ME20M镁合金热挤压工艺及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用了传统的正向挤压工艺制备ME20M镁合金棒材与XC6218 -1板材进行对比试验,探索ME20M合金成型工艺参数,以期实现XC6218-1板材力学性能的改善和稳定生产。采用热压缩试验,分析ME20M镁合金在高温压力变形中应变规律,并结合金相显微(OM)以及室温静态拉伸测试,探讨了ME20M镁合金室温强韧性与晶粒大小、挤压工艺(挤压温度、挤压速度)之间的关系,寻求改善合金强韧性的有效途径;采用OM、扫描电子显微镜(SEM)、电子背散射技术(EBSD)以及热压缩实验分析了挤压变形过程中镁合金的组织演变规律,探讨了挤压变形过程中ME20M镁合金的动态再结晶机制,以及织构、未再结晶区对镁合金力学性能的影响。并通过正交试验优化确定相关工艺参数,指导工业生产。
     研究表明,ME20M镁合金变形激活能为149.9kJ/mol,在单向热压缩中易于产生不均匀变形,适宜应变速度为1s~(-1)以下,变形温度为653K以上,流变应力符合幂指数本构方程。在实际挤压中需要较高的挤压温度(棒材613K、XC6218-1板材653K),便于平衡加工硬化影响,充分实现再结晶与晶粒长大,减少纤维组织,促进组织均匀化。
     挤压变形中,变形热是促进组织再结晶和晶粒长大的主要因素。晶粒尺寸d与Zener-Hollomon函数Z的关系为:d=1.283×10~5Z~(-0.33) ((ε|·)=0.592s~(-1));d=1.463×10~7Z~(-0.57)((ε|·) =1.166s~(-1)),Z指数很大(AZ61仅为0.023)且随着应变速率升高而增大。因此ME20M的晶粒尺寸受温度与变形速度的影响很大,尤其变形速度的影响。提高变形速度将短时间产生较多的变形热,促进了再结晶与晶粒长大。
     ME20M在挤压中存在两种再结晶机制:粒子形核机制与亚晶形核机制。细晶区多是第二相粒子促进再结晶形核而形成,晶粒取向随机,{0002}丝织构强度较弱;粗晶区多是位错缠结、孪晶机制再结晶形成,其取向受变形状况影响较大,织构强度较高。变形热的增加,有利于细晶的长大,减弱了组织的织构强度。
     挤压薄板主要有{0002}<11(2| ̄)0>和{11(2| ̄)1}<11(2| ̄)3>两种织构组分:板面内力学各向异性明显,当板材挤压速度较慢(2.5mm/s)、温度较高(693K)时,{11(2| ̄)1}<11(2| ̄)3>织构明显加强,而基面织构{0002}<11(2| ̄)0>将减弱,有效地减小板材的各向异性。
     ME20M“挤压效应”显著,ED方向纤维组织截面为点状,再结晶的程度提高将有效减小纤维组织对力学性能的不良影响;TD方向纤维组织截面为带状,再结晶的程度提高虽然能够减小纤维组织宽度,但纤维组织长度变化很小,拉伸出现缺陷时易于沿纤维组织扩展,脆性断裂倾向较为明显。
     通过实验确定,XC6218-1型材良好的挤压工艺条件为:铸锭(Ф94mm,挤压筒为Ф105mm),加热温度为673±10K,挤压筒温度为673K,挤压比(固定值)为45.9,挤压速率2.5mm/s(调速电流0.2A)。采用上述条件,成功获得抗拉强度250MPa以上,延伸率16%以上成型性能良好的挤压型材。
In this study, rods and XC6218-1 sheets are prepared by tranditional direct extrusion to explore proper parameters of extrusion process and improve the mechanical properties of sheet and stable production. The flow strain phenomenon of deformation of ME20M magnesium alloy at high temperature was analysist by hot compression test. The effects of extrusion process on the grain size and the mechanical properties of ME20M magnesium alloy were investigated by Optical microscopy(OM) and tensile test at room temperature. Microstructure evolution were studied by OM,scanning electron microscopy (SEM), electron back-scattered diffraction(EBSD) and hot compression test to establish the dynamic recrystallization mechanism and effects of texture and unrecrystallization on mechanical properties of ME20M alloy. Relevant parameters were identified by orthogonal test to guide industrial production. The main results can be summarized as follows:
     The deformation activation energy is 149.9MPa, and it is difficult to uniform deformation during uniaxial compression. It’s suitable for deformation when strain rate below 1s~(-1) and the temperature above 653K. The temperature of billet in extrusion is high (Rod:above 613K; Sheet:above 653K) to weak work hardening and reduce fibrous structure.
     The deformation heat is main factor in promotion of recrystallization and grain growth. The relation between grain size(d) and Zener-Hollomon function is: d=1.283×10~5Z~(-0.33) ((ε|·) =0.592s~(-1));d=1.463×10~7Z~(-0.57)((ε|·) =1.166s~(-1)). The index is large compare to AZ61(0.023), and increase when strain rate raised. Raise in strain rate will form more deformation heat in short time to promote recrystallization and grain growth.
     There are two recrystallization mechanisms in extrusion of ME20M alloy: particle nucleation and sub-grain nucleation. Fine grain areas are mainly formed by particle nucleation and the orientation of grains is more random, and {0002} fiber texture is weak in these areas. Coarse grain areas are maily formed by twin and dislocation tangle, and the orientation of grains is more relied on deformation condition. Raise in deformation heat will promote growth of fine grains and weaken the texture.
     There are two main texture components, which are {0002}<11(2| ̄)0> and {11(2| ̄)1}<11(2| ̄)3>,getting from texture analysis.The anisotropy is greatly, and it’s weaken by {11(2| ̄)1}<11(2| ̄)3> strongthen for low extrusion rate(2.5mm/s) and high temperature(693K).
     Extrusion effect of ME20M alloy is remarkable. The cross-section of fibrous tissue in the sample of ED direction is point-like, and increase in temperature can effectly decrease the adverse effects of fibrous tissue on mechanical properties by recrystallization. The cross-section of fibrous tissue in the sample of TD direction is band-like. Increase in temperature can decrease width of the band, but there is little change in the length of fibrous tissue. Defect can easily along the fibrous tissue, and there is more obvious tendency of brittle fracture.
     The extrusion parameters are as follows:ingots were heated from RT to 673±10K with extrusion container heated to 673K. The extrusion ratio is 45.9(const.) and the extrusion rate is 2.5mm/s.The sheets were successfully extruded with its thichness ultra tensile strength above 250MPa and elongation above 16% according to the extrusion parameters above.
引文
[1] Asm International, Magnesium And Magnesium Alloy[M], O H:Metal Park, 1999, 1.
    [2]陈勇军,王渠东,翟春泉等.大塑性变形制备高强镁合金的研究与展望,机械工程材料, 2006, 3, 1-3.
    [3] R F Decker, The renaissance in magnesium, Advanced Mater&Proc, 1998, 9, 3 1-35.
    [4] Polmear L J, Recent development in light alloys, Mater.Trans., JIM,37(1), 1996,12-31.
    [5] Friedrich H E,Mordike B L. Magnesium technology (metallurgy, design data, applications) [M].Berlin: Springer, 2006.
    [6]于琨,黎文献,李松瑞.变形镁合金材料的研究进展.轻合金加工技术.2001, 29(7):6-11.
    [7] E Aghion, B Bronfin, Magnesium alloys development towards the 21st century.Mater Sci.Forum,2000,350-351:19-29.
    [8]陈振华等编著.镁合金.北京:化工出版社,2004.
    [9]《轻金属材料加工手册》编写组编.轻金属材料加工手册.北京:冶金工业出版社,1979.
    [10]工程材料实用手册编写委员会编.工程材料实用手册,第三卷,铝合金、镁合金(第二版).中国标准出版社,2002.
    [11]SAE Magnesium Alloys AMS Handbook 1997.Society of Automatic Engineers,Inc. Warrendale, Pa.
    [12]曾正明主编.实用工程技术手册.机械工业出版社,北京,2000.
    [13]刘英等.镁合金的研究进展和应用前景.轻金属,2002(8):56—72.
    [14]陈振华.变形镁合金,北京:化学工业出版社,2005.
    [15]王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报. 2003,13(2), 277-288
    [16]文凡.生物体用不锈钢和钴铬合金研究现状[J].金属功能材料. 1998,37(1O):834.
    [17]Wang Qintao,Zhang Yumei,Hu Naisai,et a1.Microstructure analysis of fractured Ti alloy implant[J].Rare Metal Mater Eng.2004,33(4):442.
    [18]赵彦宾,房中学.铸造和挤压镁合金牺牲阳极的应用进展[J].全面腐蚀控制. 2010,24(1): 29-34.
    [19]汪凌云,潘复生,丁培道等.AZ31镁合金成形性能改善研究[J],2002年材料科学与工程进展,北京:冶金工业出版社,636—640.
    [20]Robert E Brown,Magnesium wrought and fabricated products yesterday,today and tomorrow.Magn Teehn, 2002,155.
    [21]F H Froes,D Eliezer,E Aghion,Proceedings of the second Israeli international conference on magnesium science&technology,Dead Sea,Israel:2000:43.
    [22]吕炎.镁合金上机闸等温精锻工艺的研究[J],哈尔滨工业大学学报, 2000,32(4):127-129
    [23]刘兵.加强技术创新,为经济结构调整提高强大动力一论实施“镁合金开发应用及产业化重大专项”的战略意义,材料热处理学报,200l,22,1.
    [24]Schumann S. The paths and strategies for increased magnesium applications in vehicles, Material Science Forum 2005,488-489,1-8.
    [25]Cao Jianyong,Zhang Zonghe,Xiang Dongxia,etc. Magnesium Motorcycle Application, Material Science Forum 2005,488-489,915-918.
    [26]Naiyi Li. Magnesium advances and application in north America automotive industry,Material Science Forum 2005,488-489,91-935.
    [27]Yu Qi,Huang Shaodong,Tang Quanbo,et al,Research and application of magnesium alloys in special components,Material Science Forum 2005,488-489,919-922.
    [28]谢春晓,陈丙璇,刘凯. AZ31变形镁合金的研究与开发[J],金属世界,2006,2:22-26.
    [29]KOIKE J,KOBAYASHI T,MUKAI T,et a1.The activity of non-basal sl ip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J].Acta. Materiali,2003,51(7):2055-2065.
    [30]AGNEW S R, DUYGULU 0.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J].International Journal of PlastiCity.2005,21(6):1161-1193.
    [31]AGNEW S R,Y00 M H,TOME C N.Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Materialia.2001,49(20):4277-4289.
    [32]YOO M H, AGNEW S R,MORRIS J R, et a1. Non-basal slip systems in HCP metals and alloys: source mechanisms[J]. Materials Science and Engineering A. 2001,319-321: 87-92.
    [33]YOSBIDA Y,ARAI K,ITOH S,et a1.Realization of high strength and high ductility for AZ61 magnesium alloy by severe warm working[J] . Science and Technology of Advanced Materials.2005,6(2):185-194.
    [34]SUWAS S,GOTTSTEIN G,KUMAR R.Evolution of crystallographic texture during equal channel angular extrusion(ECAE) and its effects on secondary processing of magnesium[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,471(1-2):1-14.
    [35]CHINO Y,KIMURA K,MABUCHI M.Twinning behavior and deformation mechani sms of extruded AZ3l Mg alloy[J].MaterialS Science and Engineering:A,2008,486(1-2): 481-488.
    [36]Zhou H T, ZENG X Q, LIU L L,et a1. Microstructural evolution of AZ61 magnesium alloy during hot deformation[J].Materials Science and Technology,2004,20(11): 1397-1402.
    [37]YI S B, ZAEFFERER S, BROKMEIER H G. Mechanical behaviour and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures[J]. Materials Science and Engineering:A,2006,424(1-2):275—281.
    [38]YANG P,MENG L,MAO W M, et a1.Characteristics of hot compressed magnesium alloy AZ31 with initial textures analyzed by orientation mapping[J].Icotom 14:Texturesof Materi als,Pts land 2,2005,495-497:639-644.
    [39]Christian J W, Mahajan S. Deformation twinning[J]. Progress in Materials Science.1995,39(1-2): 1-157.
    [40]BARNETT M R. Twinning and the ductility of magnesium alloys Part I:"Tension"twins [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing.2007,464(1-2):1-7.
    [41]BARNETT M R.Twinning and the ductility of magnesium alloys Part II. "Contraction" twins[J].Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,464(1-2):8-16.
    [42]NAVE M D.BARNETT M R.Microstructures and textures of pure magnesium deformed in plane-strain compression[J].Scripta Materialia.2004,51(9):881-885.
    [43]JAGER A,LUKAC P,GARTNEROVA Y,et a1.Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures[J].Journal of Alloys and Compounds.2004,378(1-2):184-187.
    [44]Prado M T,Valle J A,Ruano O A.Effect of sheet thickness on the microstructure evolution of an Mg alloy during large strain hot rolling[J].Scripta Materialia.2004,50:667-671.
    [45]WANG Y N,HUANG J C.Texture analysis in hexagonal materials[J].Mater Chemistry and Phy,2003,81:11-26.
    [46]YANG P,YU Y,CHEN L,et a1. Experimental determination and theoretical prediction of twin orientations in magnesium alloy AZS1[J].Scripta Materialia. 2004, 50:1163-1168.
    [47]Kalidindi S R. Incorporation of deformation twinning in crystal plasticity models [J].Journal of the Mechanics and Physics of Solids.1998,46:267-290.
    [48]Kainer K U.Microstructure,mechanical properties and deformation behaviour of extruded magnesium alloys[A]. Mordike B L,Kainer K U.Magnesium Alloys and Their Applications[C]. Weinheim:WILEVCH.2000,596-601.
    [49]Myagchilov S,Dawson P R.Evolution of texture in aggregates of crystals exhibiting both slip and twinning[J].Modelling and Simulation in Materials Science and Engineering.1999,7:975- 1004.
    [50]Wagner L,Hilpert M, Wendt J.On methods for improving the fatigue performance of the wrought magnesium alloys AZ3l and AZ80[J]. Materials Science Forum Vols, 2003,419-422:93-102.
    [51]Kalidindi S R. Modeling anisoptropic strain hardening and deformation textures in low stacking fault energy materials[J].International Journal of Plasticity. 2001,17:837-860.
    [52]Christian J W, Mahajan S. Deformation twinning[J]. Progress in Materials Science ,1995,39:1-157.
    [53]Poss R. Sheet metal production of magnesium[J]. Materials Science Forum Vols. 2003,419-422: 327-336.
    [54]Yoshida Y,Kamado S,Kojima Y. Application of ECAE processed magnesium alloys[J].Journal of Japan Institute of Light Metals.2001,51(10):556-562.
    [55]Kim W J,Hong S I,Kim Y S,et a1.Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing[J].Acta Materialia.2003,51:3293-3307.
    [56]Houtte P V.Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning[J].Acta Metallurgica.1978,26:59l-604.
    [57]Taylor G I. Plastic strain in metals[J].J Inst Met.1938,62:307-324.
    [58]Styczynski A,Hartig C,Bohlen J.Cold rolling textures in AZ31 wrought magnesium alloy[J].Scripta Materialia. 2004,50:943-947.
    [59]Yoshida Y,Cisar L,Kamado S,et a1.Texture development of AZJ1 magnesium alloy during ECAE processing[J].Materials Science Forum Vols.2003, 419-422:533-588.
    [60]Kaiser F,Letzig D,Bohlen J,et a1.Anisotropie properties of magnesium sheet AZ31[J]. Materials Science Forum Vols.2003,419-422:315-320.
    [61]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社.2002.
    [62]Margam Chandrasekaran,Yong Ming Shyan John. Effect of materials and temperature on the forward extrusion of magnesium alloys[J] , Materials Science and Engineering A,2004,381,308-319.
    [63]林金保,王渠东,陈勇军.镁合金塑性成形技术研究进展[J].轻合金. 2006,10,76-80.
    [64]Chen Yongiun,Wang Qudong,Peng Jianguo,etc.Improving the mechanical properties of AZ31 Mg alloy by high ratio extrusion,Material Science Forum,2006,503-504,865-870.
    [65]Chen Yongjun,Wang Qudong,Peng Jianguo,etc.Effect of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy[J].Journal of materials processing technology. 2007,182,281-285.
    [66]H K Lill,J C Huang,Fabrication of low temperature superplastic AZ91 Mg alloys using simple high-ratio extrusion method[J], Key Engineering Materials.2002,233-236, 875-880.
    [67]H K Lin,S F Su,J C Huang,Superplasticity and welding Behavior in four Mg-A1-Zn base alloys,4th Pacific Rim International Conference on Advanced Materials and Processing(PRICM4), HONOLULU, HAWAII. 2001,11.
    [68]MASOUDPANAH S M, MAHMUDI R. The microstructure, tensile, and shear deformation behavior of an AZ31 magnesium alloy after extrusion and equal channel angular pressing[J]. Materials & Design, 2010, 31(7): 3512?3517.
    [69]JIAN W W, KANG Z X, LI Y Y. Effect of hot plastic deformation on microstructure and mechanical property of Mg-Mn-Ce magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6): 1158?1163.
    [70]GUO Q, YAN H G, CHEN Z H, ZHANG H. Grain refinement in as-cast AZ80 Mg alloy under large strain deformation[J]. Materials Characterization, 2007, 58(2): 162?167.
    [1]陈振华.变形镁合金,北京:化学工业出版社,2005.
    [2]余琨,黎文献,李松瑞.变形镁合金的研究进展.轻合金加工技术.2001(7):6-11.
    [3]上海交通大学《金相分析》编写组.金相分析.国防工业出版社.
    [4]《轻金属材料加工手册》编写组编.轻金属材料加工手册.北京:冶金工业出版社,1979.
    [5]工程材料实用手册编写委员会编.工程材料实用手册,第三卷,铝合金、镁合金(第二版).中国标准出版社,2002.
    [6] SAE Magnesium Alloys AMS Handbook 1997.Society of Automatic Engineers,Inc. Warrendale, Pa.
    [7]曾正明主编.实用工程技术手册.机械工业出版社,北京,2000.
    [1]覃银江,潘清林,何运斌,李文斌,刘晓艳,范曦.ZK60镁合金热压缩变形流变应力行为与预测.金属学报.2009,45(7):887-891.
    [2] Jonas J J,Sellars C M,Tegart M W J. Int Mater Rev,1969,14:1.
    [3] Shen G,Semiatin E L,Shivpui R.Metal and Materials Transaction A[J],1995,26(7):1795
    [4] Zener C,Hollomon J H. J Appl Phys, 1944,15:22.
    [5]目蕴琪,邓炬,张廷杰等.AZ9l合金的压缩行为[J].稀有金属.2004,28(6):1015-1018.
    [6] XU J.ZHAI Q.YUAN S.Rapid So1idification chacteristics of melt spun A291D magnesium alloy[J].The Chinese Journal of Nonferrous Metals.2004,14(6):939-944.
    [7] YANG X,MlURA H.SAKAI T. Dynamic evolution of new grains in magnesium alloy AZ3l during hot deformation[J]. Materials Transaction.2003,44:197-203.
    [8] GROSVENOR A,DAVIES C H J.Microstructure evolution during the hot deformation of magnesium alloy AZ3l[J]. Materia1s Science Forum.2003,426/432:4567-4572.
    [9]王春艳,吴昆,郑明毅. ZK60和Al18B4O33w/ZK60高温压缩流变应力行为的研究[J].材料科学与工艺.2007,15(2):202-210.
    [1]石磊,李继文,李永兵,魏世忠.高精度A Z31镁合金薄壁管件等温挤压后的组织与性能[J].材料热处理技术. 2009, 38(20): 42?45.
    [2]刘楚明,朱秀荣,周海涛.镁合金相图集[M].长沙:中南大学出版社, 2006: 35.
    [3] PEZAT M, HBIKA A, DARRIET B. Study of alloys of composition CeMg11V, CeMg11Cr, CeMg11Mn, CeMg11Fe, CeMg11Co and their application to hydrogen storage[J]. Materials Research Bulletin, 1980, 15(1): 139?146.
    [4]余琨,黎文献,张世军. Ce对镁及镁合金中晶粒的细化机理[J].稀有金属材料与工程, 2005, 34(7): 1014?1016.
    [5] YAMASHITA T, KELLY P M, CAVALLARO P, HISA M. Effects of age hardening on magnetic and transport properties of Mg-1.3 WT% Ce alloys[J]. Acta Materiallia, 1998, 46(9): 2977?2981.
    [6] ZHANG Xin, KEVORKOV D, JUNG In-hong, PEKGULERYUZ M. Phase equilibria on the ternary Mg–Mn–Ce system at the Mg-rich corner[J]. Journal of Alloys and Compounds, 2009, 482(1/2): 420?428.
    [7] STYCZYNSKI A,HARTIG C,BOHLEN J,LETZIG D.Cold rolling textures in AZ31 wrought magnesium alloy[J].Scripta Mater.2004,50(7):943-947.
    [8] CAHN R W.Structure and properties of nonferrous alloys[M]. Beijing:Science Press.1999:123.
    [9] GEHRMAN R,FROMMERT M M,GOTTSTEIN G Texture effects on plastic deformation ofmagnesium[J].Mater Sci Eng A,2005,A395(1-2):338-349.
    [10]CHINO Y, KIMURA K HAKAMADA M, MABUCHI M. Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy[J].MaterSciEngA,2008,A485(1-2):31l-317.
    [1] JAGER A,LUKAC P,GARTNEROVA Y,et a1.Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures[J].Journal of Alloys and Compounds.2004,378(1-2):184-187.
    [2] CHINO Y, KIMURA K HAKAMADA M,MABUCHI M.Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy[J].MaterSciEngA.2008,A485(1-2):311-317.
    [3] CHRISTIAN J W,MAHAJAN S.Deformation twinning[J].Pro Mater Sci.1995,39(1-2):1-157.
    [4] BARNETT M R.Twinning and the ductility of magnesium alloys Part I“:Tension”twins[J].Mater Sci Eng A.2007,A464(1-2):1-7.
    [5] WANG YN.HUANG J C.The role of twinning and untwining in yielding behavior in hot-extruded Mg-A1-Zn alloy[J]. Acta Mater.2007,55(3):897-905.
    [6] AGNEW S R,Y00 M H. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J].Acta Mater.2001,49(20):4277-4289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700