环境因子节律性变动对潮间带大型海藻孢子萌发、早期发育和生长的影响及其生理生态学机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、温度日节律波动对潮间带大型海藻孢子萌发、早期发育、生长、生化组成、营养吸收和光合作用的影响
     1.温度日节律波动对孔石莼生长和生化组成的影响
     实验共设5个温度日节律波动处理(20±2℃,20±4℃,20±6℃,20±8℃,20±10℃)和1个恒温(20℃±0℃)对照。实验结果表明:每天不同温度波动幅度对孔石莼(Ulva pertusa)的生长率具有明显的影响(P<0.05),其中(20±2)℃、(20±4)℃和(20±6)℃与恒温对照相比能明显促进孔石莼的生长,(20±10)℃则显著抑制孔石莼的生长;孔石莼相对生长率(RGR)与温度波动幅度(TA)的关系符合如下多项式方程: G=β_0+β_1(TA)+β_2(TA)~2其中G代表相对生长率,TA代表温度波动幅度,β0为方程在G轴上的截距,β_1和β2为回归系数。当平均温度为20℃时,对孔石莼生长最有利的温度波动幅度为±3.69℃。温度日节律波动对孔石莼Chl-a、Chl-b、蛋白质、可溶性糖和游离脯氨酸的含量具有明显的影响(P<0.05),(20±2)℃和(20±4)℃处理组的Chl-a含量显著高于恒温对照组,(20±2)℃、(20±4)和(20±6)℃处理的蛋白质和可溶性糖的绝对含量明显高于恒温对照组,但当温度波动幅度大于±8℃时,可溶性糖和细胞防御物质游离脯氨酸的含量明显增加(P<0.05)。
     2.温度日节律波动对带形蜈蚣藻四分孢子放散、孢子萌发和早期发育的影响
     实验共设3个温度日节律波动处理:15±3℃短光周期(L:D=8:16)、20±3℃正常光周期(L:D=12:12)、25±3℃长光周期(L:D=16:8);用15℃短光周期(L:D=8:16)、20℃正常光周期L:D=(12:12)和25℃长光周期(L:D=16:8)分别作为恒温对照。观察了带形蜈蚣藻孢子的放散,并在不同温度条件下测定了带形蜈蚣藻孢子萌发率和早期发育。实验结果表明带形蜈蚣藻四分孢子囊携四个孢子同时从藻体中排出,孢子囊膜破裂后四个孢子同时放散;四分孢子的萌发类型为Nemalion type;从带形蜈蚣藻四分孢子附着至第三次分裂,藻体的大小没有发生明显的变化;适宜的温度波动促进了带形蜈蚣藻四分孢子的萌发和早期发育。
     3.温度日节律波动对真江蓠生长和营养吸收的影响
     实验共设3个温度日节律波动处理:15±3℃短光周期(L:D=8:16)、20±3℃正常光周期(L:D=12:12)、25±3℃长光周期(L:D=16:8);用15℃短光周期(L:D=8:16)、20℃正常光周期L:D=(12:12)和25℃长光周期(L:D=16:8)分别作为恒温对照。研究了真江蓠在不同温度条件下的生长、元素积累和营养吸收。实验结果表明温度日节律波动能够促进了真江蓠的生长、对碳元素和氮元素的积累以及对水体中NO3--N的吸收和移除。
     4.温度日节律波动中昼高温、夜低温对真江蓠营养吸收和光合作用的影响
     实验共设3个温度日节律波动处理:15±3℃短光周期(L:D=8:16)、20±3℃正常光周期(L:D=12:12)、25±3℃长光周期(L:D=16:8);用15℃短光周期(L:D=8:16)、20℃正常光周期L:D=(12:12)和25℃长光周期(L:D=16:8)分别作为恒温对照。研究了在不同温度条件下昼高温和夜低温对真江蓠的营养吸收和光合作用。实验结果表明温度日节律波动中昼高温不但促进了真江蓠对水体中NO_3~--N的吸收,也促进了其净光合作用速率;同时在夜低温能够抑制真江蓠的夜间呼吸作用。上述结论能够解释温度日节律波动促进潮间带海藻生长的现象。
     二、节律性干出对孔石莼生长和生化组成的影响
     实验共设7个节律性干出的处理,即每12h干出0.0h、0.5h、1.0h、2.0h、3.0h、4.0h和5.0h。实验结果表明:每12h不同干出时间对孔石莼(Ulva pertusa)的生长具有明显的影响(P<0.05),其中干出0.5h、1.0h和2.0h与不干出处理相比能明显促进孔石莼的生长,干出5h则显著抑制孔石莼的生长(P<0.05);节律性干出对孔石莼叶绿素a、叶绿素b、蛋白质、可溶性糖和游离脯氨酸含量具有明显的影响(P<0.05),干出0.5h、1.0h和2.0h处理的可溶性糖的绝对含量明显高于不干出处理,干出时间过长(3.0h、4.0h和5.0h)不但使孔石莼生长物质的含量减少,并且使孔石莼的渗透溶质增加,当干出时间为5h时,可溶性糖含量突然增高;游离脯氨酸的含量也随着干出时间的增加而增加。
     三、盐度日节律波动对孔石莼生长和生化组成的影响
     实验共设5个盐度日节律变化处理(30±3、30±6、30±9、30±12和30±15)和一个恒盐(30±0)对照处理。实验结果表明:孔石莼能够耐受较大范围的盐度日节律性连续变化,这种变化虽然对孔石莼的生长不利,但是仍然能够使孔石莼的相对生长率保持在12%以上;每天不同盐度变化对孔石莼的生长率具有明显的影响(P<0.05),盐度变化幅度±3~±15与恒盐对照相比明显不利于孔石莼的生长,盐度变化幅度越大,孔石莼生长越缓慢。盐度日节律连续变化对孔石莼蛋白质、可溶性糖和游离脯氨酸的含量具有明显的影响(P<0.05)。同恒盐处理相比,盐度日节律连续变化对孔石莼叶绿素的含量的影响不明显,但叶绿素a和叶绿素b含量都有随着盐度变化幅度的增大而逐渐减少的趋势。盐度日节律性连续变化使孔石莼蛋白质和可溶性糖的相对含量显著增加(P<0.05),随着盐度变化幅度的增大,蛋白质和可溶性糖增加的趋势越明显,并且在盐度日节律性连续变化下,蛋白质增加的速度比可溶性糖增加的速度要快。同时,游离脯氨酸的相对含量随着盐度变化幅度的增加而增加,但是在缓和的盐度日节律性连续变化下(30±3)孔石莼游离脯氨酸的含量却显著小于恒盐对照组(P<0.05)。
     四、光对孔石莼生长和生化组成的影响
     1.光照强度对孔石莼生长和生化组成的影响
     研究了50~400μmol/(m2·s)范围内光照强度对孔石莼生长和藻体生化组成的影响。研究结果表明光照强度对孔石莼的生长率具有明显的影响(P<0.05),孔石莼在光照强度为250μmol/(m~2·s)时有最大的生物量积累。光照强度低于250μmol/(m~2·s)时,孔石莼的生长率有随着光照强度的降低而减小的趋势;光照强度高于250μmol/(m~2·s)时,孔石莼的生长率随着光照强度的升高而降低(P<0.05);过高或过低的光照强度均不利于孔石莼的生长,光照强度在100μmol/(m~2·s)以下时,孔石莼的生长明显受到不利的影响,光照强度至350μmol/(m~2·s)以上、实验超过6天后藻体叶片产生溃斑,并产生了明显的光抑制。不同光照强度对孔石莼的叶绿素、可溶性糖和游离脯氨酸的含量具有明显的影响(P<0.05)。随着光照强度的增加,孔石莼的叶绿素a和叶绿素b的含量逐渐变小;低光照条件可促进了孔石莼蛋白质的积累;当光照强度超过350μmol/(m~2·s)时,游离脯氨酸的含量明显增加。光照强度对孔石莼化学组成也具有明显的影响(P<0.05)。随着光照强度的升高,藻体的N元素含量有所升高,但光强达到350μmol/(m~2·s)后,随着光强的增加,N元素含量反而降低;C元素的含量在光照强度为50~350μmol/(m~2·s)范围内变化不明显,但当光照强度达到350μmol/(m~2·s)后,C元素的含量明显升高;H元素的含量在50~400μmol/(m~2·s)范围内,具有随着光照强度增加而增加的趋势。
     2.光照强度日节律波动对孔石莼生长和生化组成的影响
     本研究由两个实验组成。实验1共设5个光照强度波动幅度处理( 200±40μmol/(m~2·s)、200±80μmol/(m~2·s)、200±120μmol/(m~2·s)、200±160μmol/(m~2·s)和200±180μmol/(m~2·s))和1个恒定光照强度200μmol/(m~2·s)对照。实验1的结果表明:每天不同的光照强度波动幅度对孔石莼的生长率具有明显的影响( P<0.05 ),其中200±40μmol/(m~2·s)、200±80μmol/(m~2·s)和200±120μmol/(m~2·s)与恒定光照强度200μmol/(m~2·s)对照相比能明显促进孔石莼的生长;光照强度日节律波动对孔石莼Chl-a、Chl-b、蛋白质、可溶性糖和游离脯氨酸的含量具有明显的影响(P<0.05),光照波动幅度为80μmol/(m~2·s)处理下孔石莼的叶绿素a和叶绿素b的含量显著高于波动幅度为120μmol/(m~2·s)、160μmol/(m~2·s)和180μmol/(m~2·s)的处理(P<0.05),但恒定光照强度处理与光照强度波动处理下孔石莼叶绿素a和叶绿素b的含量相比没有显著的差异(P>0.05);孔石莼的蛋白质和可溶性糖含量具有随着光照强度波动幅度增大而减小的趋势。游离脯氨酸含量以恒定光照强度下最高,显著高于其余各光照强度波动处理(P<0.05)。实验2共设3个光照强度波动幅度处理(250±50μmol/(m~2·s)、250±100μmol/(m~2·s)和250±150μmol/(m~2·s))和一个恒定光照强度250μmol/(m~2·s)对照。实验2的结果表明:每天不同的光照强度波动幅度对孔石莼的生长率具有明显的影响( P<0.05 ), 250±50μmol/(m~2·s)、250±100μmol/(m~2·s)和250±150μmol/(m~2·s)处理下孔石莼终生物量和相对生长率都显著高于恒定光照强度200μmol/(m~2·s)对照组(P<0.05);恒定光照强度250μmol/(m~2·s)下孔石莼叶绿素a的含量显著小于波动幅度为50μmol/(m~2·s)和100μmol/(m~2·s)的处理(P<0.05),但与波动幅度为150μmol/(m~2·s)处理下孔石莼叶绿素a的含量相比差异不显著(P>0.05);恒定光照强度250μmol/(m~2·s)处理与光照强度波动处理下孔石莼叶绿素b的含量没有显著的差异(P>0.05)。光照波动幅度为50μmol/(m~2·s)处理下孔石莼叶绿素b的含量显著高于波动幅度为150μmol/(m~2·s)的处理(P<0.05);孔石莼的蛋白质和可溶性糖含量在恒定光照强度下都比在光照强度波动处理下高;游离脯氨酸含量以恒定光照强度下最高,显著高于其余各光照强度波动处理(P<0.05)。
     3.不同光照强度下光暗周期对孔石莼生长和生化组成的影响
     研究了不同光照强度下光暗周期对孔石莼(Ulva pertusa)生长和生化组成的影响。发现在长日照能够明显促进孔石莼的生长,在全光照和全黑暗处理对孔石莼的生长不利。实验1光照强度为110μmol/(m~2·s),实验2光照强度为240μmol/(m~2·s),两种光照强度下分别设置11个光暗周期处理(L:D=24:0、20:4、16:8、14:10、13:11、12:12、11:13、10:14、8:16、4:20和0:24)。实验结果表明:不同光暗周期对孔石莼的生长率具有明显的影响(P<0.05),除全光照处理外,孔石莼的生物量具有随着光照时间的增加而增加的趋势;随着日照时间的减少,叶绿素a和叶绿素b的含量都有逐渐下降的趋势;蛋白质和可溶性糖的含量在极长和极短日照长度处理中都有增加的趋势;随着光照时间的增加,游离脯氨酸的含量也逐渐增加。
     4.光谱成分及其变动对孔石莼生长和生化组成的影响
     研究了光谱成分及其波动对孔石莼(Ulva pertusa)生长和生化组成的影响。实验共设11个光谱成分及其波动的处理(白光、橙色光、绿色光、红色光、蓝色光、橙色光:绿色光=6:6-h、橙色光:红色光=6:6-h、绿色光:红色光=6:6-h、绿色光:蓝色光=6:6-h、红色光:蓝色光=6:6-h、蓝色光:橙色光=6:6-h)。实验结果表明:橙色光、蓝色光同白光相比对孔石莼的生长没有明显的影响,而红色光和绿色光对孔石莼的生长产生了明显的抑制,尤其以绿色光的抑制作用最为显著(P<0.05)。光谱变化处理中,绿色光:红色光=6:6-h处理出现了光增益效应。红色光和蓝色光下孔石莼的叶绿素a和叶绿素b的含量显著小于白光处理(P<0.05)。单色光的波动有利于增加孔石莼叶绿素、蛋白质和可溶性糖的含量,并能减弱游离脯氨酸在藻体内的积累。
ⅠEffects of diel fluctuating temperature on germination, growth, biochemical composition, nutrient uptake and photosynthesis of several macroalgae
     1 Effects of circadian rhythms of fluctuating temperature on growth and biochemical composition of Ulva pertusa
     The marcoalga Ulva pertusa was cultured under (20±2)℃, (20±4)℃, (20±6)℃, (20±8)℃and (20±10)℃circadian rhythms of fluctuating temperature conditions, and constant temperature of 20℃was used as the control. The growth rate of macroalga at (20±2)℃, (20±4)℃and (20±6)℃were significantly higher than that at constant temperature of 20℃, while growth rate at (20±8)℃and (20±10)℃were significantly lower than that at constant temperature of 20℃. The growth rate of macroalga was a quadratic function of the thermal amplitude. Such a growth model can be described by G=β_0+β_1(TA)+β_2(TA)_2 where G represents the relative growth rate, TA is thermal amplitude in degree Celsius,β0 is the intercept on the G axis, andβ_1 andβ_2 are the regression coefficients. The optimal thermal amplitude for the growth of thallus at mean temperature of 20℃was estimated to be±3.69℃. Analysis of biochemical composition at the final stages of thaulls growth revealed that diel fluctuating temperature caused various influences (P<0.05).The content of chlorophyll, protein and total solute carbohydrate at (20±2)℃ and (20±4)℃were slightly higher than those at constant temperature of 20℃, however no statistically significant differences were found among them (P>0.05). While osmolytes (total solute carbohydrate and free proline) at (20±10)℃were significantly higher than that at 20℃(P<0.05). Therefore, more chlorophyll and carbohydrate production might account for the enhancement in the growth of macroalga at the diel fluctuating temperatures in the present study.
     2 Effects of diel fluctuating temperature on germination and early growth of Grateloupia turuturu
     The marcoalga Grateloupia turuturu was cultured under (15±3)℃, (20±3)℃and (25±3)℃diel fluctuating temperature conditions, and constant temperatures of 15℃, 20℃and 25℃were used as the controls, respectively. The spores germination, early growth were observed in this experiment. The type of G. turutur germination belongs to Nemalion type. There was no significant difference in the spores’size between 2 cells stage and 8 cells stage after spores attached(P>0.05). The germination rate of macroalga at (15±3)℃, (20±3)℃were significantly higher than that at constant temperature of 15℃and 20℃respectively(P<0.05).
     3 Effects of diel fluctuating temperature on growth and nutrient uptake of Gracilaria vermiculophylla
     The marcoalga Gracilaria vermiculophylla was cultured under (15±3)℃, (20±3)℃and (25±3)℃diel fluctuating temperature conditions, and constant temperatures of 15℃, 20℃and 25℃were used as the controls, respectively. The specific growth rate, nutrient uptake and NO3--N removal were determined in this experiment. The result showed that diel fluctuating temperature can enhance the growth rate, nutrient uptake and NO3--N removal of Gracilaria vermiculophylla than that under the constant temperature(P<0.05).
     4 Effects of high day temperature and low night temperature on nutrient uptake and photosynthesis of Gracilaria vermiculophylla
     The marcoalga Gracilaria vermiculophylla was cultured under (15±3)℃, (20±3)℃and (25±3)℃diel fluctuating temperature conditions, and constant temperatures of 15℃, 20℃and 25℃were used as the controls, respectively. The specific growth rate, nutrient uptake and photosynthetic rate and respiratory rate were determined in this experiment. The results showed that high day temperature and low night temperature play the different role during the temperature fluctuation. High day temperature not only can accelerate the NO3--N removal of Gracilaria vermiculophylla but also can enhance the net photosynthetic rate(P<0.05), and low night temperature can inhibit the respiration compare with the macroalga under the constant temperature(P<0.05).
     ⅡEffects of periodical emersion on growth and biochemical composition of Ulva pertusa
     The influence of emersion on the growth and biochemical composition were investigated with Ulva pertusa thalli grown under laboratory conditions with periodical emersion and submersion treatments. The accumulated biomass and daily increments of thalli with 0.5h, 1.0h and 2.0h periodical emersion every 12h were faster than those without emersion, while growth rate with 5h periodical emersion every 12h was significantly lower than that without emersion. Analysis of biochemical composition at the final stages of thalli growth revealed that periodical emersion caused various influences (P<0.05). The final content of total solute carbohydrate with 0.5h, 1.0h and 2.0h periodical emersion every 12h was significantly higher than that without emersion, while osmolyte with 5h periodical emersion every 12h was significantly higher than that without emersion (P<0.05). Therefore, mild periodical emersion could enhance the growth of Ulva pertusa, while severe periodical emersion could inhibit the growth of Ulva pertusa.
     ⅢEffects of circadian rhythms of fluctuating salinity on growth and biochemical composition of Ulva pertusa
     The marcoalga Ulva Pertusa was cultured under 30±3, 30±6, 30±9, 30±12 and 30±15 circadian rhythms of fluctuating salinity conditions, and constant salinity of 30 was used as the control. The growth rate of macroalga at fluctuating salinity conditions were significantly lower than that at constant salinity of 30, while the SGR of U. pertusa at different fluctuating salinity conditions were all kept at least 12%. Analysis of biochemical composition at the final stages of thaulls growth revealed that diel fluctuating salinity caused various influences (P<0.05). The content of chlorophyll a and chlorophyll b at fluctuating salinity conditions were slightly lower than those at constant salinity of 30, however no statistically significant differences were found among them (P>0.05). The content of protein and total solute carbohydrate at fluctuating salinity conditions were significantly higher than those at constant salinity of 30 (P<0.05), and there was a trend that the content of proline increased with the increase of amplitude of fluctuating salinity, while the content of proline at mild change of salinity (30±3) was significantly lower than that at constant salinity (P<0.05).
     ⅣEffects of light on growth and biochemical composition of Ulva pertusa
     1. Effects of light intensity on growth and chemical constituents of Ulva pertusa The influence of light on the growth and chemical constituents were investigated with Ulva pertusa thalli growth under laboratory conditions with different light intensity. There was a trend that the growth rate of macroalga decreased with the decrease of light intensity under 250μmol/(m~2·s), but when light intensity exceed 250μmol/(m~2·s), the growth rate of macroalga also decrased with the increase of light intensity(P<0.05). Analysis of chemical constituents at the final stages of thalli growth revealed that different light intensity caused various influences (P<0.05). There was a trend that the content of chlorophyll a and chlorophyll b decreased with the increase of light intensity. The synthesization of protein was accelerated within the lower light intensity. While osmolytes (free proline) at 350μmol/(m~2·s) and 400μmol/(m~2·s) was significantly higher than other treatments (P<0.05). The content of nitrogen increased with the increase of light intensity from 50 to 300μmol/(m~2·s), while the content of nitrogen decreased with the increase of light intensity when light intensity exceed 350μmol/(m~2·s), the content of carbon has the same trend with the trend of nitrogen, and the content of hydrogen increased with the increase of light intensity in this study.
     2. Effects of circadian rhythms of fluctuating light intensity on growth and biochemical composition of Ulva pertusa
     The marcoalga Ulva pertusa was cultured under 200±40μmol/(m~2·s), 200±80μmol/(m~2·s), 200±120μmol/(m~2·s), 200±160μmol/(m~2·s) and 200±180μmol/(m~2·s) circadian rhythms of fluctuating light intensity conditions, and constant light intensity of 200μmol/(m~2·s) was used as the control in experiment 1. The growth rate of macroalga at 200±40μmol/(m~2·s), 200±80μmol/(m~2·s) and 200±120μmol/(m~2·s) were significantly higher than that at constant light intensity of 200μmol/(m~2·s) (P<0.05). Analysis of biochemical composition at the final stages of thaulls growth revealed that diel fluctuating light intensity caused various influences (P<0.05).While osmolytes (free proline) at constant light intensity of 200μmol/(m~2·s) was significantly higher than those at other treatment (P<0.05).The marcoalga Ulva pertusa was cultured under 250±50μmol/(m~2·s), 250±100μmol/(m~2·s) and 250±150μmol/(m~2·s) circadian rhythms of fluctuating light intensity conditions, and constant light intensity of 250μmol/(m~2·s) was used as the control in experiment 2. The growth rate of macroalga at 250±50μmol/(m~2·s), 250±100μmol/(m~2·s) and 250±150μmol/(m~2·s) were significantly higher than that at constant light intensity of 250μmol/(m~2·s) (P<0.05). Analysis of biochemical composition at the final stages of thaulls growth revealed that diel fluctuating light intensity caused various influences (P<0.05). .The content of chlorophyll-a at 250±50μmol/(m~2·s) and 250±100μmol/(m~2·s) was significantly higher than that at constant light intensity of 250μmol/(m~2·s) (P<0.05), the content of protein and total solute carbohydrate at 250±50μmol/(m~2·s) circadian rhythms of fluctuating light intensity conditions were significantly higher than those at constant temperature of 250μmol/(m~2·s), osmolytes (free proline) at constant light intensity of 250μmol/(m~2·s) was significantly higher than those at other treatment (P<0.05).
     3. Effects of light-dark cycles on growth and biochemical composition of Ulva pertusa under different light intensity conditions
     The marcoalga Ulva pertusa was cultured under L:D=24:0、20:4、16:8、14:10、13:11、12:12、11:13、10:14、8:16、4:20 and 0:24 light-dark cycles under 110μmol/(m~2·s) and 240μmol/(m~2·s) light intensity conditions, respectively. There was a trend that the growth rates of macroalga decreased with the increase of light period. The synthesization of protein and total carbohydrate were accelerated within the shorter light period and longer light period. And free proline was increased with the increase of light period.
     4. Effects of light spectra and fluctuating of light spectra on growth and biochemical composition of Ulva pertusa
     The marcoalga Ulva pertusa was cultured under White, Yellow, Green, Red, Blue, Yellow: Green=6:6h, Yellow: Red=6:6h, Green: Red=6:6h, Green: Blue=6:6h, Red: Blue=6:6h, Blue: Yellow=6:6h light spectra conditions. The growth rate of macroalga at Red light and Green light were significantly lower than that at White light. Emerson enhancement effect occurred at Green: Red=6:6h treatment. The content of chlorophyll, protein and total solute carbohydrate was accelerated by the fluctuating of light spectra. The content of praline was alleviated by the fluctuating of light spectra
引文
Aschoff, J.. Circadian rhythms, influences of internal and external factors on the period measured in constant conditions. Z Tierpsychol.,1979,19:225-249.
    Bell-Pedersen D.. Keeping pace with Neurospora circadian rhythms. Microbiology,1998,144:1699-711.
    Beer S.,Eshel A. Photosynthesis of Ulva sp.Ⅰ.Effects of desiccation when exposed to air. J. Exp. Mar. Biol. Ecol.,1983,70:91-97.
    Brown F.A. The biologic clock. New York:Academic press,1970,50~70.
    Crosthwaite S.K.,Dunlap J.C.,Loros J.J.. Neurospora wc-1 and wc-2: transcription,photoresponses,and the origins of circadian rhythmicity. Science,1997,276:763–769.
    Crosthwaite S.K.,Loros J.J.,Dunlap J.C.. Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell,1995,81:1003–1012.
    Chardon F.,Hourcade D.,Combes V.,Charcosset A.. Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8. Theor. Appl. Genet.,2005,112:1-11.
    Czeisler C.A.,Duffy J.F.,Shanahan T.L.,Brown E.N.,Mitchell J.F.,Rimmer D.W.,Ronda J.M.,Silva E.J.,Allan J.S.,Emens J.S.,Dijk D.J.,Kronauer R.E.. Stability,precision,and near-24-hour period of the human circadian pacemaker. Science,1999,284:2177-2181.
    Dunlap J.C.. Molecular bases for circadian clocks. Cell,1999,96:271–290.
    Emerson R,Chalmers RV,Cederstand C.. Some factors influencing the long-wave limit of photosynthesis. Proc Natl Acad Sci USA,1957,43:133-143.
    Flint L.H., McAlister E.D.. Wave lengths of radiation in the visable spectrum promoting the germination of light-sensitive lettuce seed. Smithsonian Miscellaneous Collections,1937,96:1-9.
    Garner W W,Allard H A.. Effect of relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agr Res.,1920,18:553~606.
    Ji Y.,Tanaka J.. Effects of desiccation on the photosynthesis of seaweeds from the intertidal zone in Honshu, Japan. Phycol. Res,2002,50:145-153.
    Kreps J.A., and Kay S.A.. Coordination of plant metabolism and development by the circadian clock. Plant Cell.,1997,9:1235-1244.
    Liu Y.,Merrow M.,Loros J. Jay J. Dunlap C.. How Temperature Changes Reset a Circadian Oscillator. Science,1998,281:825-829.
    Madsen T.V.,Maberly S.C.. A comparison of air and water as environments for photosynthesis by the intertidal alga Fucus spiralis (Phaeophyta). J. Phycol.,1990,26:24-30.
    *МаксимовHA.Развитиеученияоводномре?имеизасухоустойчивостирастенийоттимирязевадонашихдней.ЙзσРаьотыЦнстцтфцзцоРастАНСССР.Том1.Москва:Изд-воНаука, 1944,21~56
    McClung C.R.. Plant circadian clocks,a millennial view. Physiol. Plant,2000,109:359-371.
    McClung, C.R.. Circadian rhythms in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.,2001,52:139-162.
    Millar A.J.. Light responses of a plastic plant. Nature Genetics,2001,29:357-358.
    Millar A.J., Straume M.,Chory J.,N-H S.A.,Kay Chua.. The regulation of circadian period by phototransduction pathways in Arabidopsis. Science,1995,267:1163-1166.
    Myers M.P.,Wager-Smith K.,Rothenfluh-Hilfiker A.,Young M.W.. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science,1996,271:1736–1740.
    Oates B.R.,Murray S.N.. Photosynthesis, dark respiration and desiccation resistance of the intertidal seaweeds Hesperophycus harveyanus and Pelvetia fastigiata F. gracilis. J. Phycol.,1983,19:371-380.
    Panda S.,Hogenesch J.B.,Kay S.A.. Circadian rhythms from flies to human. Nature,2002,417:329-335.
    Ruoff P.,Rensing L.. The temperature-compensated Goodwin model simulates many circadian clock properties. J. Theor. Biol.,1996,179:275-285.
    Somers D.E.,Devlin P.F.,Kay S.A.. Phytochromes and cryptochromes in the entrainrnent of the Arabidopsis circadian clock. Science,1998a,282:1488-1490.
    Somers D.E.,Webb A.A.R.,Pearson M.,Kay S.. The short period mutant, tocl-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development,1998b,125:485-494.
    Somers D.E.. The physiology and molecular bases of the plant circadian clock. Plant Physiol.,1999,121:9-19.
    Thomas F. Schultz, Steve A. Kay. Circadian clocks in daily and seasonal control of development. Science,2003,301:326-328.
    Tyson J.J.,Hong C.I.,Thron C.D.,Novak B.. A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys. J.,1999,77:2411–2417.
    Went, F. W.. Plant growth under controlled conditions:ⅡThermoperiodicity in growth and fruiting of the tomato. American Journal of Botany,1944,31:135~150.
    Xinyou Yin,Martin Kropff J.,Jan Goudriaan. Differential effects of day and night temperature on development flowering in rice. Annals of Botany,1996,77:203~213.
    Zou D.,Gao K.. Effects of desiccation and CO2 concentrations on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China. Eur. J. Phycol.,2002,37:587-592.
    Zou D.,Gao K.. Ecophysiological characteristics of four intertidal marine macroalgae during emersion along Shantou coast of China, with a special reference to the relationship of photosynthesis and CO2. Acta Oceanol. Sin.,2005,24:105-113.
    陈晓,李思远,吴连成,王翠玲,陈彦惠.光周期影响植物花时的分子机制.西北植物学报,2006,26:1490-1499.
    陈逢宕.光的波长对光合作用的影响.北京农学院学报,1996,1:125~128.
    高荣孚,张鸿明.植物光调控的研究进展.北京林业大学学报,2002,24:235~243.
    黄耀伟,于涟,周继勇.生物种机制研究进展.生命科学,2002,12:10~29.
    梁宗锁,康绍忠,邵明安,魏永胜,张建华.土壤干湿交替对玉米生长速度及其耗水量的影响.农业工程学报,2000,16:38~40.
    慕自新,梁宗锁,张岁岐.土壤干湿交替下作物补偿生长的生理基础及在农业中的应用.植物生理学通讯,2002,38:511-516.
    邵玲.光对植物光合作用的调节.西江大学学报,1999,4:72~76.
    山仑,邓西平,苏佩.作物对多变低水环境的适应与调节.中国农业科技导报,2000a,2:66~69.
    山仑,苏佩,郭礼坤.不同类型作物对干湿交替环境的反应.西北植物学报,2000b,20:164~170
    孙存华,毛健民,白宝璋,白岩.昼夜变温促进小麦幼苗生长的酶学研究.吉林农业大学学报,2000,22:30~33.
    陶汉之.茶树光合作用与光质的关系.植物生理学通讯,1989,1:19~23.
    祝宗嶺.近似昼夜节奏——生物钟.植物生理学通讯,1981,4:67~78.
    武维华.植物生理学.北京:科学出版社,2003,372~373.
    Bates, L. S., R. P. Waldren & I. D. Teare, 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39:205-207.
    Bradfield, M. & N. Stamp, 2004. Effect of nighttime temperature on tomato plant defensive chemistry. Journal of Chemical Ecology 30:1713-1721.
    Bradford, M.M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical Biochemistry 72:248-254.
    Bredmose, N. & J. Nielsen, 2004. Effects of thermoperiodicity and plant population density on stem and flower elongation, leaf development, and specific fresh weight in single stemmed rose (Rosa hybrida L.) plants. Scientia Horticulturae 100:169-182.
    Danakusumah, E., S. Kadowaki & H. Hirata, 1991. Effects of coexisting Ulva pertusa on the producton of kuruma prawn. Bulletin of the Japanese Society of Scientific Fisheries 57:1579-1603.
    Davison I. R., & G. A. Pearson,1996. Stress tolerance in intertidal seaweeds. Journal of Phycology 32:197-211.
    Dong, Y., S. Dong, X. Tian, F. Wang & M. Zhang, 2006. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture 2006, 255:514-521.
    Figueroa, F.L., C. Nyg?rd, N. Ekelund & I. Gómez, 2003. Photobiologicalcharacteristics and photosynthetic UV responses in two Ulva species (Chlorophyta) from southern Spain. Journal of Photochemistry and Photobiology B: Biology 72:35-44.
    Fong, P., K. E. Boyer, J. S. Desmond & J. B. Zedler, 1996. Salinity stress, nitrogen competition, and facilitation: what controls seasonal succession of two opportunistic green macroalgae?. Journal of Experimental Marine Biology and Ecology 206:203-221.
    Grimstad, S. O. & E. Grimanslund, 1993. Effect of different day and night temperature regimes on greenhouse cucumber young plant production, flower bud formation and early yield. Scientia Horticulturae 53:191-204.
    Guillard, R. R. & J. H. Ryther, 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervaceae (Cleve) Gran. Canadian Journal of Microbiology 8:229-239.
    Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemistry and Physiology Pflanzen 167:191-194.
    Jin, Q. & S. Dong 2003. Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense. Journal of Experimental Marine Biology and Ecology 293:41-55.
    Jin, Q., S. Dong & C. Wang, 2005. Allelopathic growth inhibition of Prorocentrum micans (Dinophyta) by Ulva pertusa and Ulva linza (Chlorophyta) in laboratory cultures. European Journal of Phycology 40:31-37.
    Kakinuma, M., Y. Kuno & H. Amano, 2004. Salinity stress responses of a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta). Fisheries Science 70:1177-1179.
    Kakinuma, M., N. Shibahara, H. Ikeda, M. Maegawa & H. Amano,2001. Thermal stress responses of a sterile mutant of Ulva pertusa (Chlorophyta). Fisheries Science 67:287-294.
    Klotke, J., J. Kopka, N. Gatzke & A. G. Heyer, 2004. Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation - evidence for a role of raffinose in cold acclimation. Plant, Cell and Environment 27:1395-1404.
    Konstantinov, A. S., V. V. Zdanovich & D. G. Tikhomirov, 1990. The effect of temperature oscillation on metabolic rate and energetics of young fish. Joural of Ichthyology 29:1019-1027.
    Lartigue, J., A. Neill, B. L. Hayden, J. Pulfer & J. Cebrian, 2003. The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). Aquatic Botany 75:339-350.
    Littler, M. M. 1980. Morphological form and photosynthetic performances of marine macroalgae: tests of a functional/form hypothesis. Botanica Marina 22:161-165.
    Liu, J. & S. Dong, 2001a. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata Var. Liui (Rhodophyta) and Ulva pertusa (Chlorophyta): I. Nitrogen storage under nitrogen enrichment and starvation. Journal of Environmental Sciences 13:318-322.
    Liu, J. & S. Dong, 2001b. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata Var. Liui (Rhodophyta) and Ulva pertusa (Chlorophyta):II. Feedback control of intracellular nitrogen pools on nitrogen uptake. Journal of Environmental Sciences 13:323-7.
    Liu J., S. Dong, X. Liu & S. Ma, 2000. Response of macroalgae Gracilariatenuistipitata var. liui (Rhodophyta) to iron stress. Journal of Applied Phycology 12:605-612.
    Mitchell, R. A. C., D. W. Lawlor & A. T. Young, 1991. Dark respiration of winter wheat crops in relation to temperature and simulated photosynthesis. Annals of Botany 67:7-16.
    Mu, Y., F. Wang, S. Dong, S. Dong & C. Zhu, 2005. Effects of salinity fluctuation in different ranges on intermolt period and growth of juvenile Fenneropenaeus chinensis. Acta Oceanologia sinica 24:1-7.
    Neori, A., M. D. Krom, S. P. Ellner, C. E. Boyd, D. Popper, R. Rabinovitch, P. J. Davison, O. Dvir, D. Zuber, M. Ucho, D. Angel & H. Gordin, 1996. Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units. Aquaculture 141:183-199.
    Raffaelli, D. G., J. A. Raven & L. J. Poole, 1998. Ecological impact of green macroalgal blooms. Oceanography and Marine Biology 36:97-125.
    Shaked, R., K. Rosenfeld & E. Pressman, 2004. The effect of low night temperatures on carbohydrates metabolism in developing pollen grains of pepper in relation to their number and functioning. Scientia Horticulturae 102:29-36.
    Sun, C., J. Mao, B. Bai & Y. Bai, 2000. Studies of enzymology on diurnal change of temperature accelerating the rate of wheat seedling growth. Journal of Jilin Agricultural University 22:30-33 (in Chinese, with English abstract).
    Tan, H., J. Li, & Y. Lei, 1999. A preliminary study on purification of water contaminated by Haliotis dicus hannai lno. Tropic Oceanology 18:20-26.
    Tarutani, K., Y. Niimura & T. Uchida, 2004. Short-term uptake of dissolved organic nitrogen by an axenic strain of Ulva pertusa (Chlorophyceae) using 15N isotopemeasurements. Botanica Marina 47:248-250.
    Taylor, R., R. L. Fletcher, & J. A. Raven, 2001. Preliminary studies on the growth of selected‘green tide’algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Botanica Marina 44:327-336.
    Tian, X. & S. Dong, 2006.The effects of thermal amplitude on the growth of Chinese shrimp Fenneropenaeus chinensis (Osbeck, 1975). Aquaculture 251:516-524.
    Tian, X., S. Dong & F. Wang, 2004. The effects of temperature changes on the oxygen consumption of Chinese shrimp. Journal of Experimental Marine Biology and Ecology 310: 59-72.
    Wang, J., C. Jin, X. Zhang & G. Liu, 2001. Polyculture of experiment Penaeus chinensis with various biomass of Ulva pertusavar. Journal of Fisheries of China 25:32-37 (in Chinese, with English abstract).
    Went, F. W. 1944. Plant growth under controlled conditions. II. Thermoperiodicity in growth and fruiting of the tomato. American Journal of Botany 31:135-149.
    Yemm, E. W. & A. J. Willis, 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal 57:508-514.
    Yin, X., M. J. Kropff & J. Goudriaan, 1996. Differential effects of day and night temperature on development to flowering in rice. Annals of Botany 77:203-213.
    Bredmose, N. & J. Nielsen, (2004). Effects of thermoperiodicity and plant population density on stem and flower elongation, leaf development, and specific fresh weight in single stemmed rose (Rosa hybrida L.) plants. Scientia Horticulturae 100:169-182.
    Cole K. M. & Sheath R. G.., (1990). Biology of the Red Algae. Cambridge University Press, Cambridge.259-275.
    Gavio, B & Fredericq S. (2002) Grateloupia turuturu (Halymeniaceae, Rhodophyta) is the correct name of the non-native species in the Atlantic known as Grateloupia doryphora. Eur. J. phycol.37:349-359.
    Guillard, R. R. & J. H. Ryther, 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervaceae (Cleve) Gran. Canadian Journal of Microbiology 8:229-239.
    Kraft, G.T. (1977). The morphology of Grateloupia intestinalis from New Zealand, with some thoughts on generic criteria within the family Cryptonemiaceae (Rhodophyta). Phycologia, 16:43-51.
    Li G., Benoit F., & Ceustermans N. (2004). Influence of day and night temperature on the growth, development and yield of greenhouse sweet pepper. Journal of Zhejiang University (Agricl & Life Scil), 30(5): 487-491.
    Niu G., Heins R. D., Cameron A. C. & Carlson W. H. (2001). Day and night temperatures, daily light integral, and CO2 enrichment affect growth and flower development of Campanula carpatica‘Blue Clips’. Scientia Horticulturae, 87:93-105.
    Ribera, M.A. & Boudouresque, C.F. (1995). Introduced marine plants, with special reference to macroalgae: mechanisms and impact. In Progress in Phycological Research 11 (Round, F.E. & Chapman, D.J., editors), 217-268. Biopress, Bristol.
    Thresher, R. E. (2000).Key threats from marine bioinvasions: a review of current and future issues. Marine Bioinvasions, First National Conference.24-34
    Villalard-Bohnsack, M. & Harlin, M. (2001). Grateloupia doryphora (Halymeniaceae, Rhodophyta) in Rhode Island waters (USA): geographical expansion, morphological variations and associated algae. Phycologia, 40: 372-380.
    Wang Qiaohan,Dong Shuanglin,Tian Xiangli & Wang Fang. (2007). Effects of circadian rhythms of fluctuating temperature on growth and biochemical composition of Ulva Pertusa. Hydrobiologia ,586:313-319.
    郭赣林,董双林,董云伟,(2006)。温度及其波动对孔石莼生长及光合作用的影响。中国海洋大学学报(自然科学版),36(6),941-945。
    裴鲁青(1983)。浙江带形蜈蚣藻及其生活史的研究。浙江水产学院学报,2(1):7-15
    曾呈奎,吴超元,孙国玉(1957)。温度对海带孢子体的生长和发育的影响。植物学报,6(2):103-130。
    曾呈奎,王素娟,刘思俭等(1984)。海藻栽培学。55-275。
    张义浩,赵盛龙,吴常文(2002)。海洋生物——藻类。浙江大学出版社:杭州,104。
    Beveridge M.C.L.1987.Cage aquaculture. Fishing News Books, Franham. Bird K.T. 1976. Simultaneous assimilation of ammonium and nitrate by Gelidium nudifrons (Gelidiales: Rhodophyta). J. Phycol. 12: 238-241.
    Carmona R., Kraemer G.P. & Yarish C. 2006. Exploring northeast American and asian species of porphyra for use in an integrated finfish-algal aquaculture system. Aquaculture. 252:54-65.
    Conway H. L. 1977. Interactions of inorganic nitrogen in the uptake and assimilation by marine phytoplankton. Mar. Biol. 39:221-232.
    Cuomo V., Merrill J., Palomba I. & Perretti A. 1993. Systematic collection of Ulva and mariculture of Porphyra: biotechnology against eutrophication in the Venice Laggon. Int. J. Environ. Stud.43:141-149.
    Danakusumah, E., S. Kadowaki & H. Hirata, 1991. Effects of coexisting Ulva pertusa on the producton of kuruma prawn. Bulletin of the Japanese Society of Scientific Fisheries 57:1579-1603.
    DeBoer J. A. 1981. Nutrients. In: Lobban C. S. Wynne M. J. (eds). The biology of seaweeds. Blackwell Scientific, Oxford, pp 365-391.
    Hafting J. T. 1999. A novel technique for propagation of Porphyra yezoensis Ueda blades in suspension cultures via monospres. J. Appl Phycol. 11: 361-367.
    Harrison P. J. & Hurd C.L. 2001. Nutrient physiology of seaweeds: application of concepts to aquaculture. Cah. Biol. Mar.42: 71-82.
    Harrison P. J., Druehl L. D., Lloyd K. E. & Thompson P. A. 1986. Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales: Phaeophyta). Mar. Biol. 93: 29-35.
    Hernández I., Martínez-Aragón J. F., Tovar A., Pérez-Lloréns J. L. & Bergara J. J. 2002. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 2. Ammonium. J. Appl. Phycol. 14: 375-384.
    Kraemer G. P. & Yarish C. 1999. A preliminary comparison of the mariculture potential of Porphyra purpurea and Porphyra umbilicalis. J. Appl. Phycol. 11: 473-477.
    Liu, J. & S. Dong, 2001a. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata Var. Liui (Rhodophyta) and Ulva pertusa (Chlorophyta): I. Nitrogen storage under nitrogen enrichment and starvation. Journal of Environmental Sciences 13:318-322.
    Liu, J. & S. Dong, 2001b. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata Var. Liui (Rhodophyta) and Ulva pertusa (Chlorophyta):II. Feedback control of intracellular nitrogen pools on nitrogen uptake. Journal of Environmental Sciences 13:323-7.
    Lobban C. S. & Harrison P. J. 1994. Seaweed ecology and physiology. Cambridge University Press, New York.
    Naldi M. & Wheeler P.A. 1999. Changes in nitrogen pools in Ulva genestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta) under nitrate and ammonium enrichment. J. Phycol. 35: 70-77.
    Nelson S. G. Glen E. P., Conn J., Moore D., Walsh T. & Akutagawa M. 2001.Cultivation of Gracilaria parvispora (Phodophyta) Shrimp-farm effluent ditches and floating cages in Hawaii: a two-phage polyculture system. Aquaculture 193: 239-248.
    Pereira R., Yarish C. & Sousa-Pinto I. 2006. The influence of stocking desity, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica (Bangiales, Thodophyta). Aquaculture, 252: 66-78.
    Ryther J. H., Corwin N., DeBusk T. A. & Williams L. D. 1981. Nitrogen uptake and storage by the red alga Gracilaria tikvahiae (McLachlan, 1979). Aquaculture. 26: 107-115.
    Subandar A., Petrell R. J. & Harrison P. J. 1993. Laminaria culture for reduction of dissolved inorganic nitrogen in salmon farm effluent. J. Appl. Phycol. 5; 455-463。
    Tan, H., J. Li, & Y. Lei, 1999. A preliminary study on purification of water contaminated by Haliotis dicus hannai lno. Tropic Oceanology 18:20-26.
    Twomey L. & Thompson P. 2001.Nutrient limtation of phytoplankton in a seasonally open bar-built estrary: Wilson Inlet, Western Australia. J. Phycol. 37: 16-29.
    Tyler A. C. & McGlathery K. J. 2006. Uptake and release of nitrogen by the macoalgae Gracilaria vermiclophylla (Rhodophyta). J. Phycol. 42: 515-525.
    Wang, J., C. Jin, X. Zhang & G. Liu, 2001. Polyculture of experiment Penaeus chinensis with various biomass of Ulva pertusavar. Journal of Fisheries of China 25:32-37 (in Chinese, with English abstract).
    Wang Qiaohan,Dong Shuanglin,Tian Xiangli & Wang Fang. 2007. Effects of circadian rhythms of fluctuating temperature on growth and biochemical composition of Ulva Pertusa. Hydrobiologia ,586:313-319.
    刘静雯. 2001.细基江蓠繁枝变型和孔石莼的营养代谢及其机制的研究.中国海洋大学学位论文.
    Bradfield, M. & N. Stamp, 2004. Effect of night time temperature on tomato plant defensive chemistry. Journal of Chemical Ecology 30:1713-1721.
    Damonte E, Neyts J., Pujol C. A.,et al. 1994. Polysaccharides as antiviral agents :antiviral activity of Carrageenan[J].Biochem Pharmacol, 47 :2187-2192.
    Davies L. J., Brooking I. R., Catley J. L. & Halligan E. A. 2002. Effects of day/night temperature differential and irradiance on the flower stem quality of Sandersonia aurantiaca. Scientia Horticulturae, 95: 85-98.
    Davison I. R., & Pearson G. A.1996. Stress tolerance in intertidal seaweeds. Journal of Phycology 32:197-211.
    Grimstad, S. O. & Grimanslund E., 1993. Effect of different day and night temperature regimes on greenhouse cucumber young plant production, flower bud formation and early yield. Scientia Horticulturae 53:191-204.
    Lima M E,Carneiro M E,Nascimento A E,et a1.2005. Purification of a lectin from the marine red alga Gracilaria corneaand its effects on the cattle tick Boophilus microplus(Acari:lxodidae).J Agric Food Chem,53(16):6414-6419.
    Liu Y.,Merrow M.,Loros J. Jay J. Dunlap C. 1998. How Temperature Changes Reset a Circadian Oscillator. Science,281:825-829.
    Mitchell, R. A. C., D. W. Lawlor & A. T. Young, 1991. Dark respiration of winter wheat crops in relation to temperature and simulated photosynthesis. Annals of Botany 67:7-16.
    Shaked R., Rosenfeld K. & Pressman E. 2004. The effect of low night temperatureson carbohydrates metabolism in developing pollen grains of pepper in relation to their number and functioning. Scientia Horticulturae, 102: 29-36.
    Went, F. W. 1944. Plant growth under controlled conditions. II. Thermoperiodicity in growth and fruiting of the tomato. American Journal of Botany 31:135-149.
    陈华,钟红茂,范洁伟,曾海心. 2007.海藻中活性物质的心血管药理作用研究进展.中国食物与营养. 10: 51-53
    邓志峰,纪明侯.1995.龙须菜和扁江蓠多糖的组成及其抗肿瘤效果.海洋与湖沼.26: 575-581.
    刘静雯. 2001.细基江蓠繁枝变型和孔石莼的营养代谢及其机制的研究.中国海洋大学学位论文.
    刘思俭.2001.我国江蓠的种类和人工栽培.湛江海洋大学学报.21:71-79.
    孙存华,毛健民,白宝璋,白岩.2000.昼夜变温促进小麦幼苗生长的酶学研究.吉林农业大学学报. 22:30-33.
    谢苗,钟剑霞,甘纯玑. 2001.海藻多糖的药用功能与展望[J].中国药学杂志. 36(8): 512-515.
    曾呈奎,王素娟,刘思俭等. 1984.海藻栽培学. 225-254.
    张昆,张全斌,李智恩,徐祖洪,张学成. 2006.龙须菜四分孢子体和雌配子体多糖的比较研究.中国海洋大学学报(自然科学版).36:121-125.
    Bates, L. S., Waldren R. P., Teare I. D., 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207.
    Beach K. S., Smith C. M., 1997. Ecophysiology of a tropical rhodophyte III: Recovery from emersion stresses in Ahnfeltiopsis concinna (J. Ag.) Silva et DeCew. J. Exp. Mar. Biol. Ecol. 211:151-167.
    Bradford, M.M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principles of protein-dye binding. Anal. Biochem. 72:248-254.
    Davison I. R., Pearson G. A., 1996. Stress tolerance in intertidal seaweeds. J. Phycol. 32:197-211.
    Gao K., Aruga Y., 1987. Preliminary studies on the photosynthesis and respiration of Porphyra yezoensis under emersed condition. J. Tokyo Univ. of Fish. 47:51-65.
    Gao K., Ji Y., Aruga Y., 1999. Relationship of CO2 concentrations to photosynthesis of intertidal macrioalgae during emersion. Hydrobiologia 398/399:355-359.
    Gao K., McKinley K. R., 1994. Use of macroalgae for marine biomass production and CO2 remediation: a review. J. Appl. Phycol. 6:45-60.
    Guillard R. R., Ryther J. H., 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervaceae (Cleve) Gran. Can. J. Microbiol. 8:229-239.
    Hurd C. L. 2000. Water motion, marine macroalgae physiology, and production. J. Phycol. 36:453-472.
    Jeffrey S. W., Humphrey G. F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167:191-194.
    Jesús, Niell F. X., 2000. Carbon dioxide uptake by Bostrychia scorpioides (Rhodophyceae) under emersed conditions, Eur. J. Phycol. 35:45-51.
    Ji Y., Tanaka J., 2002. Effect of desiccation on the photosynthesis of seaweeds from the intertidal zone in Honshu, Jap. Phycol. Res. 50:145-153.
    Johnston A. M., Raven J. A., 1986. The analysis of photosynthesis in air and water ofAscophyllum nodosum (L.) Le Jol. Oecologia 69:288-295.
    Johnston A. M., Maberly S. C., Raven J. A., 1992. The acquistion of inorganic carbon by four red macroalgae. Oecologia 92:317-326.
    Kawamitsu Y., Driscoll T., Boyer J. S., 2000. Photosynthesis during desiccation in an intertidal alga and a land plant. Plant Cell Physiol. 41:344-353.
    Lipkin Y., Beer S., Eshel A., 1993. The ability of Porphyra linearis (Rhodophyta) to tolerate prolonged periods of desiccation. Bot. Mar. 36:517-523.
    Maberly S. C. 1990. Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J. Phycol. 26:439-449.
    Madsen T. V., Maberly S. C., 1990. A comparison of air and water as environments for photosynthesis by the intertidal alga Fucus spiralis ( Phaeophyra). J. Phycol. 26:24-30.
    Mercado J. M., Gordillo F. J. L., Figueroa F. L., Niell F. X., 1998. External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. J. Exp. Mar. Biol. Ecol. 211:209-220.
    Oates B. R. 1986. Components of photosynthesis in the intertidal saccate alga Halosaccion americanum (Rhodophyta, Palmeriales). J. Phycol. 22:217-223.
    Pearson G., Serrao E. A., Cancela M. L., 2001. Suppression subtractive hybridization for studying gene expression during aerial exposure and desiccation in fucoid alga. Eur. J. Phycol. 36:359-366.
    Pena E. J., Zingmark R., Nietch C., 1999. Comparative photosynthesis of two species of intertidal epiphytic macroalgae on mangrove roots during submersion and emersion. J. Phycol. 35:1206-1214.
    Tajiri S., Aruga Y., 1984. Effect of emersion on the growth and photosynthesis of the Porphyra yezoensis thallus. Jap. J. Phycol. 32:134-146.
    Yemm E. W., Willis A. J., 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal 57:508-514.
    Zou D., Gao K., 2002. Effects of desiccation and CO2 concentrations on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China. Eur. J. Phycol. 37:587-592.
    Zou D., Gao K., 2003a. Photosynthetic responses to light and temperature in Ulva lactuca under aquatic and aerial states. Chinese Bull. Bot. 20:713-722.
    Zou D., Gao K., 2003b. Some physiological characteristics of photosynthesis in intertidal macroalgae under emersed state during low tide. Plant Physiol. Commun. 39:525-530 (in Chinese, with English abstract).
    Zou D., Gao K., 2005. Ecophysiological characteristics of four intertidal marine macroalgae during emersion along Shantou coast of China, with a special reference to the relationship of photosynthesis and CO2. Acta Oceanol. Sin. 24:105-113.
    Bates L. S.,Waldren R.P.,Teare I. D.. Rapid determination of free proline for water-stress studies. Plant and Soil,1973,39:205-207.
    Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical Biochemistry,1976,72:248-254.
    Christopher S.,Paul J.. Seaweed ecology and physiology. Press Syndicate of the University of Cambridge,1994:210-240.
    Davison I R, Pearson G A. Stress tolerance in intertidal seaweeds. Journal of Phycology,1996,32:197-211.
    Dong Yunwei,Dong Shuanglin,Tian Xiangli,Wang Fang,Zhang Meizhao. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2006,255:514-521.
    Fong P.,Boyer K. E.,Desmond J. S.. Salinity stress,nitrogen competition,and facilitation:what controls seasonal succession of two opportunistic green macroalgae? Journal of Experimental Marine Biology and Ecology,1996,206:203-221.
    Jeffrey S.W., Humphrey G. F. New spectrophotometric equations for determining chlorophylls a, b,c1 and c2 in higher plants, algae,and natural phytoplankton. Biochem Physiol Pflanz BPP,1975,167:191-194.
    Jin Qiu,Dong Shuanglin. Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense. Journal of Experimental Marine Biology and Ecology,2003,293:41-55.
    Jin, Qiu,Dong Shuanglin,Wang Changyun. Allelopathic growth inhibition of Prorocentrum micans (Dinophyta) by Ulva pertusa and Ulva linza (Chlorophyta) in laboratory cultures. European Journal of Phycology,2005,40:31-37.
    Liu Jingwen,Dong Shuanglin. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata var. Liui (Rhodophyta) and Ulva pertusa (Chlorophyta):I. Nitrogen storage under nitrogen enrichment and starvation. Journal of Environmental Sciences,2001a,13:318-322.
    Liu Jingwen,Dong Shuanglin. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata var. Liui (Rhodophyta) and Ulva pertusa (Chlorophyta):II. Feedback control of intracellular nitrogen pools on nitrogen uptake. Journal of Environmental Sciences,2001b,13:323-327.
    Liu Jingwen,Dong Shuanglin,Liu Xiaoyun,Ma Shen. Response of macroalgae Gracilaria tenuistipitata var. liui (Rhodophyta) to iron stress. Journal of Applied Phycology,2000,12:605-612.
    Martins I.,Oliveira J.M.,Flindt M.R.. The effect of salinity on the growth rate of the macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego estuary (west Portugal). Acta Oecology,1999,20:259-265.
    Mu Yingchun,Wang Fang,Dong Shuanglin,Dong Shaoshuai,Zhu Changbo. Effects of salinity fluctuation in different ranges on intermolt period and growth of juvenile Fenneropenaeus chinensis. Acta Oceanologia sinica,2005,24:1-7.
    Tian Xiangli,Dong Shuanglin. The effects of thermal amplitude on the growth of Chinese shrimp Fenneropenaeus chinensis (Osbeck, 1975). Aquaculture,2006,251:516-524.
    Wang Qiaohan,Dong Shuanglin,Tian Xiangli,Wang Fang. Effects of circadian rhythms of fluctuating temperature on growth and biochemical composition of Ulva Pertusa. Hydrobiologia 2007,586:313-319
    Xia Jianrong,Li Yongjun,Zhou Dinghui. Effects of salinity stress on PS II in Ulva lactuca as probed by chlorophyll fluorescence measurements. Aquatic Botany,2004,80:129-137.
    Yemm E.W.,Willis A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal,1954,57:508-514.
    赖平玉.紫菜固定桩悬浮式栽培技术.中国水产,2006,7:49-50.
    赵素达,董树刚,吴以平,单俊伟.盐胁迫对孔石莼的生理生化影响.海洋科学,2000,7:52-55.
    Anette Küster,Ralf Schaible,Hendrik Schubert. Light acclimation of photosynthesis in three charophyte species[J]. Aquatic Botany,2004,79:111-124.
    Bates L. S.,Waldren R.P.,Teare I. D.. Rapid determination of free proline for water-stress studies[J]. Plant and Soil,1973,39:205-207.
    Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding[J]. Analytical Biochemistry,1976,72:248-254.
    Breeman A. M.,Gerbaud A. Ecology and distribution of the subtidal red alga Acrosymphyton purpuriferum (J. AG.) Sj?st. (Rhodophyceae, Cryptonemiales) [J]. Aquatic Botany,11:143-146.
    Darley W. M. Algae Biology:a physiological approach (basic microbiology Volume 9)[M]. Blackwell Scientific Publications,Oxford London Edinburgh,Boston Melbourne. pp:92-98.
    Davison I R, Pearson G A. Stress tolerance in intertidal seaweeds[J]. Journal of Phycology,1996,32:197-211.
    Duarte P.. A mechanistic model of the effects of light and temperature on algal primary productivity[J]. Ecological Modelling,1995,82: 151-160.
    Guillard R.R.L,Ryther J.H. Studies on marine plankton diatoms:I. Cyclotella nana (Hustedt) and Detonula confervaceae (Cleve) [J]. Canadian Journal of Microbiology,1962,8:229-239.
    Hanisak M D. The nitrogen relationships of marine macroalgae [A]. IN:Carpenter E J and Capone D G(Eds),Nitrogen in the Marine Environment [M]. AcademicPress Inc.,1983.
    Harrison W.Cz,Platt T.,Lewis M.R. F-ratio and its relationship to ambient nitrate concentration in coastal waters[J]. Journal of Plankton Research,1987,9:235-248.
    Jeffrey S.W., Humphrey G. F. New spectrophotometric equations for determiningchlorophylls a , b , c1 and c2 in higher plants , algae , and natural phytoplankton[J]. Biochem Physiol Pflanz BPP,1975,167:191-194.
    Jin Qiu,Dong Shuanglin. Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense[J]. Journal of Experimental Marine Biology and Ecology,2003,293:41-55.
    Jin Qiu,Dong Shuanglin,Wang Changyun. Allelopathic growth inhibition of Prorocentrum micans (Dinophyta) by Ulva pertusa and Ulva linza (Chlorophyta) in laboratory cultures[J]. European Journal of Phycology,2005,40:31-37.
    Liu Jingwen,Dong Shuanglin. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata Var. Liui (Rhodophyta) and Ulva pertusa (Chlorophyta):I. Nitrogen storage under nitrogen enrichment and starvation[J]. Journal of Environmental Sciences,2001a,13:318-322.
    Liu Jingwen,Dong Shuanglin. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata Var. Liui (Rhodophyta) and Ulva pertusa (Chlorophyta):II. Feedback control of intracellular nitrogen pools on nitrogen uptake[J]. Journal of Environmental Sciences,2001b,13:323-327.
    Liu Jingwen,Dong Shuanglin,Liu Xiaoyun,Ma Shen. Response of macroalgae Gracilaria tenuistipitata var. liui (Rhodophyta) to iron stress[J]. Journal of Applied Phycology,2000,12:605-612.
    Lopez-Figueroa F.,Niell F.X. Red-light and blue-light photoreceptors controlling chlorophyll a synthesis in the red alga Porphyra umbilicalis and in the green alga Ulva rigida[J]. Physiol. Plant,1989,76:391-397.
    McGlathery KJ. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum[J]. Journal of Phycology,1996,31:393-401.
    Nathalie Korbee,Félix L. Figueroa,JoséAguilera. Effect of light quality on the accumulation of photosynthetic pigments,proteins and mycosporine-like amino acids in the red alga Porphyra leucosticte (Bangiales, Phodophyta) [J]. Journal of Photochemistry and Photobiology B:Bilolgy,2005,80:71-78.
    Yemm E.W.,Willis A.J. The estimation of carbohydrates in plant extracts by anthrone[J]. Biochemical Journal,1954,57:508-514.
    郭羽丰,段舜山,李爱芬,刘振乾,徐宁.四裂藻在光限制胁迫下的超补偿生长响应[J].生态科学,2004,23:5-8.
    李文权,黄贤芒. 4种海洋单胞藻生化组成的环境因子效应研究.海洋学报,1999,21:59-65.
    刘长发,张泽宇,雷衍之.盐度、光照和营养盐对孔石莼光合作用的影响[J].生态学报,2001,21:795-798.
    刘静雯,董双林.光照和温度对细基江蓠繁枝变型的生长及生化组成的影响[J]. 青岛海洋大学学报,2001,31:332-338.
    刘宁宁,段舜山.蛋白核小球藻在光胁迫下的超补偿现象[J].生态科学,2002,21:053-054.
    王吉桥,靳翠丽,张欣,刘革利.不同密度的石莼与中国对虾的混养实验. [J]水产学报,2001,25:32-37.
    王伟,林均民,金德祥.藻类的光控发育[J].植物学通报,1998,15:31-39.
    庄树宏,Hendrik Sven.光强和光质对底栖藻类群落影响Ⅱ.群落和种群的动态和适应模式[J].生态学报,2001,21: 2057-2066.
    Bates, L. S.,Waldren R. P.,Teare I. D.. Rapid determination of free proline for water-stress studies. Plant and Soil,1973,39:205-207.
    Bradford, M.M.. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical Biochemistry,1976,72:248-254.
    Chesson P. Multispecies competition in variable environments. Theoretical Population Biology,1994,45:227-276.
    Cosper E. Influence of light intensity on diel variations in rates of growth, respiration and organic release of a marine diatom: comparison of diurnally constant and fluctuating light. Journal of Plankton Research,1982,4:705-724.
    Crosthwaite S.K.,Dunlap J.C.,Loros J.J.. Neurospora wc-1 and wc-2: transcription,photoresponses,and the origins of circadian rhythmicity. Science,1997,276:763–769.
    Dennison W.C.,Alberte R.S. Role of daily light period in the depth distribution of Zostera marina (eelgrass). Mar. Ecol. Prog. Ser.,1985,25:51-61.
    Dennison, W.C.,Marshall, G.J.,Wigand, C. Effect of“brown tide”shading on eelgrass (Zostera marina L.) distributions. In: Cosper, E.M., Carpenter, E.J., Bricelj, V.M. (Eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Lecture Notes on Coastal and Estuarine Studies. Berlin:Springer-Verlag,1989,675–692.
    Dennison W.C.,Orth R.J.,Moore K.A.,Stevenson J.C.,Carter V.,Kollar S.,Bergstrom P.W.,Batiuk R.A. Assessing water quality with submersed aquatic vegetation. Bioscience,1993,43:86-94.
    Elena Litchman. Growth rates of phytoplankton under fluctuating light,2000,44:223-235
    Ferris J.M.,Chirstian R. Aquatic primary production in relation to microalgal responses to changing light. Aquatic Sciences,1991,53:187-217.
    Gibson C.E. Growth rate, maintenance energy and pigmentation of planktonic Cyanophyta during one-hour light:dark cycles. British Phycological Journal,1985,20:155-161.
    Guillard, R. R., Ryther J. H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervaceae (Cleve) Gran. Canadian Journal of Microbiology,1962,8:229-239
    Ibelings B.W.,Kroon B.M.A.,Mur L.R. Acclimation of photosystemⅡin a cyanobacterium and a eukaryotic green alga to high and fluctuating photosynthetic photo flux densities, simulating light regimes induced by mixing in lakes. New Phytologist,1994,128:407-424.
    Jeffrey, S. W.,Humphrey G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemistry and Physiology Pflanzen,1975,167:191-194.
    Kromkamp J.,Limbeek M. Effect of short-term variation in irradiance on light harvesting and photosynthesis of the marine diatom Skeletonema costatum: a laboratory study simulating vertical mixing. Journal of General Microbiology,1993,139:2277-2284.
    Kroon B.M.A.,Ibelings B.W.,Mur L.R. The effect of dynamic light regimes on Chlorella. I. Pigments and cross sections. Hydrobilogia,1992,238:71-78.
    Mallin M.A.,Paerl H.W. Effects of variable irradiance on phytoplankton productivity in shallow estuaries. Limnology and Oceanography,1992,37:54-62.
    Marra,J. Phytoplankton photosynthetic response to vertical movement in mixed layer. Marine Biology,1978,46:203-208.
    Millar A.J.. Light responses of a plastic plant. Nature Genetics,2001,29:357-358.
    Myers M.P.,Wager-Smith K.,Rothenfluh-Hilfiker A.,Young M.W.. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science,1996,271:1736–1740.
    Nicklisch A. Growth and light absorption of some planktonic cyanobacteria, diatoms and Chlorophyceae under simulated natural light fluctuations. Journal of Plankton Research,1998,20:105-119.
    Nisbet R.M.,Gurney W.S.C.. Modelling Fluctuating Populations. Wiley, New York, 1982.
    Quéguiner B. , Legendre L. Phytoplankton photosynthetic adaptation to high frequency light fluctuations simulating those induced by sea surface waves. Marine Biology,1986,90:483-491.
    Yemm, E. W., Willis A. J. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal,1954,57:508-514.
    Yoder J.A.,Bishop S.S. Effects of mixing-induced irradiance fluctuations on photosynthesis of natural assemblages of coastal phytoplankton. Marine Biology,1985,90:87-93.
    高荣孚,张鸿明.植物光调控的研究进展.北京林业大学学报,2002,24:235~243.
    Bates, L. S., R. P. Waldren & I. D. Teare, 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39:205-207.
    Bradfield, M. & N. Stamp, 2004. Effect of nighttime temperature on tomato plant defensive chemistry. Journal of Chemical Ecology 30:1713-1721.
    Davison I. R., & G. A. Pearson,1996. Stress tolerance in intertidal seaweeds. Journal of Phycology 32:197-211.
    Garner W W,Allard H A.. Effect of relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric. Res.,1920,18:553~606.
    Garner W W,Allard H A. Further studies in photoperiodism, the response of the plant to relative length of day and night. J Agric. Res,1923,23:871-920.
    Guillard, R. R. & J. H. Ryther, 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervaceae (Cleve) Gran. Canadian Journal of Microbiology 8:229-239
    Hanisak M D. The nitrogen relationships of marine macroalgae [A]. IN:Carpenter E J and Capone D G(Eds),Nitrogen in the Marine Environment [M]. AcademicPress Inc.,1983.
    Harrison W.Cz,Platt T.,Lewis M.R. F-ratio and its relationship to ambient nitrate concentration in coastal waters[J]. Journal of Plankton Research,1987,9:235-248.
    Jeffrey, S. W. & G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemistry and Physiology Pflanzen 167:191-194.
    Jin Qiu,Dong Shuanglin. Comparative studies on the allelopathic effects of two different strains of Ulva pertusa on Heterosigma akashiwo and Alexandrium tamarense[J]. Journal of Experimental Marine Biology and Ecology,2003,293:41-55.
    Jin, Qiu,Dong Shuanglin,Wang Changyun. Allelopathic growth inhibition ofProrocentrum micans (Dinophyta) by Ulva pertusa and Ulva linza (Chlorophyta) in laboratory cultures[J]. European Journal of Phycology,2005,40:31-37.
    Klotke, J., J. Kopka, N. Gatzke & A. G. Heyer, 2004. Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation - evidence for a role of raffinose in cold acclimation. Plant, Cell and Environment 27:1395-1404.
    Liu Jingwen,Dong Shuanglin. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata Var. Liui (Rhodophyta) and Ulva pertusa (Chlorophyta):I. Nitrogen storage under nitrogen enrichment and starvation[J]. Journal of Environmental Sciences,2001a,13:318-322.
    Liu Jingwen,Dong Shuanglin. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata Var. Liui (Rhodophyta) and Ulva pertusa (Chlorophyta):II. Feedback control of intracellular nitrogen pools on nitrogen uptake[J]. Journal of Environmental Sciences,2001b,13:323-327.
    Liu Jingwen,Dong Shuanglin,Liu Xiaoyun,Ma Shen. Response of macroalgae Gracilaria tenuistipitata var. liui (Rhodophyta) to iron stress[J]. Journal of Applied Phycology,2000,12:605-612.
    Lopez-Figueroa F.,Niell F.X. Red-light and blue-light photoreceptors controlling chlorophyll a synthesis in the red alga Porphyra umbilicalis and in the green alga Ulva rigida[J]. Physiol. Plant,1989,76:391-397.
    Poulet S A.,Martin-Jezequel U. Relationship between dissolved free amino acids, chemical composition and growth of the marine diatom Chaetoceros debile. Mar. Biol.,1983,17:93-100.
    Price, L. L.,K. Yin, Harrison P.J. Influence of continuous light and L:D cycles on the growth and chemical composition of Prymnesiophyceae including coccolithophores. Journal of Experimental Marine Biology and Ecology,1998,223:223–234.
    Yemm, E. W. & A. J. Willis, 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal 57:508-514.
    Yin, X., M. J. Kropff & J. Goudriaan, 1996. Differential effects of day and nighttemperature on development to flowering in rice. Annals of Botany 77:203-213.
    李文权,黄贤芒. 4种海洋单胞藻生化组成的环境因子效应研究.海洋学报,1999,21:59-65.
    刘静雯,董双林.光照和温度对细基江蓠繁枝变型的生长及生化组成的影响[J]. 青岛海洋大学学报,2001,31:332-338.
    王大志,黄世玉,程兆第. 2004.光暗周期对3种海洋浮游硅藻胞外多糖生产的影响。厦门大学学报(自然科学版),43:243-248
    杨志攀,周新安.大都光周期遗传育种研究进展.中国油料作物学报,1999,21:67-73.
    Bates, L. S., Waldren R. P.,Teare I. D. Rapid determination of free proline for water-stress studies. Plant and Soil,1973,39:205-207.
    Biswal V.C.,Biswal B. Photocontrol of leaf senescence. Photochem. Photobiol.,1984,39:875-879.
    Bradford, M.M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principles of protein-dye binding. Analytical Biochemistry,1976,72:248-254.
    Figueroa F.L. Effects of light quality on nitrate reductase and glutamine synthetase activities in the red alga Porphyra leucosticte Thur. in Le Jol. and other macroalgae. Sci. Mar.,1996,60:163-170.
    Figueroa F.L.,Aguilera J.,Jiménez C.,Vergara J.J.,Robles M.D.,Niell F.X. Growth, pigment synthesis and nitrogen assimilation in the red alga Porphyra sp. (Bangiales, Rhodophyta) under blue and red light. Sci. Mar.,1995,59:9-20.
    Guillard, R. R.,Ryther J. H. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervaceae (Cleve) Gran. Canadian Journal of Microbiology,1963,8:229-239
    Jean-Luc Mouget,Philippe Rosa,Gérard Tremblin. Acclimation of Haslea ostrearia to light of different spectral qualities-confirmation of‘chromatic adaptation’in diatoms. Journal of Photochemistry and Photobiology B: Biology,2004,75:1-11.
    Jeffrey, S. W.,Humphrey G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemistry and Physiology Pflanzen,1975,167:191-194.
    Jürgen Marquardt,Alexander M. Rehm. Porphyridium purpureum (Rhodophyta) from red and green light: characterization of photosystem I and determination of in situ fluorescence spectra of the photosystems. Journal of Photochemistry and Photobiology B: Biology,1995,30:49-56.Kwesiga F,Grace J. The role of the red/far-red ratio in the response of tropical tree seedlings to shade. Annals of Botany,1986,57:283-290.
    Kull O.,Kruijt B. Acclimation of photosynthesis to light: a mechanistic approach. Funct. Ecol.,1999,13:24-36.
    Larkum A.W.D.,Weyrauch S.K. Photosynthetic action spectra and light-harvesting in Griffithsia monilis (Rhodophyta). Photochem. Photobiol.,1977,25:65-72.
    Ley A.C.,Butler W.L. The distribution of excitation between photosystem I and photosystem II in Porphyridium cruentum, in S. Miyachi, S. Katoh, Y. Fujita and K. Shibata (eds.). Photosynthetic Organelles, Special Edition of Plant Cell Physiology, Japanese Society of Plant Physiologists, Tokyo,1977,33-46.
    Li S.,Rajapakse N.C.,Young R.E.,Oi R. Growth responses of chrysanthemum and bell pepper transplants to photoselective plastic films. Sci. Hort.,2000,84:215-225.
    Lichtenthaler H.K.,Wellburn A.R. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans.,1983,603:591–592.
    Murata N. Control of excitation transfer in photosynthesis. I. Light induced change in chlorophyll a fluorescence in Porphyridium cruentum. Biochim. Biophys. Acta,1969,172:242-251.
    Ono K.,Nishi Y.,Watanabe A. I. Terashima, Possible mechanisms of adaptive leaf senescence. Plant Biol.,2001,3:234–243.
    Rüdiger W.,López-Figueroa F. Photoreceptors in algae. Photochem. Photobiol.,1992,55:949-954.
    Wang Fang,Dong Shuanglin,Huang Guoqiang,Wu Lixin,Tian Xiangli,Ma Shen. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture,2003,228:1-4.
    Yemm, E. W.,Willis A. J. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal,1954,57:508-514.
    You Kui,Yang Hongsheng,Liu Ying,Liu Shilin,Zhou Yi,Zhang Tao. Effects ofdifferent light sources and illumination methods on growth and body color of shrimp Litopenaeus vannamei. Aquaculture,2006,252:2-4.
    陈逢宕.光的波长对光合作用的影响.北京农学院学报,1996,1:125~128.
    邵玲.光对植物光合作用的调节.西江大学学报,1999,4:72~76.
    陶汉之.茶树光合作用与光质的关系.植物生理学通讯,1989,1:19~23.
    武维华.植物生理学.北京:科学出版社,2003,372~373.
    徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响.中国农业科学,2005,38:369-375.
    徐师华,王修兰,吴毅明.不同光质(光谱)对作物生长发育的影响.生态农业研究,2000,8:18-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700