potgieter, Heavy metals removal from solution by palygorskite clay [J]. Minerals Engineering, 2006, 19: 463-470.
    [73] Yue Chang, Xueqian Lv, Fei Zha, Yonggang Wang, Ziqiang Lei. Sorption ofp-nitrophenol by anion-cation modified palygorskite [J]. Journal of Hazardous Materials, 2009, 168: 826-831.
    [74] Wenji Wang. Adsorptioncharacteristics of Cd (II) from aqueous solution onto activated palygorskite [J]. Separationand Purification Technology, 2007, 55: 157-164.
    [75] P.-H. Chang. Sorptive removal of tetracycline from water by palygorskite [J]. Journal of Hazardous Materials, 2009, 165: 148-155.
    [76] Zi-Qiang Lei, Shou-Xin Wen. Preparation and decoloration property of polystyrene-grafted palygorskite nanoparticles [J]. Materials Letters, 2007, 61: 4076-4078.
    [77] Ziqiang Lei, Qinghua Zhang, Jujie Luo, Xiaoyan He. Baeyer–Villiger oxidation of ketones with hydrogen peroxide catalyzed by Sn-palygorskite [J]. Tetrahedron Letters, 2005, 46: 3505-3508.
    [78] M.P.S. Krekeler. Defects in microstructure in palygorskite-sepiolite minerals: A transmission electron microscopy (TEM) study [J]. Applied Clay Science, 2008, 39: 98-105.
    [79]范文元.利用凹凸棒石粘土吸附含铬废水[J].化工环保, 1989, 9: 248-249.
    [80]荣葵一,宋秀敏.非金属矿物与岩石材料工艺学[M].武汉工业大学出版社, 1990, 20-80.
    [81]周济元,再论凹凸棒石黏土应用现状及高附加值产品开发[J].非金属矿, 2006, 29: 1-6.
    [82]胡涛.凹凸棒的应用与研究[J].中国矿业, 2005, 14: 73-77.
    [83]马玉恒,方卫民,马小杰.凹凸棒土研究与应用进展[J].材料导报, 2006, 20: 43-47.
    [84] Neaman A. Rheological properties of aqueous suspensions of palygorskite. [J]. Soil Science, 2000, 64: 427.
    [85]徐国永,王平华.凹凸棒土在高分子材料领域中的应用[J].现代塑料加工与应用, 2002, 15: 36-39.
    [86]康文韬,王刚,刘少敏.凹凸棒土在高聚物改性中的应用[J].天津化工, 2002, 11: 26-29.
    [87]魏荣道,崔峤.甘肃临泽凹凸棒石粘土矿开发应用研究[J].甘肃科学学报, 2005, 17: 43-47.
    [88] Rong J,Li H., Jing. Novel organic/inorganic nanocomposite of polyethylene.I. Preparation via in situ polymerization approach [J]. Journal of Applied Polymer Science, 2001, 82: 1829~1837.
    [89]叶瑛,李俊,张云鹏.甘肃临泽地区含碘坡缕石碘的提取及其赋存状态研究[J].地球化学, 2006, 35: 47-178.
    [90] D. Zhao. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior [J]. Applied Clay Science,2006, 33: 161–170.
    [91]王云普,王有朋,王利平,刘东杰,刘小军.微波法合成有机坡缕石研究[J].非金属矿, 2005, 28: 27-28.
    [92] Yunpu Wang. Preparation and properties of organic palygorskite SBR/organic palygorskite compound and asphalt modified with the compound [J]. Construction and Building Materials, 2008, 22: 1820-1830.
    [93] Ray L. Frost, Efrain Mendelovici,Modification of fibrous silicates surfaces with organic derivatives: Aninfrared spectroscopic study [J]. Journal of Colloid and Interface Science, 2006, 294: 47-52.
    [94] Jianshe Shi, Xujie Yang, Qiaofeng Han, Xin Wang,Lude Lu. Synthesis and characterization of polyurethane-coated palygorskite [J]. Applied Clay Science, 2009, 46: 333-335.
    [95] Ziqiang Lei, Qinghua Zhang, Rongmin Wang, Guofu Ma,Chengguo Jia. Clean and selective Baeyer–Villiger oxidation of ketones with hydrogen peroxide catalyzed by Sn-palygorskite [J]. Journal of Organometallic Chemistry, 2006, 691: 5767-5773.
    [96] Yang Yang, Jin-wen Qian, Li-jing Xuan, Auan-fu An, Lin Zhang, Cong-jie Gao. Preparation and pervaporation of a palygorskite/polyacrylamide inorganic–orga-nic hybrid membrane for separating m-/p-xylene isomers [J]. Desalination, 2006, 193: 193-201.
    [97] Xingguo Wang, Silanized palygorskite for lipase immobilization [J], Journal ofMolecular Catalysis B: Enzymatic, 2009, 57: 10–15.
    
    [1]郑茂松.凹凸棒石黏土应用研究[M].化工水处理, 2007.
    [2]宋金如.凹凸棒石粘土吸附铀的性能研究及应用[J].华东地质学院学报, 1998, 21: 265-272.
    [3]彭书传,李辉夫,陈天虎,黄川徽,刘建平.纯凹凸棒石吸附Cu2+的实验研究[J].安徽农业大学学报, 2005, 32: 212-215.
    [4] M. Suárez, E. García-Romero. FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet [J]. Applied Clay Science, 2006, 31: 154-163.
    [5] E. Alvarez-Ayuso. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils [J]. Environmental Pollution, 2003, 125: 337-344.
    [6]陈天虎.凹凸棒石粘土吸附废水中污染物机理探讨[J].高校地质学报, 2000, 6: 266-270.
    [7]张国宇,王鹏.凹凸棒石粘土及在水处理中的应用[J].工业水处理, 2003, 23: 1-5.
    [8]王九思,李静萍,郝艳玲.改性凹凸棒石及在废水处理中的应用[J].天水师范学院学报, 2005, 25: 51-53.
    [9] Hao Chen, Yaogang Zhao, AiqinWang. Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite[J]. Journal of Hazardo us Materials, 2007, 149: 346-354.
    [10] Fangqun Gan. Removal of phosphate from aqueous solution by thermally treated natural palygorskite [J]. Water Research, 2009, 43: 2907-2915.
    [11]Yan Chen, Weihong Xin. Preparation and characterization of polyacrylamide/ palygorskite [J]. Applied Clay Science, 2009, 46: 148-152.
    [12] Difang Zhao, Jie Zhou, Ning Liu. Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles [J]. Materials Characterization , 2007, 58: 249-255.
    [13] Difang Zhao, Jie Zhou, Ning Liu. Characterizationof thestructure and catalytic activity of coppermodified palygorskite/TiO2 (Cu2+-PG/TiO2 ) catalysts[J]. Materials Science and Engineering, 2006, 431: 256-265.
    [14] Ray L.Frost, Yunfei Xi, Hongping He. Synthesis, characterization of palygorskitesupported zero-valent iron and its application for methylene blue adsorption [J]. Journal of Colloid and Interface Science, 2010, 341: 153-161.
    [15] M.Sudrez Barrios, Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties[J]. Applied Clay Science , 1995, 10: 247-258.
    [1]冉松林,坡缕石/聚合物纳米复合材料的研究进展[J].地球科学与环境学报, 2004, 26: 28-31.
    [2]陈世容.硅烷偶联剂的应用进展[J].有机硅材料, 2003, 17: 28-33.
    [3]张兴刚.硅烷偶联剂在填充橡胶中的应用[J].材料开发与利用, 2006, 21: 41-45.
    [4] Harrelkas F, Azizi H, Treatment of textile dye effluents using coagulation flocculation couped with membrane processes or adsorption on powdered carbon[J].Desalination , 2009, 235: 330-339.
    [5] Ovenden C,Xiao H.Flocculation behavior and mechanisms of cations inorganic microparticle/ploymer systems[J].Colloid Surf A , 2002, 197: 225-234.
    [6] Chen Q Y.Akinetic invenstigation of cationic starch adsorption and flocculation in kaolin suspension[J].Chemical Engineering Journal, 2007, 133: 325-333.
    [7]张莉.水处理絮凝剂的研究进展[J].工业用水与废水, 2001, 32: 5-7.
    [1]康永.废水中苯胺的降解处理技术进展[J].现代农药, 2010, 9: 15-18.
    [2]张印德,高玉之,傅鸣远.苯的氨基﹑硝基化合物中毒的防治[M].北京:化学工业出版社, 1982.
    [3]Ra Mana Murthy,Dewlapalli, Francis Jones.Separation of Aniline from Aqueous Solutions Usingemulsion Liquid Membranes[J], Journal of Hazardous Materials, 1999, 70: 157–170.
    [4]熊宜栋.苯胺废水的超声波降解实验研究[J].环境科学与技术, 2002, 25: 13–14.
    [5]Giti E mtiazi, Moha mad Satarii, Fate meh Mazaherion. The Utilization of Aniline, Chlorinated Aniline,and Aniline Blue as the Only Source of Nitrogen by Fungi in Water[J]. Wat.Res., 2001, 35: 1219–1224.
    [6]杨占文.活性污泥法处理苯胺废水研究[J].山东化工, 2008, 27: 8-11.
    [7]杨监峰. O3/UV处理苯胺废水的研究[J].环境科技, 2009, 22: 5-8.
    [8]于德爽.二氧化氯氧化法去除染料废水中苯胺类物质的生产性实验研究[J].哈尔滨商业大学学报, 2001, 17: 19-21.
    [9] J.L. Gómez. Application of reverse osmosis to remove aniline from wastewater[J]. Desalination, 2009, 245: 687–693.
    [10] Neelam Jagtap, Veda Ramaswamy. Oxidation of aniline over titania pillared montmorillonite clays[J]. Applied Clay Science , 2006, 33: 89–98.
    [11]王代芝.粉煤灰对苯胺废水的吸附研究[J].粉煤灰综合利用, 2006, 6: 1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700