飞秒激光三维光盘存储系统及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络和多媒体技术的发展,需要存储的数字化信息以惊人的速度增长,如此大的信息量需要大容量的存储设备来支撑。在国家自然科学基金(No.50275140,No.50335050)及“863”项目(MEMS 2003AA404050)的资助下,本论文结合双光子三维共焦荧光存储技术与现有光盘存储伺服技术,提出了飞秒激光三维光盘存储系统设计方案,搭建了一套双光子三维光盘存储实验系统,并对相关问题进行了理论和实验研究。
     首先,通过对目前国际上研究的多种多层盘片伺服方案的分析,结合在像差校正中应用的双元透镜控制技术,设计了三维光盘存储系统变焦选层方案,并详细分析了系统跟踪和选层过程中,音圈电机的致动曲线。考虑到变焦选层方案控制及光学系统的复杂性,提出了双光头异侧方案,作为本论文飞秒激光三维光盘存储系统的实现模型,并分析计算了由于制造、装配原因导致的双光头轴向、径向同步误差。提出共焦模块光强伺服控制技术,并利用光致漂白材料存储结果的标定行数据进行matlab模拟仿真。
     其次,利用共焦荧光显微原理及其三维光学传递函数,分析了本实验系统共焦模块参数对单、双光子共焦荧光读取分辨率的影响。单光子共焦荧光系统共焦小孔直径10.4μm时,层析能力比采用208.4μm共焦小孔提高了3.6倍。双光子共焦荧光系统共焦小孔直径7.8μm时,层析能力比采用156.7μm共焦小孔提高了1.56倍。离焦量大时,双光子共焦荧光系统比单光子共焦荧光系统有更好的轴向响应。通过已知大小荧光物双光子共焦荧光成像实验,验证了共焦小孔直径与系统横向轴向分辨率的反比关系。
     然后,完成飞秒激光三维光盘存储系统伺服模块的硬件设计和制作,实现伺服模块功能,完成共焦模块读写光路的设计和搭建,完成共焦模块同步控制电路的设计和制作。根据实测的双光头同步控制电路聚焦输入输出信号,辨识同步控制电路聚焦控制模型,仿真曲线和实测结果吻合较好,二者符合度为78.0259%。搭建双光头同步聚焦误差检测实验装置,检测、计算各激振频率下的同步聚焦误差幅值。选择二苯乙烯类衍生物光致漂白材料旋涂在DVD盘片上进行双光头原理实验,获得初步的实验结果。
     最后,改建了基于平移台的存储实验系统,进行飞秒激光三维光存储材料研究。在光致变色材料(二芳基乙烯类衍生物)掺杂的PMMA膜中存储两层数据,点间距4μm,层间距8μm。在光致漂白材料(二苯乙烯类衍生物BPSBP)掺杂的PMMA聚合物膜中实现三层信息存储,点间距4μm,层间距15μm。在微爆材料Sm(DBM)_3Phen/PMMA样品中进行了九层微爆信息存储,点间距为4μm,层间距为8μm。通过三种材料光化学物理特性及三维光存储实验研究,本论文的飞秒激光三维光盘存储系统选择光致漂白材料和双光子共焦荧光读取方式。
     本论文对飞秒激光三维光盘存储系统进行理论和实验研究,并对实用化过程中的相关问题作了讨论和展望,为三维光存储技术产品化打下了一定基础。
The need for data storage is explosive, triggered by the development of multimedia and electronic communication networks. Mass storage devices are necessary to fulfill the increasing demands.
     A femtosecond laser three-dimensional disc storage system has been designed based on servo technology used in current optical disc storage devices and two-photon three-dimensional confocal fluorescent data storage. We built the system and researched on related theoretical and experimental issues. This project was supported by National Nature Science Foundation of China (No. 50275140 & No. 50335050) and "863" project (MEMS2003AA404-050).
     Firstly, we analyzed several servo methods of multi-layer disc storage system. Consulted the two-element lens technology used in compensation for spherical aberration, a varifocal layer-selection technology in three-dimensional storage system was proposed, and the movement of voice coil motor in following and layer-selection process was investigated. Considering the complexity of control and optical system in varifocal layer-selection method, we brought forward a two-pick-up both-side method as implementation scheme of the femtosecond laser three-dimensional disc storage system and studied the axial and radial synchronous errors between two pick-ups because of manufacture and assemblage. We proposed the fluorescence intensity servo technology used in confocal module and simulated it in Matlab with calibration data obtained from photobleaching material storage experiment.
     Secondly, according to the principle of confocal fluorescent microscope and its three-dimensional optical transfer function, we analyzed the connection between parameters in confocal module and the resolution of sigle-photon and two-photon confocal fluorescent system. The depth-discriminating ability of single-photon confocal fluorescent system with 10.4μm pinhole diameter is 3.6 times higher than that with 208.4μm pinhole diameter. The depth-discriminating ability of two-photon confocal fluorescent system with 7.8μm pinhole diameter is 1.56 times higher than that with 156.7μm pinhole diameter. Also, the two-photon confocal fluorescent system has better axial response than single-photon confocal fluorescent system when defocusing amount is large. We carried out two-photon confocal fluorescent imaging experiment with given-size fluorescent object, which verified the inverse relation between detector size and system resolution.
     Thirdly, we designed and fabricated the servo module in femtosecond laser three-dimensional disc storage system, and realized its servo function. The recording optical system and two-pick-up synchronous control circuit in confocal module were also completed. The synchronous control circuit was simulated by using its focusing input and output signal. The simulation result and measured data fitted well (fit=78.0259%). We built two-pick-up synchronous focusing error detection device and measured synchronous focusing errors under different excited frequencies. The storage experiment with photobleaching material (diphenylethylene) spin coating on DVD disc was executed, and preliminary result has been achieved.
     Finally, rebuilding original storage systems based on platform, we carried out three-dimensional optical storage experiments with femtosecond laser. Two-layer optical data storage in PMMA film doped with photochromic material (diarylethene derivative) was achieved. The distance between two bits in each layer and the two adjacent layers interval were 4μm and 8μm respectively. Three-layer optical data storage in PMMA film doped with photobleaching material (diphenylethylene BPSBP) was achieved. The distance between two bits in each layer and the two adjacent layers interval were 4μm and 15μm respectively. Nine-layer microexplosion data storage in Sm(DBM)3Phen/PMMA was achieved. The distance between two bits in each layer was 4μm and the two adjacent layers interval was 8μm. According to storage research on photochemical and photophysical properties of three kinds of materiels, photobleaching material and two-photon confocal fluorescent storage method were chosen in our femtosecond laser three-dimensional disc storage system.
     In conclusion, we implemented theoretical and experimental research on femtosecond laser three dimensional disc storage system. Meanwhile we discuss and look forward to the related projects in practical process. The work in this thesis is helpful for three-dimensional optical storage devices coming into mass storage market.
引文
[1] Arthur W. Burks AND Edward S. Davidson, Introduction to "The ENIAC", Proc. Of the IEEE, Vol. 87(6) :1028-1030, 1999.
    [2] Emerson W. Pugh, Ferrite core memories that shaped an industry, Proc. Of the IEEE. Vol. MAG-20(5):1499-1502, 1984.
    [3] Albert S. Hoagland, History of magnetic disk storage based on Perpendicular magnetic recording, Proc. Of the IEEE. Vol. 39(4): 1871-1875, 2003.
    [4] 徐端颐,光盘存储系统设计原理,国防工业出版社,2000。
    [5] 王萌君,信息存储的现状和未来发展,物理学进展,Vol.17(2):150-158,1997。
    [6] 张旭苹,信息存储技术,电子工业出版社,2001。
    [7] 干福熹,数字光盘存储技术,科学出版社,1998。
    [8] 徐端颐,高密度光盘数据存储,清华大学出版社,2003。
    [9] 唐济波,相变光盘的写入和擦除原理,物理与工程,Vol.11(1):47-49,2001。
    [10] 佳一,DVD视盘系统的记录数据处理和恢复,电声技术,Vol.5:9-15,2000。
    [11] 孙利群,章恩耀,王佳等,基于近场光学超衍射分辨力的高密度光存储,光电子激光,Vol.12(6):646-652,2001。
    [12] 魏劲松,张约品,阮昊等,近场光存储及其研究进展,物理学进展,Vol.22(2):188-197,2002。
    [13] 洪涛,王佳,李达成,近场光学在高密度存储中的应用,光学技术,Vol.27(3):255-259,2001。
    [14] D. W. Pohl, W. Denk, M. Lenz, Optical Stethoscopy: Image recording with resolution λ/20 [J], Appl. Phys, Lett., Vol.44(7):651-653, 1984.
    [15] Ghislain L. P., Elings V. B., Near-field photolithography with a solid immersion lens, Appl. Phys. Lett., Vol. 74(4):501-503, 1999.
    [16] Wei-Chih Liu, Cheng-Yen Wen, Kuei-Hsien Chen, et. al., Near-field images of the AgOx-type super-resolution near-field structure, Appl. Phys. Lett., Vol. 78(6): 685-687, 2001.
    [17] H J Mamin, S Chiang, H Birk, et al. Gold deposition from a scanning tunneling microscope tip [J]. J. Vac. Sci. Technology, Vol. B(9): 1398-1402. 1991.
    [18] Betzig E,Trautman J K,Wolfe R,et al. Near-field magneto-optics and high density data storage. Appl Phys Lett, Vol.61 (2): 142-144,1992.
    [19] Imura R, Shintani T, Nakamura K, Hosaka S. Writing and observation of small magnetic domains with scanning near-field optical microscope[C]. Proc. 3rd Symp. Physics of Magnetic Materials, ISPMM, 511-514. 1995.
    [20] S. Hosaka, T Shintani, M Miyamoto, et al. Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode[J]. Jpn. J. Appl. Phys, Vol.35(1B): 443-447,1996.
    [21] A Partovi, D Peale, M Wuttig, et al. High-power laser light source for near-field optics and its application to high-density optical data storage[J]. Appl. Phys. Lett, Vol. 75(11): 1515-1517, 1999.
    [22] 陈小洪、高正平,磁光存储技术原理,电子科技大学出版社,1994。
    [23] 刘学东,范桂芳,张复实等,多波长存储材料的合成与存储实验研究,化学通报,Vol.2:123-123,2006。
    [24] 齐国生,麦雪松,徐端颐等,彩色三波长光存储实验研究,光电子.激光,Vol.13(11):1183-1189,2002。
    [25] 齐国生,肖家曦,刘嵘等,光致变色二芳基乙烯多波长光存储研究,物理学报,Vol.53(4):1076-1080,2004。
    [26] 齐国生,麦雪松,徐端颐等,用于数字彩色三层多阶光盘的读写装置[P],01134740.6,2001。
    [27] 肖家曦,齐国生,胡华等,多阶光存储原理分析及其读写系统前端信号处理研究,物理学报,Vol.54(1):102-106,2005。
    [28] 胡恒,潘龙法,胡华等,多阶光存储研究进展,光学技术,Vol.32(2):270-273,2006。
    [29] 胡华,齐国生,徐端颐,基于光致变色原理的多阶存储实验研究,中国激光,Vol.31(8):951-954,2004。
    [30] Spielman S, Johnson B V, McDermott G A, et al. Using pit- depth modulation to increase capacity and data transfer rate in optical discs[J]. SPIE Transactions on Optical Data Storage, Vol. 3109:98-104,1997.
    [31] O'Neill M P, Wong T L. Multi-level data storage system using phase-change optical discs[A]. Optical Data Storage Conf Tech Dig[C]. British Columbia, Canada, 2000.
    [32] Wu K, Howe D, Tsai S Y. Recording of multi-level run-length-limited (ML-RLL) modulation signals on phase-change optical discs[A].2003 Optical Data Storage Conf. Tech. Digest[C]. Vancouver, BC: SPIE, 2003.252-254.
    [33] 李伟,谢长生,裴先登,体全息存储技术,光学技术,Vol.27(3):283-288,2001。
    [34] Technology Tour, Inphase Technologies.
    [35] 戎霭伦,TB量级体存储光盘,记录媒体技术,Vol.3:18-22,2005.
    [36] 曾吉勇,王民强,金国藩等,物光参考光同光轴的体全息存储光学系统设计, 光学学报,Vol.26(2):244-248,2006。
    [37] B M Anarlamov, R I Personov, L A Bykovskaya. Stable gap in absorption spectra of solid solution of organic molecules by laser irradiation. OP t Commun, Vol. 12(2): 191-193,1974.
    [38] W.E.Moere. Molecular electronics for frequency domain optical storage: persistent spectral hole-burning-a review[J]. Journal of Molecular Electronics, Vol. 1(1): 55-71,1985.
    [39] W.E.Moerner, T. P. Carter and C. Brauchle. Fast burning of persistent spectral holes in small laser spots using photon gated materials. Appl. Phys. Lett. Vol. 50(8): 430-432, 1987.
    [40] C3D. White paper. Technical report, Constellation 3D. June 2000.
    [41] Kaiser, W., Garret, C. G. B., Two-photon excitation in CaF2: Eu2+, Phys. Rev. Lett., Vol. 7: 229-231, 1961.
    [42] 唐志列,梁瑞生,常鸿森,双光子和多光子共焦显微镜的成像理论,物理学报,Vol.49(6):1076-1080,2000。
    [43] J. Haumann, J. M. Seitzman, and R. K. Hanson, Two-photon digital imaging of CO in combustion flows using planar laser-induced fluorescence. Optics Letters, Vol. 11(12): 776-778, 1986.
    [44] D. A. Parthenopoulos and P. M. Rentzepis, Three-Dimensional Optical Storage Memory, Science, Vol. (245):843-845, 1989.
    [45] M. Gu, J. O. Amistoso, A, Toriumi, etc., Effect of saturable response to two-photon absorption on the readout signal level of three-dimensional bit optical data storage in a photochromic polymer, Appl. Phys. Lett. Vol. 79(2): 148-150, 2001.
    [46] D. A. Parthenopoulos and P M. Rentzepis, Two-photon volume information storage in doped polymer systems, J.Appl.Phys. Vol. 68(11):5814-5818, 1990.
    [47] J.R. Qiu, K.Miura, K.Hirao, Three dimensional optical memory using glasses as recording medium through a multi-photon absorption process, Jpn. J.Appl. Phys., Vol. 37(48): 2263-2266, 1998.
    [48] Y. Kawata, H. Ishitobi, S. Kawata, Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory, Opt. Lett. Vol. 23(10): 756-758, 1998.
    [49] D. Day, M. Gu, A. Smallridge, Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in photorefractive polymer, Opt. Lett. Vol. 24(14): 948-950, 1999.
    [50] J. H. Strickler and W. W. Webb, Three-dimensional optical data storage in refractive media by two-photon point excitation, Opt. Lett. Vol. 16(22):1780-1782,1991.
    [51] M. Albota, D. Beljonne, J. L. Bredas, etc., Desigh of organic molecules with large two-photon absorption cross sections, Science Vol. 281:1653-1656, 1998.
    [52] B. H. Cumpston, S.P. Ananthavel, S. Barlow, etc., Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature Vol. 398: 51-54, 1999.
    [53] M. Gu, D. Day, Use of continuous-wave illumination for two-photon three-dimensional optical bit data storage in a photobleaching polymer, Opt. Lett. Vol.24(5): 288-230, 1999.
    [54] M. M. Wang, S. C. Esener, F. B. McCormick, et. al. Experimental characterization of a two-photon memory, Optics Letters, Vol. 22(8): 558-560, 1997.
    [55] A. Toriumi, S. Kawata, and M. Gu. Reflection confocal microscope readout system for three-dimensional photochromic optical data storage, Optics Letters, Vol.23(24):1924-1926, 1998.
    [56] Dennis McPhail and Min Gu, Use of polarization sensitivity for three-dimensional optical data storage in polymer dispersed liquid crystals under two-photon illumination, Applied Physics Letters, Vol. 81(7):1160-1162, 2002.
    [57] A D Xia, S Wada, H Tashiro, Optical data storage in C_(60) doped polystyrene film by photo-oxidation, Applied Physics Letters, Vol. 73(10):1323-1325, 1998.
    [58] Wada S, Xia A D, Tashiro H, et al., 3D optical data storage with two-photon induced photon-oxidation in C60-doped polystyrene film, Focus on Ultra Fast Optical Sciences, Vol. 49:52-54, 2002.
    [59] E.N. Glezer, E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials, Appl. Phys. Lett. Vol. 71(7):882-886, 1997.
    [60] K. Yamasaki, S. Juodkazis, M. Watanabe, H.B. Sun, Matsuo, H. Misawa, Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films, Appl. Phys. Lett. Vol. 76(8):1000-1002,2000.
    [61] H.E Pudavar, M.P. Joshi, P.N. Prasad, High-density three-dimensional optical data storage in a stacked compact disk format with two-photo writing and single photon readout, Appl. Phys. Lett. Vol. 74(9): 1338-1340, 1999.
    [62] M. Watanabe, H. B. Sun, S. Juodkazis, etc., Three-dimensional optical data storage in vitreous silica, Jpn. J.Appl. Phys. Vol. 37(12):1527-1530, 1998.
    [63] M. S. Akselrod, S. S. Orlov, G. M. Akselrod, etc., Effect of anisotropy, color center concentration and recording parameters on volumetric optical data storage in aluminum oxide single crystal media, SPIE Vol. 5380: 320-327, 2004.
    [1] M. Watanabe, H. B. Sun, S. Juodkazis, etc., Three-dimensional optical data storage in vitreous silica, Jpn. J.Appi. Phys. Vol. 37(12): 1527-1530, 1998.
    [2] G. H. Cheng, Y. S. Wang, J. D. White, etc., Demonstration of high-density three-dimensional storage in fused silica by femtosecond laser pulses, J. Appl. Phys. Vol. 94(3): 1304-1307, 2003.
    [3] Z. W. Jiang, Y. J. Zhou, D. J. Yuan, etc., A two-photon femtosecond laser system for three-dimensional microfabrieation and data storage, Chin. Phys. Lett. Vol. 20 (12): 2126-2129, 2003.
    [4] E. N. Glezer, M. Milosavljevic, L. Huang, etc. Three-dimensional optical storage inside transparent materials, Opt. Lett. Vol. 21(24): 2023-2025, 1996.
    [5] M. Watanabe,. S. Juodkazis, H. B. Sun, etc., Two-photon readout of three-dimensional memory in silica, Appl. Phys. Lett. Vol. 77(1); 13-15, 2000.
    [6] M. S. Akselrod, S. S. Orlov, G. M. Akselrod, etc., Effect of anisotropy, color center concentration and recording parameters on volumetric optical data storage in aluminum oxide single crystal media, SPIE Vol. 5380: 320-327, 2004.
    [7] 徐端颐,光盘存储系统设计原理,国防工业出版社,2000。
    [8] C3D. White paper. Technical report, Constellation 3D. June 2000.
    [9] I. Cokgor, F. B. McCormick, A. S. Dvomikov, etc., Multilayer disk recording using 2-photon absorption and the numerical simulation of the recording process, Optical Data Storage Conference Digest, Apr. 7-9, 1997: 54-59, 1997.
    [10] S. Esener, Parallel readout of multi-layer optical disks recorded with a blue laser, IEEE LEOS.2001 Vol.2: 612-613, 2001.
    [11] H. Zhang, F. B. McCormick, A. S. Dvomikov, Single-beam two-photon-recorded monolithic multi-layer optical disks, SPIE, Vol. 4090:152-154, 2000.
    [12] S. Esener, E. P. Walker, Y. Zhang, etc., Present performance & future directions in two-photon addressed write once read many volumetric optical disk storage systems, SPIE Vol. 4988 : 93-103, 2003.
    [13] E. P. Walker, X. Z. Zheng, F. B. McCormick, etc., Servo error signal generation for 2-photon recorded monolithic multilayer optical data storage, SPIE Vol. 4090: 179-184, 2000.
    [14] W. Schlichting, S. Faris, B. Fan, etc., Recording and readout of a cholesteric liquid crystal based multilayer disk, Jpn. J. Appl. Phys. Vol. 36: 587-588, 1997.
    [15] T. N. Miller, J. Butz, T. D. Milster, etc., A novel method for tracking in homogeneous volumetric media, SPIE Vol. 5069: 269-278, 2003.
    [16] K. Yamamoto, K. Osato, I. Ichimura, etc., 0.8-numerical-aperture two-element objective lens for the optical disk, Jpn. J. Appl. Phys. Vol.36: 456-459, 1997.
    [17] 江兵,沈兆龙,蔡建文等,双光子多层荧光存储中的变焦选层技术研究,光电工程,Vol. 32(12):9-12,2005。
    [18] CHEN Jian-nong, YU Yong-jiang, Daniel Day, Complex amplitude distribution for compensation of refractive index mismatch on 3D optical storage recording system, Journal of Shanghai University(English Edition), Vol.10(3): 219-223, 2006.
    [19] Torok P, Verga P, Laczik Z, et al., Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices:An integration representation[J], Journal of Optical Society of America A, Vol. 12(2):325-332, 1995.
    [20] Daniel Day, Gu Min., Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer[J], Applied Optics, Vol. 37(26):6299-6304, 1998.
    [21] Sheppard C J R, Gu M., Imaging by a high aperture optical system[J], Journal of Modern Optics, Vol. 40(8):1631-1651, 1993.
    [22] Sheppard C J R, Gu M, Aberration compensation in confocal microscopy[J], Applied Optics, Vol. 30 (25):3563-3568, 1991.
    [23] Sheppard C J R, Gu M, Brain K, et al., Influence of spherical aberration on axial imaging of confocal reflection microscopy[J], Applied Optics, Vol. 33(4):616-624, 1994.
    [24] 周拥军,唐火红,黄文浩等,双光子三维信息存储中折射率失配的影响,光学精密工程,Vol. 12:432,2004。
    [25] 蔡建文,程晔增,沈兆龙,江兵等,折射率失配对双光子三维光存储中像差的影响,光学学报,Vol. 26(3):443-446,2006。
    [26] 孙梵,博士论文,清华大学,2004; F. Sun, F.S. Zhang, F.Q. Zhao, Y.J. Zhou, W.H.Huang, A.D. Xia, Diaryperfluorocyclopentenes as Novel Two-photon 3D Optical DataStorage Media,
    [27] Bing JIANG, Zhaolong SHEN, Jianwen CAI, et, al. New Method of Two-photon Multi-layer Optical Disc Storage, Proceeding of SPIE, Vol 6150: 3Q1-3Q5, 2006。
    [1] M. M. Wang, S. C. Esener, Three-dimensional optical data storage in a fluorescent dye-doped photopolymer, Appl. Opt., Vol. 39(11): 1826-1834, 2000.
    [2] D. A. Akimov, A. B. Fedotov, N.I. Koroteev, etc., Optimizing two-photonthree-dimensional data storage in photochromic materials using the principles of nonlinear optics, Jpn.J.Appl.Phys. Vol. 36:426-428, 1997.
    [3] J.R. Qiu, K.Miura, K.Hirao, Threedimensional optical memory using glasses as recording medium through a multi-photon absorption process, Jpn. J.Appl. Phys., Vol. 37(48): 2263-2266, 1998.
    [4] M. Watanabe, H. B. Sun, S. Juodkazis, etc., Three-dimensional optical data storage in vitreous silica, Jpn. J.Appl. Phys. Vol. 37(12): 1527-1530, 1998.
    [5] Y. Zhang, E. P. Walker, W. Y. Feng, etc., Capacity of a 3-D multi-layer optical data storage system, International Symposium on Optical Memory and Optical Data Storage Topical Meeting, 2002: 48-50, 2002.
    [6] H. E. Pudavar, M. P. Joshi, P. N. Prasad, etc., High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout, Appl. Phys. Lett. Vol. 74(9): 1338-1340, 1999.
    [7] B. J. Siwick, E. Slobodtchikov, D. Psiachos, etc., Two-photon Photobleaching of an ordered 3-D polymer nanocomposite: a candidate for high density 3-D optical memory., CLE0'99: 312-313, 1999.
    [8] D. Ganic, D. Day, M. Gu, Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination, Optics and Lasers in Engineering, Vol. 38: 433-437, 2002.
    [9] Marvin Minsky, Memoir on Inventing the Confocal Scanning Microscope, Scanning, Vol.10: 128-138, 1988.
    [10] M.D.Egger, M. Petran, New reflected-light microscope for viewing unstained brain and ganglion cells, Science, Vol. 157: 305-307, 1967.
    [11] C.J.R.Sheppard, A.Choudhury, Image formation in the scanning microscope, Optica Acta, Vol. 24: 1051-1073, 1977.
    [12] C J R Sheppard, T Wilson, Depth of field in the scanning microscope[J], Opt.Lett, Vol. 3:115-117, 1978.
    [13] 陈德强,夏安东,王克逸等,双光子激光扫描荧光显微镜及其应用,物理,Vol.29:232-236,2000。
    [14] 周拥军,陈德强,夏安东,黄文浩,单分子的荧光特性及其在生物学上的应用,物理,Vol. 29:657-661,2000。
    [15] Hong-Bo S. Shigeki M. Hiroaki M. Three-dimensional photonic crystal structures achieved with two-photon absorption photopolymerization of resin. AppI,Phys.Lett. Vol. 74(6): 786-788, 1999.
    [16] H. Zhang, E.P. Walker, W.Y. Feng etc., Multi-layer optical data storage based on two-photon recordable fluorenscent disk media, Eighteenth IEEE sysposium on mass storage systems, 225-236, 2001.
    [17] Min Gu, Principles of three-dimensional imaging in confoeal microscopes, World Scientific Publishing Co. Pte. Ltd., 1996. (In Chinese).
    [18] M. Gu, T. Tannous, C. J. R. Sheppard, Axial resolution in confocal imaging under ultrashort pulsed beam illumination, Zoological Studies, Vol. 34(Suppl 1):76-78, 1995.
    [19] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1968.
    [20] M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1980.
    [21] Sheppard CJR, Kompfner R, Gannaway J, Walsh D, The scanning harmonic optical microscope, IEEE/OSA Conf. Laser Engineering and Applications Washington, IEEE J. Quantum Elec., Vol. QE-13: 100D,1977.
    [22] C J R Sheppard,R Kompfner, Resonent scanning optical microscope[J], Applied Optics, Vol. 17:2879-2882, 1978.
    [23] W. Denk, J. H. Strickler, W. W. Webb, Two-Photon laser Scanning Fluorescence Microscopy, Science, Vol.248:73-76, 1990.
    [24] Gu Min,Sheppard C J R, Effect of a finite-sized pinhole on 3D image formation in confocal two-photon fluorescence microscopy, Journal of Modern Optics, Vol. 40(10): 2009-2024, 1993.
    [25] 周拥军,双光子/共焦激光扫描荧光显微镜及其在三维光学信息存储中的应用,中国科学技术大学博士论文,2004。
    [26] 陈德强,周拥军,黄文浩等,双光子激光扫描显微镜中折射率失配引起的图像变形研究,光子学报,Vol. 29:232-236,2000。
    [1] 徐端颐,光盘存储系统设计原理,国防工业出版社,2000。
    [2] 干福熹,数字光盘存储技术,科学出版社,1998。
    [3] Optical DVD Pick-up Specifications, Model: SF-HD60S, SANYO Electric Co. Ltd., 2002.9.
    [4] Jiang Zhongwei, Zhou Yongjun, Yuan Dajun, etc., A two-photon femtosecond laser system for three-dimensional micro-fabrication and data storage, Chinese Physics Letter, Vol. 20(12): 2126-2129, 2003.
    [5] 沈兆龙,江兵,蔡建文等,共焦双光头多层数据存储系统,光电工程,2007。(己录用)。
    [6] 吴刚,范鸢春,DVD聚焦伺服系统建模与仿真[M],系统仿真学报,Vol. 17(2):263-266,2005。
    [7] Kuang-Chao Fan,Chih-Liang Chu, Development of a low-cost autofocusing be for profile measurement[M], Measurement Science and Technology, Vol. 12: 2137-2i46, 2001.
    [8] 黄仁泽,陈文良,碟片晃动对光碟机读取头光强及聚焦控制之影响分析[D],台湾省国立清华大学动力机械工程学系硕士论文,2003.6。
    [9] 吴湘淇,肖熙,郝晓莉,信号、系统与信号处理的软硬件实现,电子工业出版社,2002。
    [10] 侯媛彬,汪梅,王立琦,系统辨识及其MATLAB仿真,科学出版社,2004。
    [11] 蔡建文,程晔增,沈兆龙,江兵等,折射率失配对双光子三维光存储中像差的影响,光学学报,Vol. 26(3):443-446,2006。
    [12] 沈兆龙,江兵,蔡建文等,双光头多层数据存储系统同步聚焦误差检测,光学学报,2007。(已录用)
    [13] 吕百达,激光光学:光束描述、传输变换与光腔技术物理[M],高等教育出版社,2003。
    [1] D. A. Parthenopoulos and P. M. Rentzepis, Three-Dimensional Optical Storage Memory, Science, Vol.245:843-845, 1989.
    [2] D. A. Akimov, A. B. Fedotov, N.I. Koroteev, etc, Optimizing two-photon three-dimensional data storage in photochromic materials using the principles of nonlinear optics, Jpn.J.AppI.Phys, Vol. 36:426-428, 1997.
    [3] A. Toriumi, J. M. Herrmann, S. Kawata, Nondestructive readout of a three-dimensional photochromic optical memory with a near-infrared differential phase-contrast microscope, Opt. Lett., Vol. 22(8): 555-557, 1997.
    [4] P. C. Cheng, J. D. Bhawalkar, S. J. Pan, etc., Two-photon Generated Three-Dimensional photobleached patterns in a polymer matrix, Scanning, Vol. 18(3): 129-131, 1996.
    [5] I. Polyzos, G. Tsigaridas, M. Fakis, etc., Two-photon absorption properties of novel organic materials for three-dimensional optical memories, Chem. Phys. Lett., Vol. 369: 264-268, 2003.
    [6] D. Ganic, D. Day, M. Gu, Multi-level optical data storage in a photobleaching polymer using two-photon excitation under continuous wave illumination, Optics and Lasers in Engineering, Vol. 38: 433-437, 2002.
    [7] J. H. Strickler and W. W. Webb, Three-dimensional optical data storage in refractive media by two-photon point excitation, Opt. Lett., Vol. 16(22): 1780-1782, 1991.
    [8] H. E. Pudavar, M. P. Joshi, P. N. Prasad, etc., High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout, Appl. Phys. Lett., Vol. 74(9): 1338-1340, 1999.
    [9] Y Kawata, H Ueki, Y Hashimoto, et al., Three-dimensional optical memory with a photorefractive crystal, Appl. Opt., Vol. 34(20): 4105-4110, 1995.
    [10] D. Day, M. Gu, A. Smallridge, Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in photorefractive polymer, Opt. Lett., Vol. 24(14): 948-950, 1999.
    [11] K. Yamasaki, S. Juodkazis, M. Watanabe, etc., Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethyimethacrylate films, Appl. Phys. Lett., Vol. 76(8): 1000-1002, 2000.
    [12] E. N. Glezer, M. Milosavljevic, L. Huang, etc., Three-dimensional optical storage inside transparent materials, Opt. Lett., Vol. 21(24): 2023-2025, 1996.
    [13] G. H. Cheng, Y. S. Wang, J. D. White, etc., Demonstration of high-density three-dimensional storage in fused silica by femtosecond laser pulses, J. Appl. Phys., Vol. 94(3): 1304-1307, 2003.
    [14] 孙梵,Diaryperfluorocyclopentenes as Novel Two-photon 3D Optical Data Storage Media,清华大学博士论文,2004。
    [15] Tang Huohong, Xing, Hui, Jiang Bing, et, al. Single beam Two-photon recording and one-photon fluorescent reading three-dimensional optical data storage system, Proceeding of SPIE, Vol 6150: 4U1-4U5, 2006.
    [16] 唐火红,Research on 3D optical data storage based on femtosecond laser two-photon excitation,中国科学技术大学博士论文,2005。
    [17] 周拥军,唐火红,蒋中伟,黄文浩等,用于三维光学信息存储和微细加工研究的共焦激光扫描荧光显微镜,电子显微学报,Vol. 22(6):551-552,2003。
    [18] Tang Huohong, Xing, Hui, Jiang Bing, et, al. Three-Dimensional Optical Data Storage in a Novel Dye doped Polymer film using Two-Photon Bleaching, Proceeding of SPIE, Vol.5966: 121-124, 2005.
    [19] 蔡建文,沈兆龙,江兵等,基于DVD光头的双光子光致漂白三维光存储实验研究,光学学报,Vol. 25(10):1401-1405,2005。
    [20] M. Albota, D. Beljonne, J. L. Bredas, etc., Desigh of organic molecules with large two-photon absorption cross sections, Science Vol. 281: 1653-1656, 1998.
    [21] D. Day and M. Gu, Formation of voids in a doped polymethlmethacrylate polymer, Appl. Phys. Lett., Vol. 80 (13): 2404-2406, 2002.
    [22] L. Melby, N. Rose, E. Abramson, and J.C. Caris, Synthesis and fluorescence of some trivalent lanthanide complexes, J. Am. Chem. Sot., Vol. 86:5117, 1964.
    [23] 蔡建文,程晔增,沈兆龙,江兵等,折射率失配对双光子三维光存储中像差的影响,光学学报,Vol. 26(3):443-446,2006。
    [24] B.C.Stuart,M.D.Feit,S.Herman et al., Nanosecond to femtosecond laser -induced damage in dielectrics[J], Phys.Rev.B, Vol. 53(4): 1749-1761, 1996.
    [25] Li Chengde, Wang Danling, Luo Le et al., Feasibility of Femtosecond Laser Writing Multi-Layered Bit Planes in Fused Silica for ThreeDemensional Optical Data Storage, Chin. Phys. Lett., Vol. 18(4):541-543, 2001.
    [1] M.Born and E. Wolf, Principles of Optics, Pergamon, New York, 1975.
    [2] D. A. Parthenopoulos and P. M. Rentzepis, Three-Dimensional Optical Storage Memory, Science, Vol. 245: 843-845, 1989.
    [3] 周拥军,唐火红,黄文浩等,双光子三维信息存储中折射率失配的影响,光学精密工程,Vol. 12:432,2004。
    [4] 蔡建文,程哗增,沈兆龙,江兵等,折射率失配对双光子三维光存储中像差的影响,光学学报,Vol. 26(3):443-446,2006。
    [5] Toraldo di Francia G., Super-gain antennas and optical resolving power, Nuovo Cimento Suppl., Vol. 9(3):426-435, 1952.
    [6] Youhua Tan, Rui Guo, Shizhou Xiao, etc., Design of superresolved phase plates, Journal of Laser Micro/Nanoengineering, Vol. 1(3): 281-287, 2006.
    [7] S. Esener, E. P. Walker, Y. Zhang, etc., Present performance & future directions in two-photon addressed write once read many volumetric optical disk storage systems, SPIE Vol. 4988: 93-103, 2003.
    [8] J. Bewersdorf, R. Pick, S. W. Hell,Multifocai multiphoton microscopy, Opt. Lett., Vol. 23(9):655-657, 1998.
    [9] B. Agate, B. Stormont, A.J. Kemp, etc., Simplified cavity designs for efficient and compact femtosecond Cr:LiSAF lasers, Optics Communications, Vol. 205: 207-213, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700